Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 20095, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208869

ABSTRACT

A pool of different types of neural progenitor cells resides in the adult hippocampus. Apart from doublecortin-expressing (DCX+) neuronal progenitor cells (NPCs), the hippocampal parenchyma also contains oligodendrocyte precursor cells (OPCs), which can differentiate into myelinating oligodendrocytes. It is not clear yet to what extent the functions of these different progenitor cell types overlap and how plastic these cells are in response to pathological processes. The aim of this study was to investigate whether hippocampal DCX+ NPCs can generate new oligodendrocytes under conditions in which myelin repair is required. For this, the cell fate of DCX-expressing NPCs was analyzed during cuprizone-induced demyelination and subsequent remyelination in two regions of the hippocampal dentate gyrus of DCX-CreERT2/Flox-EGFP transgenic mice. In this DCX reporter model, the number of GFP+ NPCs co-expressing Olig2 and CC1, a combination of markers typically found in mature oligodendrocytes, was significantly increased in the hippocampal DG during remyelination. In contrast, the numbers of GFP+PDGFRα+ cells, as well as their proliferation, were unaffected by de- or remyelination. During remyelination, a higher portion of newly generated BrdU-labeled cells were GFP+ NPCs and there was an increase in new oligodendrocytes derived from these proliferating cells (GFP+Olig2+BrdU+). These results suggest that DCX-expressing NPCs were able to contribute to the generation of mature oligodendrocytes during remyelination in the adult hippocampus.


Subject(s)
Cuprizone/pharmacology , Hippocampus/cytology , Microtubule-Associated Proteins/physiology , Neural Stem Cells/cytology , Neuropeptides/physiology , Oligodendroglia/cytology , Remyelination , Animals , Cell Differentiation , Chelating Agents/pharmacology , Doublecortin Domain Proteins , Doublecortin Protein , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Oligodendroglia/drug effects , Oligodendroglia/metabolism
2.
Front Neurosci ; 13: 1242, 2019.
Article in English | MEDLINE | ID: mdl-31849577

ABSTRACT

Several clinical trials address demyelinating diseases via transplantation of mesenchymal stromal cells (MSCs). Published reports detail that administration of MSCs in patients may provide a beneficial immunomodulation, and that factors secreted by MSCs are potent inducers of oligodendrogenesis. Dimethylsulfoxide (DMSO) is widely used in life science and medicine as solvent, vehicle or cryoprotectant for cells used in transplantation. Importantly, most transplantation protocols do not include the removal of DMSO before injecting the cell suspension into patients. This indifferent application of DMSO is coming under increasing scrutiny following reports investigating its potential toxic side-effects. While the impact of DMSO on the central nervous system (CNS) has been partially studied, its effect on oligodendrocytes and oligodendrogenesis has not been addressed yet. Consequently, we evaluated the influence of DMSO on oligodendrogenesis, and on the pro-oligodendrogenic effect of MSCs' secreted factors, using adult rat neural stem and progenitor cells (NSPCs). Here, we demonstrate that a concentration of 1% DMSO robustly suppressed oligodendrogenesis and drove the fate of differentiating NSPCs toward astrogenesis. Furthermore, the pro-oligodendrogenic effect of MSC-conditioned medium (MSCCM) was also nearly completely abolished by the presence of 1% DMSO. In this condition, inhibition of the Erk1/2 signal transduction pathway and high levels of Id2 expression, a specific inhibitor of oligodendrogenic differentiation, were detected. Furthermore, inflammatory demyelinating diseases may even potentiate the impact of DMSO on oligodendrogenesis. Our results demonstrate the imperative of considering the strong anti-oligodendrogenic activity of DMSO when designing future clinical trial protocols.

3.
Glia ; 67(8): 1510-1525, 2019 08.
Article in English | MEDLINE | ID: mdl-31038798

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age. We demonstrate that MSCs derived from aged rats have a reduced capacity to induce oligodendrocyte differentiation of adult CNS stem/progenitor cells. Aging also abolished the ability of MSCs to enhance the generation of myelin-like sheaths in demyelinated cerebellar slice cultures. Finally, in a rat model for CNS demyelination, aging suppressed the capability of systemically transplanted MSCs to boost oligodendrocyte progenitor cell (OPC) differentiation during remyelination. Thus, aging restricts the ability of MSCs to support the generation of oligodendrocytes and consequently inhibits their capacity to enhance the generation of myelin-like sheaths. These findings may impact on the design of therapies using autologous MSCs in older MS patients.


Subject(s)
Aging/physiology , Mesenchymal Stem Cells/physiology , Oligodendroglia/physiology , Remyelination/physiology , Animals , Cells, Cultured , Demyelinating Diseases/physiopathology , Disease Models, Animal , Female , Male , Rats, Inbred F344 , Rats, Sprague-Dawley , Tissue Culture Techniques
4.
Front Cell Neurosci ; 13: 85, 2019.
Article in English | MEDLINE | ID: mdl-30971893

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Upon demyelination, oligodendrocyte progenitor cells (OPCs) are activated and they proliferate, migrate and differentiate into myelin-producing oligodendrocytes. Besides OPCs, neural stem cells (NSCs) may respond to demyelination and generate oligodendrocytes. We have recently shown that CNS-resident pericytes (PCs) respond to demyelination, proliferate and secrete Laminin alpha2 (Lama2) that, in turn, enhances OPC differentiation. Here, we aimed to evaluate whether PCs influence the fate choice of NSCs in vitro, towards the production of new myelin-producing cells. Indeed, upon exposure to conditioned medium derived from PCs (PC-CM), the majority of NSCs gave rise to GalC- and myelin basic protein (MBP)-expressing oligodendrocytes at the expense of the generation of GFAP-positive astrocytes. Consistent with these findings, PC-CM induces an increase in the expression of the oligodendrocyte fate determinant Olig2, while the expression level of the astrocyte determinant ID2 is decreased. Finally, pre-incubation of PC-CM with an anti-Lama2 antibody prevented the generation of oligodendrocytes. Our findings indicate that PCs-derived Lama2 instructs NSCs to an oligodendrocyte fate choice favoring the generation of myelin-producing cells at the expense of astrocytes in vitro. Further studies aiming to reveal the role of PCs during remyelination may pave the way for the development of new therapies for the treatment of MS.

5.
Front Aging Neurosci ; 10: 278, 2018.
Article in English | MEDLINE | ID: mdl-30297998

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory CNS disease, which causes demyelinated lesions and damages white and gray matter regions. Aging is a significant factor in the progression of MS, and microglia, the immune cells of the CNS tissue, play an important role in all disease stages. During aging, microglia are functionally altered. These age-related changes probably already begin early and might influence the progression of CNS pathologies. The aim of the present study was to investigate whether microglia in the middle-aged CNS already react differently to demyelination. For this purpose, several microglia markers (ionized calcium binding adaptor molecule 1 (Iba-1), P2RY12, F4/80, CD68, major histocompatibility complex II (MHCII), macrophage receptor with collagenous structure (Marco), Translocator protein 18 kD (TSPO), CD206, and CD163) were analyzed in the acute cuprizone demyelination model in young (2-month-old) and middle-aged (10-month-old) mice. In addition, microglial proliferation was quantified using double-labeling with proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU), which was injected with the onset of remyelination. To compare age-related microglial changes during de- and remyelination in both gray and white matter, the hilus of the dorsal hippocampal dentate gyrus (DG) and the splenium of the corpus callosum (CC) were analyzed in parallel. Age-related changes in microglia of healthy controls were more pronounced in the analyzed gray matter region (higher levels of F4/80 and Marco as well as lower expression of CD68 in middle-aged mice). During de- and remyelination, a stronger increase of the microglial markers Iba-1, CD68 and TSPO was observed in the splenium of the younger groups. There was a significant reduction of P2RY12 during demyelination, however, this was age- and region-dependent. The induction of the anti-inflammatory markers CD206 and CD163 was stronger in the middle-aged group, but also differed between the two analyzed regions. De- and remyelination led to a significant increase in PCNA+ microglia only in young groups within the white matter region. The number of BrdU+ microglia was not changed during de- or remyelination. These results clearly show that microglia are already altered during middle-age and also react differently to CNS demyelination, however, this is highly region-dependent.

6.
Cell Rep ; 20(8): 1755-1764, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28834740

ABSTRACT

The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs) proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs) rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC) differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.


Subject(s)
Central Nervous System/physiology , Oligodendroglia/physiology , Pericytes/physiology , Animals , Cell Differentiation/physiology , Cells, Cultured , Central Nervous System/cytology , Central Nervous System/metabolism , Demyelinating Diseases , Humans , Mice , Nerve Regeneration/physiology , Oligodendroglia/cytology , Oligodendroglia/metabolism , Pericytes/cytology , Pericytes/metabolism
7.
Front Cell Neurosci ; 10: 20, 2016.
Article in English | MEDLINE | ID: mdl-26869887

ABSTRACT

Pericytes are specialized mural cells located at the abluminal surface of capillary blood vessels, embedded within the basement membrane. In the vascular network these multifunctional cells fulfil diverse functions, which are indispensable for proper homoeostasis. They serve as microvascular stabilizers, are potential regulators of microvascular blood flow and have a central role in angiogenesis, as they for example regulate endothelial cell proliferation. Furthermore, pericytes, as part of the neurovascular unit, are a major component of the blood-retina/brain barrier. CNS pericytes are a heterogenic cell population derived from mesodermal and neuro-ectodermal germ layers acting as modulators of stromal and niche environmental properties. In addition, they display multipotent differentiation potential making them an intriguing target for regenerative therapies. Pericyte-deficiencies can be cause or consequence of many kinds of diseases. In diabetes, for instance, pericyte-loss is a severe pathological process in diabetic retinopathy (DR) with detrimental consequences for eye sight in millions of patients. In this review, we provide an overview of our current understanding of CNS pericyte origin and function, with a special focus on the retina in the healthy and diseased. Finally, we highlight the role of pericytes in de- and regenerative processes.

8.
Exp Neurol ; 269: 75-89, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25819103

ABSTRACT

The presence of neural stem/progenitor cells (NSPCs) in specific areas of the central nervous system (CNS) supports tissue maintenance as well as regeneration. The subependymal zone (SEZ), located at the lateral ventricle's wall, represents a niche for NSPCs and in response to stroke or demyelination becomes activated with progenitors migrating towards the lesion and differentiating into neurons and glia. The mechanisms that underlie this phenomenon remain largely unknown. The vascular niche and in particular blood-derived elements such as platelets, has been shown to contribute to CNS regeneration in different pathological conditions. Indeed, intracerebroventricularly administrated platelet lysate (PL) stimulates angiogenesis, neurogenesis and neuroprotection in the damaged CNS. Here, we explored the presence of platelets in the activated SEZ after a focal demyelinating lesion in the corpus callosum of mice and we studied the effects of PL on proliferating SEZ-derived NSPCs in vitro. We showed that the lesion-induced increase in the size of the SEZ and in the number of proliferating SEZ-resident NSPCs correlates with the accumulation of platelets specifically along the activated SEZ vasculature. Expanding on this finding, we demonstrated that exposure of NSPCs to PL in vitro led to increased numbers of cells by enhanced cell survival and reduced apoptosis without differences in proliferation and in the differentiation potential of NSPCs. Finally, we demonstrate that the accumulation of platelets within the SEZ is spatially correlated with reduced numbers of apoptotic cells when compared to other periventricular areas. In conclusion, our results show that platelet-derived compounds specifically promote SEZ-derived NSPC survival and suggest that platelets might contribute to the enlargement of the pool of SEZ NSPCs that are available for CNS repair in response to injury.


Subject(s)
Blood Platelets/cytology , Neural Stem Cells/cytology , Neurogenesis/physiology , Adult Stem Cells/cytology , Animals , Brain Injuries/pathology , Cell Differentiation/physiology , Cell Survival/physiology , Demyelinating Diseases/pathology , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Neurons/cytology
9.
Neural Plast ; 2014: 723915, 2014.
Article in English | MEDLINE | ID: mdl-24967107

ABSTRACT

Speculations on the involvement of hippocampal neurogenesis, a form of neuronal plasticity, in the aetiology of depression and the mode of action of antidepressive therapies, started to arise more than a decade ago. But still, conclusive evidence that adult neurogenesis contributes to antidepressive effects of pharmacological and physical therapies has not been generated yet. This review revisits recent findings on the close relation between the mode(s) of action of electroconvulsive therapy (ECT), a powerful intervention used as second-line treatment of major depression disorders, and the neurogenic response to ECT. Following application of electroconvulsive shocks, intricate interactions between neurogenesis, angiogenesis, and microglia activation, the hypothalamic-pituitary-adrenal axis and the secretion of neurotrophic factors have been documented. Furthermore, considering the fact that neurogenesis strongly diminishes along aging, we investigated the response to electroconvulsive shocks in young as well as in aged cohorts of mice.


Subject(s)
Depressive Disorder, Major/therapy , Electroconvulsive Therapy , Hippocampus/physiology , Neurogenesis/physiology , Aging/physiology , Animals , Depressive Disorder, Major/pathology , Depressive Disorder, Major/psychology , Environment , Humans , Hypothalamo-Hypophyseal System/physiology , Mice , Mice, Inbred C57BL , Nerve Growth Factors/blood , Neural Stem Cells/physiology , Signal Transduction/physiology
10.
Invest Ophthalmol Vis Sci ; 54(13): 7910-21, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24235018

ABSTRACT

PURPOSE: The origin of pericytes (PCs) has been controversially discussed and at least three different sources of PCs are proposed: a neural crest, mesodermal, or bone marrow origin. In the present study we investigated a potential neural crest origin of ocular PCs in a transgenic Rosa26-YFP-Sox10-Cre neural crest-specific reporter mouse model at different developmental stages. METHODS: The Rosa26-YFP-Sox10-Cre mouse model expresses the yellow fluorescent protein (YFP) reporter in cells with an active Sox10 promoter and was here used for cell fate studies of Sox10-positive neural crest derived progeny cells. Detection of the YFP signal in combination with double and triple immunohistochemistry of chondroitin sulfate proteoglycan (NG2), platelet derived growth factor receptor ß (PDGFRß), α smooth muscle actin (αSMA), oligodendrocyte transcription factor 2 (Olig2), and lectin was performed and analyzed by confocal microscopy. RESULTS: Sox10-YFP-positive cells and profiles were detected in the inner nuclear layer, the ganglionic cell layer, and the axons of the nerve fiber layer in postnatal retinas. An additional population has been identified in the retina, optic nerve, and choroid that displays strong perivascular localization. These cells were colocalized with the PC-specific markers NG2 and PDGFRß in embryonic (E14.5) as well as postnatal (P4, P12, 6-week-old) vasculature. Beside PCs, vascular smooth muscle cells (vSMCs) were also labeled by the Sox10-YFP reporter protein in all ocular tissues investigated. CONCLUSIONS: Since YFP-positive PCs and vSMCs are colocalized with NG2 and PDGFRß, we propose that capillary PCs and vSMCs in the retina and the optic nerve, both parts of the central nervous system, as well as in the choroid, a tissue of mesodermal origin, derive from the neural crest.


Subject(s)
Choroid/growth & development , Neural Crest/growth & development , Pericytes/cytology , Retina/growth & development , Animals , Choroid/cytology , Immunohistochemistry , Mice , Mice, Transgenic , Microscopy, Confocal , Neural Crest/cytology , Retina/cytology
11.
Nat Genet ; 45(11): 1300-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24056717

ABSTRACT

The regulated proliferation and differentiation of neural stem cells before the generation and migration of neurons in the cerebral cortex are central aspects of mammalian development. Periventricular neuronal heterotopia, a specific form of mislocalization of cortical neurons, can arise from neuronal progenitors that fail to negotiate aspects of these developmental processes. Here we show that mutations in genes encoding the receptor-ligand cadherin pair DCHS1 and FAT4 lead to a recessive syndrome in humans that includes periventricular neuronal heterotopia. Reducing the expression of Dchs1 or Fat4 within mouse embryonic neuroepithelium increased progenitor cell numbers and reduced their differentiation into neurons, resulting in the heterotopic accumulation of cells below the neuronal layers in the neocortex, reminiscent of the human phenotype. These effects were countered by concurrent knockdown of Yap, a transcriptional effector of the Hippo signaling pathway. These findings implicate Dchs1 and Fat4 upstream of Yap as key regulators of mammalian neurogenesis.


Subject(s)
Cadherins/genetics , Cerebral Cortex/embryology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Tumor Suppressor Proteins/genetics , Abnormalities, Multiple/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Base Sequence , Cadherin Related Proteins , Cell Cycle Proteins , Cell Differentiation , Cell Proliferation , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Craniofacial Abnormalities/genetics , Foot Deformities, Congenital/genetics , Gene Knockdown Techniques , Hand Deformities, Congenital/genetics , Humans , Intellectual Disability/genetics , Joint Instability/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Periventricular Nodular Heterotopia/genetics , Phosphoproteins/genetics , Sequence Analysis, DNA , Signal Transduction/genetics , YAP-Signaling Proteins
12.
Drug Discov Today ; 18(9-10): 456-63, 2013 May.
Article in English | MEDLINE | ID: mdl-23266366

ABSTRACT

Brain pericytes (BrPCs) are essential cellular components of the central nervous system neurovascular unit involved in the regulation of blood flow, blood-brain barrier function, as well as in the stabilization of the vessel architecture. More recently, it became evident that BrPCs, besides their regulatory activities in brain vessel function and homeostasis, have pleiotropic functions in the adult CNS ranging from stromal and regeneration promoting activities to stem cell properties. This special characteristic confers BrPC cell plasticity, being able to display features of other cells within the organism. BrPCs might also be causally involved in certain brain diseases. Due to these properties BrPCs might be potential drug targets for future therapies of neurological disorders. This review summarizes BrPC properties, disorders in which this cell type might be involved, and provides suggestions for future therapeutic developments targeting BrPCs.


Subject(s)
Brain/cytology , Central Nervous System Diseases/pathology , Pericytes/physiology , Animals , Central Nervous System Diseases/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...