Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121920, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36201870

ABSTRACT

The natural flavonoids with bioactivity as secondary plant metabolites are mostly found in fruits, vegetables, tea and herbs, the distribution and bioavailability of which in vivo depends on the interaction and successive binding with carrier proteins in the systemic circulation. In this paper, the binding behavior of bioactive 7-methoxyflavone (7-MF) with human serum albumin (HSA) was studied with the aid of the combination of multi-spectroscopic methods, molecular docking and molecular dynamic simulation. The results of multi-spectroscopic experiments revealed that 7-MF interacted with HSA predominantly via fluorescence static quenching and the microenvironment around the fluorophore Trp residues in HSA became more hydrophilicity with the binding of 7-MF. Thermodynamic analysis demonstrated that hydrogen bonds and van der Waals forces played a dominant role in stabilizing the HSA-7-MF complex. Moreover, the docking experiment and molecular dynamic simulation further confirmed that 7-MF could enter the active cavity of HSA and caused more stable conformation and change of secondary structure of HSA through forming hydrogen bond. The exploration of the mechanism of 7-MF binding to HSA lights a new avenue to understand the stability, transport and distribution of 7-MF and 7-MF may hold great potential to be extended as a promising alternative of dietary supplements or pharmaceutical agents.


Subject(s)
Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Molecular Docking Simulation , Protein Binding , Binding Sites , Spectrometry, Fluorescence , Thermodynamics , Circular Dichroism
2.
Crit Rev Anal Chem ; : 1-26, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35001757

ABSTRACT

Imidazole is a five-membered heterocyclic ring containing three carbon atoms, two nitrogen atoms, and two double bonds. Among two nitrogen atoms, one of which carries with a hydrogen atom is a pyrrole-type nitrogen atom, another is a pyridine type nitrogen atom. Hence, the imidazole ring belongs to the π electron-rich aromatic ring and can accept strong suction to the electronic group. Moreover, the nitrogen atom of the imidazole ring is coordinated with metal ions to form metal-organic frameworks. In recent years, because of imidazole compounds' unique optical properties, their applications have attracted more and more attention in optical analysis. Thus, this review has summarized the synthesis, characterization, and application with emphasis on the research progress of imidazole compounds in optical analysis, including fluorescence probe, colorimetric probe, electrochemiluminescence sensor, fiber optical sensor, surface plasmon resonance, etc. This paper will suggest the direction for the development of imidazole-containing sensors with high sensitivity and selectivity.

3.
Analyst ; 146(24): 7618-7626, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34786585

ABSTRACT

In this study, a novel and highly efficient "turn-off" fluorescence imidazole-based sensor (BIB) with a symmetric structure was synthesized by a four-step reaction, from o-phenylenediamine, 6-bromo-2-pyridinecarboxaldehyde, and 1-bromohexane. The sensing mechanism was confirmed via fluorescence titration, HRMS, and 1HNMR techiniques. The results showed that the binding ratio of BIB and Ag+ was 1 : 1 in a DMF-HEPES (pH 7.4) solution (9 : 1, v/v). The fluorescence response of BIB exhibited a good linear response within the Ag+ concentration ranging from 2 × 10-7 to 8 × 10-6 mol L-1, and the limit of detection was calculated to be 4.591 × 10-8 mol L-1. BIB was successfully applied to the detection of Ag+ in water samples with recoveries of 97.25-109.50% and relative standard deviations (RSD) of 1.14-2.45%. In addition, BIB can successfully be applied to qualitatively and quantitatively identify Ag+ in water by test paper strips of BIB, which is fast and convenient. This provides a possible potential for the rapid monitoring of metal ions by sensors in environmental research.


Subject(s)
Silver , Water , Imidazoles , Ions , Spectrometry, Fluorescence
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 259: 119880, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-33965889

ABSTRACT

A novel imidazoles fluorescent probe (2) was synthesized from vanillin, o-phenylenediamine, and N,N-diphenylcarbamyl chloride. Its structure was characterized by fluorescence spectra, UV-Vis spectra, 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS). Moreover, its aggregation-induced emission (AIE) feature was investigated in THF/MeOH solution. Furthermore, the fluorescence quenching experimental results suggest that compound 2 is the potential fluorescent probe of small organic molecules showing high selectivity and sensitivity for nitroaromatic compounds. In addition, the probe could be applied in the determination of trifluralin with fast response and stability. The fluorescence response of the probe exhibited a good linear correlation with the concentration of trifluralin ranging from 10 to 100 µM, and the limit of detection (LOD) was as low as 5.066 µM. Finally, the probe was successfully utilized to determine the amount of trifluralin in real samples, and the recoveries were 91.1% to 111.2%, indicating the applicability and reliability of the probe.

SELECTION OF CITATIONS
SEARCH DETAIL