Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 52(2): 270-278, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36897278

ABSTRACT

The US state of Georgia includes the range of several periodical cicada broods and is the southernmost state in which Brood X periodical cicadas emerge; however, no research has focused on this brood in this state. We used reports of sightings on social media, communication with the public, and our own searches to determine the geographic range in Georgia and timing of biological events. Both adults and exuviae were identified to species to determine the species makeup at those locations. The first Brood X adult was photographed on April 26 in Lumpkin County, and Magicicada septendecim L. was the most common species. Online records and site visits led to distribution records in nine counties, including six that provided no records in the 2004 emergence. Driving surveys revealed patchy distributions of chorusing adults and species distribution modeling further predicted locations where Brood X can be found in future surveys. We observed cicada oviposition scars at two locations and found no effect of host plant on presence or density of scars. Lastly, collections of dead adults showed female remains were less common and more likely to be dismembered. Further investigations of the periodical cicadas in Georgia are recommended to better understand the phenology, evolution, and ecology of these remarkable insects.


Subject(s)
Hemiptera , Female , United States , Animals , Georgia , Cicatrix , Oviposition , Ecology
2.
Environ Entomol ; 48(3): 540-545, 2019 06 07.
Article in English | MEDLINE | ID: mdl-30951592

ABSTRACT

Carotenoids are fundamental precursors for hormones and antioxidants, and insects must acquire carotenoids from their diet. Previous research has shown that insects can selectively absorb dietary carotenoids, often modifying them qualitatively or quantitatively, and quantities may be proportional to those found in the diet. Trichoplusia ni Hübner is a generalist herbivore with host plants varying greatly in carotenoid profiles and concentrations. Larvae sequester carotenoids in their hemolymph, and carotenoid sequestration contributes to their cryptic green coloration. Our objectives were to compare the types of carotenoids found in T. ni and their host plants to determine whether qualitative changes occurred, and compare the amounts of sequestered carotenoids in T. ni reared upon different host plants to determine whether quantitative variation influences sequestration. To fulfill these objectives, larvae were fed romaine lettuce (Lactuca sativa L. [Asterales: Asteraceae] var. longifolia) or kale (Brassica oleracea L. [Brassicales: Brassicaceae] var. sabellica) for a period of 5 d, and sequestered carotenoids from the entire insect were resolved with thin-layer chromatography and measured with spectrophotometer. All carotenoids resolved from plants were also resolved from larvae, and although the carotenoids of plants differed quantitatively, the sequestered carotenoids did not differ between host plants. Regardless of host plant species, T. ni sequestered carotenoids at concentrations up to 20 times higher than the concentrations found in the plants. Future research may be able to explicitly identify enzyme systems involved in the transport and modification of carotenoids in T. ni and other animals.


Subject(s)
Brassica , Moths , Animals , Carotenoids , Herbivory , Larva
3.
J Chem Ecol ; 41(1): 85-92, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25516226

ABSTRACT

Herbivorous insects use several different defenses against predators and parasites, and tradeoffs among defensive traits may occur if these traits are energetically demanding. Chemical defense and immune response potentially can interact, and both can be influenced by host plant chemistry. Two closely related caterpillars in the lepidopteran family Sphingidae are both attacked by the same specialist endoparasitoid species but have mostly non-overlapping host plant ranges that differ in secondary chemistry. Ceratomia catalpae is a specialist on Catalpa and also will feed on Chilopsis, which both produce iridoid glycosides. Ceratomia undulosa consumes members of the Oleaceae, which produce seco-iridoid glycosides. Immune response of the two species on a typical host plant species (Catalpa bignonioides for C. catalpa; Fraxinus americana for C. undulosa) was compared using a melanization assay, and did not differ. In a second experiment, the iridoid glycoside catalpol was added to the diets of both insects, and growth rate, mass, chemical defense, and immune response were evaluated. Increased dietary catalpol weakened the immune response of C. undulosa and altered the development rate of C. catalpae by prolonging the third instar and accelerating the fourth instar. Catalpol sequestration was negatively correlated with immune response of C. catalpae, while C. undulosa was unable to sequester catalpol. These results show that immune response can be negatively influenced by increasing concentrations of sequestered defensive compounds.


Subject(s)
Bignoniaceae/chemistry , Herbivory/immunology , Lepidoptera/immunology , Oleaceae/chemistry , Animals , Bignoniaceae/physiology , Herbivory/physiology , Iridoid Glucosides/pharmacology , Iridoid Glycosides/metabolism , Lepidoptera/drug effects , Lepidoptera/physiology , Oleaceae/physiology , Species Specificity
4.
J Chem Ecol ; 38(10): 1276-84, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23053916

ABSTRACT

Plants use a diverse mix of defenses against herbivores, including multiple secondary metabolites, which may affect herbivores synergistically. Chemical defenses also can affect natural enemies of herbivores via limiting herbivore populations or by affecting herbivore resistance or susceptibility to these enemies. In this study, we conducted larval feeding experiments to examine the potential synergistic effects of iridoid glycosides (IGs) found in Plantago spp. (Plantaginaceae) on the specialist buckeye caterpillar, Junonia coenia (Nymphalidae). Caterpillars were placed on artificial diets containing different concentrations of single IGs (aucubin or catalpol alone) or combinations of the two IGs. Larval performance and immune response were recorded to test the hypothesis that IGs would have positive synergistic effects on buckeyes, which are specialists on IG plants. The positive synergistic effects that IGs had on buckeyes in our experiments included lower mortality, faster development, and higher total iridoid glycoside sequestration on mixed diets than on aucubin- or catalpol-only diets. Furthermore, we found negative synergistic effects of IGs on the immune response of buckeye caterpillars. These results demonstrate multiple synergistic effects of IGs and indicate a potential trade-off between larval performance and parasitoid resistance.


Subject(s)
Bignoniaceae/chemistry , Butterflies/physiology , Iridoid Glucosides/pharmacology , Animals , Bignoniaceae/growth & development , Butterflies/drug effects , Butterflies/immunology , Feeding Behavior , Flame Ionization , Food Chain , Larva/drug effects , Larva/immunology , Larva/physiology , Plantago/chemistry , Plantago/growth & development
5.
J Chem Ecol ; 37(10): 1063-70, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21948221

ABSTRACT

Plant secondary chemistry can vary among plant tissues, individuals, and populations, and this variation has population-level consequences for upper trophic levels. In this study, we examined the multi-trophic consequences of variation in iridoid glycosides, which are a component of plant defense against generalist herbivores and also contribute to the unpalatability of sequestering herbivores to both vertebrate and invertebrate predators. Several populations of Catalpa bignonioides were located and examined for the presence of the Catalpa Sphinx, Ceratomia catalpae, a specialist herbivore of Catalpa. We quantified iridoid glycoside content in Catalpa Sphinx caterpillars and in damaged and undamaged C. bignonioides leaves. Overall, leaves of C. bignonioides that were damaged by Catalpa Sphinx caterpillars contained lower concentrations of two major iridoid glycosides, catalpol and catalposide, than leaves of undamaged trees from naturally occurring populations. Catalpa Sphinx caterpillars sequester only catalpol, and increasing catalpol and catalposide concentrations in leaves were associated with increased catalpol sequestration by caterpillars. The parasitoid Cotesia congregata develops successfully inside catalpol-sequestering Catalpa Sphinx caterpillars, and we examined parasitoid larvae for the presence of catalpol. Parasitoid larvae dissected from caterpillars contained catalpol, but at lower concentrations than their host caterpillars. The variation in chemical defense documented here has rarely been documented over multiple trophic levels, but such resolved systems are ideal for examining competing hypotheses about the effects of plant secondary metabolites on higher trophic levels.


Subject(s)
Bignoniaceae/parasitology , Host-Parasite Interactions , Hymenoptera/physiology , Iridoid Glycosides/metabolism , Lepidoptera/physiology , Plant Leaves/parasitology , Animals , Bignoniaceae/metabolism , Herbivory , Lepidoptera/parasitology , Plant Leaves/metabolism
6.
J Chem Ecol ; 37(5): 496-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21475987

ABSTRACT

This study compared different methods of tissue preparation for extraction of iridoid glycosides sequestered by three species of lepidopteran larvae. Junonia coenia is a specialist on plant species that produce iridoid glycosides, while the arctiids Estigmene acrea and Spilosoma congrua are both polyphagous and will eat plants that produce iridoid glycosides. Larvae of all three species were reared on leaves of Plantago lanceolata, which produces two primary iridoid glycosides, aucubin and catalpol. Three methods of preparing the specimens before extraction in methanol were compared in all three species: 1) larvae were flash-frozen in liquid nitrogen, 2) larvae were macerated fresh in boiling methanol, or 3) larvae were macerated fresh in room temperature methanol. A set of J. coenia larvae was oven-dried before maceration as an additional treatment for this species only. Junonia coenia sequestered the most iridoid glycosides, while E. acrea sequestered the least, and S. congrua was intermediate. Estigmene acrea was poor at sequestering catalpol. Tissue preparation method only significantly influenced iridoid glycoside recovery from S. congrua, with maceration in room-temperature methanol being the most effective of the three methods. This study shows that treatment of insects prior to iridoid glycoside extraction can influence recovery of the compounds, and that the effects of treatment may vary among different species.


Subject(s)
Iridoid Glycosides/isolation & purification , Larva/chemistry , Lepidoptera/chemistry , Animals , Plant Leaves/parasitology , Plantago/parasitology
7.
J Chem Ecol ; 36(10): 1101-4, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20809144

ABSTRACT

The effect of diet on sequestration of iridoid glycosides was examined in larvae of three lepidopteran species. Larvae were reared upon Plantago major, or P. lanceolata, or switched from one to the other in the penultimate instar. Junonia coenia is a specialist on iridoid glycoside-producing plants, whereas the arctiids, Spilosoma congrua and Estigmene acrea, are both polyphagous and eat iridoid-producing plants. All species sequestered iridoids. The specialist J. coenia sequestered from three to seven times the amounts sequestered by the two generalist species. Junonia coenia iridoid glycoside content depended on diet, and they sequestered from 5 to 15% dry weight iridoid glycosides. Estigmene acrea iridoid glycoside sequestration was relatively low, around 2% dry weight and did not vary with diet. Spilosoma congrua sequestration varied with diet and ranged from approximately 3 to 6% dry weight.


Subject(s)
Feeding Behavior/drug effects , Iridoid Glycosides/pharmacology , Lepidoptera/drug effects , Plantago/drug effects , Animals , Feeding Behavior/physiology , Host-Parasite Interactions , Larva/drug effects , Larva/physiology , Lepidoptera/chemistry , Lepidoptera/classification , Lepidoptera/physiology , Plantago/chemistry , Plantago/physiology , Plants, Edible , Species Specificity
8.
J Chem Ecol ; 36(9): 992-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20683647

ABSTRACT

Sequestration of plant compounds by herbivorous insects as a defense against predators is well documented; however, few studies have examined the effectiveness of sequestration as a defense against parasitoids. One assumption of the "nasty host" hypothesis is that sequestration of plant defense compounds is deleterious to parasitoid development. We tested this hypothesis with larvae of the sequestering sphingid Ceratomia catalpae, which is heavily parasitized by the endoparasitoid Cotesia congregata, despite sequestering high concentrations of the iridoid glycoside catalpol from their catalpa host plants. We collected C. catalpae and catalpa leaves from six populations in the Eastern US, and allowed any C. congregata to emerge in the lab. Leaf iridoid glycosides and caterpillar iridoid glycosides were quantified, and we examined associations between sequestered caterpillar iridoid glycosides and C. congregata performance. Caterpillar iridoid glycosides were not associated with C. congregata field parasitism or number of offspring produced. Although wasp survival was over 90% in all populations, there was a slight negative relationship between caterpillar iridoid glycosides and wasp survival. Iridoid glycosides were present in caterpillars at levels that are deterrent to a variety of vertebrate and invertebrate predators. Thus, our results support the alternative hypothesis that unpalatable, chemically defended hosts are "safe havens" for endoparasitoids. Future trials examining the importance of catalpol sequestration to potential natural enemies of C. congregata and C. catalpae are necessary to strengthen this conclusion.


Subject(s)
Hymenoptera/physiology , Hymenoptera/parasitology , Lepidoptera/physiology , Animals , Bignoniaceae/chemistry , Bignoniaceae/metabolism , Female , Iridoid Glucosides/metabolism , Larva/physiology , Male , Plant Leaves/chemistry , Plant Leaves/metabolism
9.
J Chem Ecol ; 34(6): 783-90, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18523826

ABSTRACT

Plant chemistry can have deleterious effects on insect parasitoids, which include the reduction in body size, increased development time, and increased mortality. We examined the effects of xanthotoxin, a linear furanocoumarin, on the polyembryonic encyrtid wasp Copidosoma sosares, a specialist parasitoid that attacks the parsnip webworm, Depressaria pastinacella, itself a specialist on furanocoumarin-producing plants. Furanocoumarins, allelochemicals abundant in the Apiaceae and Rutaceae, are toxic to a wide range of herbivores. In this study, we reared parasitized webworms on artificial diets containing no xanthotoxin (control) or low or high concentrations of xanthotoxin. Clutch sizes of both male and female C. sosares broods were more than 20% smaller when they developed in hosts fed the diet containing high concentrations of xanthotoxin. Xanthotoxin concentration in the artificial diet had no effect on the development time of C. sosares, nor did it have an effect on the body size (length of hind tibia) of individual adult male and female C. sosares in single-sex broods. Webworms fed artificial diets containing low or high concentrations of xanthotoxin were not significantly smaller, and their development time was similar to that of webworms fed a xanthotoxin-free diet. Mortality of webworms was not affected by xanthotoxin in their artificial diet. Therefore, dietary xanthotoxin did not appear to affect C. sosares via impairment of host health. However, unmetabolized xanthotoxin was found in D. pastinacella hemolymph where C. sosares embryos develop. Hemolymph concentrations were fourfold greater in webworms fed the high-xanthotoxin-containing diet than in webworms fed the low-xanthotoxin-containing diet. We failed to detect any xanthotoxin metabolism by either C. sosares embryos or precocious larvae. Therefore, the observed tritrophic effects of xanthotoxin are likely to be due to the effects of xanthotoxin after direct contact in the hemolymph rather than to the effects of compromised host quality.


Subject(s)
Lepidoptera/parasitology , Methoxsalen/metabolism , Methoxsalen/pharmacology , Wasps/drug effects , Wasps/growth & development , Animals , Body Size/drug effects , Female , Hemolymph/drug effects , Larva/drug effects , Lepidoptera/metabolism , Male , Methoxsalen/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...