Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
PeerJ ; 10: e14333, 2022.
Article in English | MEDLINE | ID: mdl-36405026

ABSTRACT

The description of new titanosaur specimens unearthed from deposits of the Serra da Galga Formation (Bauru Group, Late Cretaceous) at the BR-262 site, near Peirópolis (Uberaba, Minas Gerais State, Brazil), sheds light on the taxonomy of two taxa previously known from the same area and geological unit: Baurutitan britoi and Trigonosaurus pricei. A comparative revision indicates that T. pricei represents a junior synonym of Ba. britoi, and that the BR-262 specimens belong to that latter species. The information provided by the new specimens also revealed that the paratype of T. pricei (MCT 1719-R), a caudal vertebral series, actually represents a new taxon, named here as Caieiria allocaudata gen. et sp. nov.


Subject(s)
Dinosaurs , Animals , Brazil , Phylogeny , Spine , Geology
2.
Biology (Basel) ; 11(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36358337

ABSTRACT

Molecular information has been gathered from fossilized dental enamel, the best-preserved tissue of vertebrates. However, the association of morphological features with the possible mineral and organic information of this tissue is still poorly understood in the context of the emerging area of paleoproteomics. This study aims to compare the morphological features and chemical composition of dental enamel of extinct and extant terrestrial vertebrates of Crocodylia: Purussaurus sp. (extinct) and Melanosuchus niger (extant), and Rodentia: Neoepiblema sp. (extinct) and Hydrochoerus hydrochaeris (extant). To obtain structural and chemical data, superficial and internal enamel were analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (SEM-EDS). Organic, mineral, and water content were obtained using polarizing microscopy and microradiography on ground sections of four teeth, resulting in a higher organic volume than previously expected (up to 49%). It is observed that both modern and fossil tooth enamel exhibit the same major constituents: 36.7% Ca, 17.2% P, and 41% O, characteristic of hydroxyapatite. Additionally, 27 other elements were measured from superficial enamel by inductively coupled mass spectrometry (ICP-MS). Zinc was the most abundant microelement detected, followed by Pb, Fe, Mg, and Al. Morphological features observed include enamel rods in the rodent teeth, while incremental lines and semiprismatic enamel were observed in the alligator species. The fossil enamel was in an excellent state for microscopic analyses. Results show that all major dental enamel's physical, chemical, and morphological features are present both in extant and extinct fossil tooth enamel (>8.5 Ma) in both taxa.

3.
Anat Rec (Hoboken) ; 305(5): 1119-1146, 2022 05.
Article in English | MEDLINE | ID: mdl-34358415

ABSTRACT

Lewisuchus admixtus is an early dinosauriform described by Alfred Romer in 1972 on the basis of a single, incomplete skeleton, collected in lower Upper Triassic rocks of the renowned Chañares Formation, at the Los Chañares type-locality, La Rioja Province, north-western Argentina. Recent field explorations to the type-locality resulted in the discovery of two partial articulated skeletons, which provide significant novel information. The cranial bones, presacral series, femur, tibia, and proximal tarsals of the new specimens match the preserved overlapping anatomy of the holotype and previously referred specimens of L. admixtus, including the presence of unique combination of character states among dinosauriforms (anterior presacral column with additional ossification on the top of neural spines, dorsal neural spines fan-shaped, anterior surface of the astragalus with a dorsally curved groove, and an inflated area on the anterior portion of the medial surface of this bone). This new information improves our understanding of the anatomy and taxonomy of early dinosauriforms and reinforces the role of Argentinean beds on the study of the origin of dinosaurs.


Subject(s)
Dinosaurs , Fossils , Animals , Argentina , Biological Evolution , Dinosaurs/anatomy & histology , Phylogeny , Skull/anatomy & histology
4.
Anat Rec (Hoboken) ; 305(2): 393-423, 2022 02.
Article in English | MEDLINE | ID: mdl-34021739

ABSTRACT

Dinosaurs possess a form of tooth attachment wherein an unmineralized periodontal ligament suspends each tooth within a socket, similar to the condition in mammals and crocodylians. However, little information is known about tooth attachment and implantation in their close relatives, the silesaurids. We conducted a histological survey of several silesaurid taxa to determine the nature of tooth attachment in this phylogenetically and paleoecologically important group of archosaurs. Our histological data demonstrate that these early dinosauriforms do not exhibit the crocodilian/dinosaur condition of a permanent gomphosis, nor the rapid ankylosis that is plesiomorphic for amniotes. Instead, all sampled silesaurids exhibit delayed ankylosis, a condition in which teeth pass through a prolonged stage where the teeth are suspended in sockets by a periodontal ligament, followed by eventual mineralization and fusion of the tooth to the jaws. This suggests that tooth attachment in crocodylians and dinosaurs represent the further retention of an early ontogenetic stage compared to silesaurids, a paedomorphic trend that is mirrored in the evolution of synapsid tooth attachment. It also suggests that the dinosaur and crocodylian gomphosis was convergently acquired via heterochrony or, less likely, that the silesaurid condition represents a reversal to a plesiomorphic state. Moreover, if Silesauridae is nested within Ornithischia, a permanent gomphosis could be convergent between the two main dinosaur lineages, Ornithischia and Saurischia. These results demonstrate that dental characters in early archosaur phylogenies must be chosen and defined carefully, taking into account the relative duration of the different phases of dental ontogeny.


Subject(s)
Alligators and Crocodiles , Ankylosis , Dinosaurs , Tooth , Animals , Periodontal Ligament
5.
J Anat ; 239(3): 622-662, 2021 09.
Article in English | MEDLINE | ID: mdl-33870512

ABSTRACT

Baurusuchidae is one of the most diverse groups of South American notosuchians, unambiguously recorded in Late Cretaceous deposits of Brazil and Argentina. The group is characterized by a reduced tooth formula, a lateromedially compressed rostrum, and a verticalized quadrate, representing one of the top predators of their faunas. Historically, skull morphology is the most employed tool to investigate the relationships of baurusuchids, as most of the species have been primarily based on cranial remains. The present study describes a new baurusuchid species from the Bauru Basin of Brazil, based on the first tridimensional digital reconstruction of individualized skull bones for Notosuchia, and discusses its phylogenetic position within the group. The new species differs from all the other known baurusuchids by a depression on the posterior portion of the nasal bearing a crest, an infraorbital crest of the jugal that extends until the anterior margin of the lacrimal, the dorsal surface of the frontal lacking a longitudinal crest or depression, and the lateral convexity of the squamosal prongs participating in the occipital wall. The new taxon is consistently positioned as sister to the remaining baurusuchines, with Aplestosuchus sordidus and Stratiotosuchus maxhechti, as successive sister-taxa to a monophyletic Baurusuchus (Ba. albertoi, Ba. Salgadoensis, and Ba. pachecoi). Our updated phylogenetic analysis helps to differentiate the two major Baurusuchidae lineages, Baurusuchinae and Pissarrachampsinae. Yet, the new species shares morphological features with both groups, suggesting the occurrence of "Zones of Variability" in the radiation of Baurusuchidae.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Biological Evolution , Fossils , Models, Anatomic , Skull/anatomy & histology , Animals , Brazil , Phylogeny , Skull/diagnostic imaging , Tomography, X-Ray Computed
6.
J Proteomics ; 240: 104187, 2021 05 30.
Article in English | MEDLINE | ID: mdl-33757878

ABSTRACT

We used two fossil teeth from South American Pleistocene mammals to obtain subsuperficial acid etching samples. We employed samples from the species Notiomastodon platensis and Myocastor cf. coypus for the enamel etchings. The controls included an extant rodent (rat). After the first etching was discarded, a second 20-s etching (i.e., subsuperficial) was directly collected with a ZipTip and injected into an LTQ Orbitrap Velos for MS analysis. The peptides were identified with different software programs that used Peptide Spectrum Match (PSM) and de novo sequencing including similarity search strategies. Most of the peptides that were recovered from the enamel of the fossils belonged to enamel-specific proteins. To our knowledge, this is the first study that has described the recovery of enamel peptide molecules from extinct South American taxa, indicating that enamel peptide data from late Pleistocene fossils can be employed as an additional parameter for phylogenetic analysis, and that the sample can be obtained by a very conservative acid etching, with almost no damage to the fossils. SIGNIFICANCE: This study shows that it is possible to obtain information based on plenty of ancient peptides recovered from subsuperficial enamel of fossil teeth from South American Pleistocene. The quality of the data suggests that peptides are likely the best preserved biomolecules under certain harsh environmental conditions. The recovery procedure only lasted 20 s and was minimally destructive to the fossils. This opens a myriad of new possibilities for the study of the past.


Subject(s)
Fossils , Peptides , Animals , Dental Enamel , Phylogeny , Rats
7.
Nature ; 588(7838): 445-449, 2020 12.
Article in English | MEDLINE | ID: mdl-33299179

ABSTRACT

Pterosaurs were the first vertebrates to evolve powered flight1 and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century2-4. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives2-8, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton. This finding substantially shortens the temporal and morphological gap between the oldest pterosaurs and their closest relatives and simultaneously strengthens the evidence that pterosaurs belong to the avian line of archosaurs. Neuroanatomical features related to the enhanced sensory abilities of pterosaurs9 are already present in lagerpetids, which indicates that these features evolved before flight. Our evidence illuminates the first steps of the assembly of the pterosaur body plan, whose conquest of aerial space represents a remarkable morphofunctional innovation in vertebrate evolution.


Subject(s)
Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils , Phylogeny , Animals , Calibration , Skull/anatomy & histology , Time Factors , Wings, Animal/anatomy & histology , X-Ray Microtomography
8.
Sci Rep ; 10(1): 12782, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728077

ABSTRACT

Present knowledge of Late Triassic tetrapod evolution, including the rise of dinosaurs, relies heavily on the fossil-rich continental deposits of South America, their precise depositional histories and correlations. We report on an extended succession of the Ischigualasto Formation exposed in the Hoyada del Cerro Las Lajas (La Rioja, Argentina), where more than 100 tetrapod fossils were newly collected, augmented by historical finds such as the ornithosuchid Venaticosuchus rusconii and the putative ornithischian Pisanosaurus mertii. Detailed lithostratigraphy combined with high-precision U-Pb geochronology from three intercalated tuffs are used to construct a robust Bayesian age model for the formation, constraining its deposition between 230.2 ± 1.9 Ma and 221.4 ± 1.2 Ma, and its fossil-bearing interval to 229.20 + 0.11/- 0.15-226.85 + 1.45/- 2.01 Ma. The latter is divided into a lower Hyperodapedon and an upper Teyumbaita biozones, based on the ranges of the eponymous rhynchosaurs, allowing biostratigraphic correlations to elsewhere in the Ischigualasto-Villa Unión Basin, as well as to the Paraná Basin in Brazil. The temporally calibrated Ischigualasto biostratigraphy suggests the persistence of rhynchosaur-dominated faunas into the earliest Norian. Our ca. 229 Ma age assignment to Pi. mertii partially fills the ghost lineage between younger ornithischian records and the oldest known saurischians at ca. 233 Ma.

9.
Commun Biol ; 3(1): 201, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350412

ABSTRACT

Squamates have an extremely long evolutionary history with a fossil record that extends into the Middle Triassic. However, most of our knowledge of their early evolutionary history is derived from Laurasian records. Therefore, fundamental questions regarding the early evolution of squamates in the Southern Hemisphere, such as the origins of the extremely diverse and endemic South American fauna, remain unanswered. Here, we describe a new lizard species that represents the oldest fossil squamate from South America, demonstrating that squamates were present on that continent at least 20 million years earlier than previously recorded. The new species represents the first occurrence of the extinct squamate family Paramacellodidae in South America and displays an unusual limb morphology. Finally, our findings suggest early South American squamates were part of a much broader distribution of their respective clades, in sharp contrast to the high levels of endemicity characteristic of modern faunas.


Subject(s)
Biological Evolution , Fossils/anatomy & histology , Lizards/anatomy & histology , Lizards/classification , Animals , Brazil , Phylogeny
10.
Zootaxa ; 4577(3): zootaxa.4577.3.1, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-31715707

ABSTRACT

Uberabatitan ribeiroi is a Late Cretaceous titanosaur (Dinosauria, Sauropoda) from southeastern Brazil. Here we provide a detailed revision of all its available specimens, including new elements from the type-locality. One new autopomorphy is added to diagnosis of the taxon: astragalus with a well-developed anteroposterior crest that mediodistally delimits the tibial articulation. Linear regressions were conducted in an attempt to circumscribe specimens within the type-series, revealing that it is composed of several individuals, with inferred total body lengths varying from 7 to 26 meters. Phylogenetic analyses including U. ribeiroi show that the Brazilian taxon corresponds to a non-saltasaurid lithostrotian titanosaur.


Subject(s)
Dinosaurs , Osteology , Animals , Brazil , Fossils , Phylogeny
11.
PeerJ ; 7: e7963, 2019.
Article in English | MEDLINE | ID: mdl-31720108

ABSTRACT

Predatory dinosaurs were an important ecological component of terrestrial Mesozoic ecosystems. Though theropod dinosaurs carried this role during the Jurassic and Cretaceous Periods (and probably the post-Carnian portion of the Triassic), it is difficult to depict the Carnian scenario, due to the scarcity of fossils. Until now, knowledge on the earliest predatory dinosaurs mostly relies on herrerasaurids recorded in Carnian strata of South America. Phylogenetic investigations recovered the clade in different positions within Dinosauria, whereas fewer studies challenged its monophyly. Although herrerasaurid fossils are much better recorded in present-day Argentina than in Brazil, Argentinean strata so far yielded no fairly complete skeleton representing a single individual. Here, we describe Gnathovorax cabreirai, a new herrerasaurid based on an exquisite specimen found as part of a multitaxic association form southern Brazil. The type specimen comprises a complete and well-preserved articulated skeleton, preserved in close association (side by side) with rhynchosaur and cynodont remains. Given its superb state of preservation and completeness, the new specimen sheds light into poorly understood aspects of the herrerasaurid anatomy, including endocranial soft tissues. The specimen also reinforces the monophyletic status of the group, and provides clues on the ecomorphology of the early carnivorous dinosaurs. Indeed, an ecomorphological analysis employing dental traits indicates that herrerasaurids occupy a particular area in the morphospace of faunivorous dinosaurs, which partially overlaps the area occupied by post-Carnian theropods. This indicates that herrerasaurid dinosaurs preceded the ecological role that later would be occupied by large to medium-sized theropods.

12.
PLoS One ; 14(9): e0221387, 2019.
Article in English | MEDLINE | ID: mdl-31490962

ABSTRACT

Saturnalia tupiniquim is a sauropodomorph dinosaur from the Late Triassic (Carnian-c. 233 Ma) Santa Maria Formation of Brazil. Due to its phylogenetic position and age, it is important for studies focusing on the early evolution of both dinosaurs and sauropodomorphs. The osteology of Saturnalia has been described in a series of papers, but its cranial anatomy remains mostly unknown. Here, we describe the skull bones of one of its paratypes (only in the type-series to possess such remains) based on CT Scan data. The newly described elements allowed estimating the cranial length of Saturnalia and provide additional support for the presence of a reduced skull (i.e. two thirds of the femoral length) in this taxon, as typical of later sauropodomorphs. Skull reduction in Saturnalia could be related to an increased efficiency for predatory feeding behaviour, allowing fast movements of the head in order to secure small and elusive prey, a hypothesis also supported by data from its tooth and brain morphology. A principal co-ordinates analysis of the sauropodomorph jaw feeding apparatus shows marked shifts in morphospace occupation in different stages of the first 30 million years of their evolutionary history. One of these shifts is observed between non-plateosaurian and plateosaurian sauropodomorphs, suggesting that, despite also having an omnivorous diet, the feeding behaviour of some early Carnian sauropodomorphs, such as Saturnalia, was markedly different from that of later Triassic taxa. A second shift, between Late Triassic and Early Jurassic taxa, is congruent with a floral turnover hypothesis across the Triassic-Jurassic boundary.


Subject(s)
Biological Evolution , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Feeding Behavior , Skull/anatomy & histology , Animals , Archaeology , Brazil
13.
Sci Rep ; 9(1): 9379, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31243312

ABSTRACT

Noasaurines form an enigmatic group of small-bodied predatory theropod dinosaurs known from the Late Cretaceous of Gondwana. They are relatively rare, with notable records in Argentina and Madagascar, and possible remains reported for Brazil, India, and continental Africa. In south-central Brazil, the deposits of the Bauru Basin have yielded a rich tetrapod fauna, which is concentrated in the Bauru Group. The mainly aeolian deposits of the Caiuá Group, on the contrary, bear a scarce fossil record composed only of lizards, turtles, and pterosaurs. Here, we describe the first dinosaur of the Caiuá Group, which also represents the best-preserved theropod of the entire Bauru Basin known to date. The recovered skeletal parts (vertebrae, girdles, limbs, and scarce cranial elements) show that the new taxon was just over 1 m long, with a unique anatomy among theropods. The shafts of its metatarsals II and IV are very lateromedially compressed, as are the blade-like ungual phalanges of the respective digits. This implies that the new taxon could have been functionally monodactyl, with a main central weight-bearing digit, flanked by neighbouring elements positioned very close to digit III or even held free of the ground. Such anatomical adaptation is formerly unrecorded among archosaurs, but has been previously inferred from footprints of the same stratigraphic unit that yielded the new dinosaur. A phylogenetic analysis nests the new taxon within the Noasaurinae clade, which is unresolved because of the multiple alternative positions that Noasaurus leali can acquire in the optimal trees. The exclusion of the latter form results in positioning the new dinosaur as the sister-taxon of the Argentinean Velocisaurus unicus.


Subject(s)
Dinosaurs/anatomy & histology , Fossils , Animals , Biological Evolution , Brazil , Desert Climate , Geography , Geology , Paleontology , Phylogeny , Skull/anatomy & histology
14.
PLoS One ; 14(2): e0212543, 2019.
Article in English | MEDLINE | ID: mdl-30785940

ABSTRACT

Sauropodomorphs are the most abundant and diverse clade of Triassic dinosaurs, but the taxonomy of their earliest (Carnian) representatives is still poorly understood. One such taxon is Pampadromaeus barberenai, represented by a nearly complete disarticulated skeleton recovered from the upper part of the Santa Maria Formation of Rio Grande do Sul, Brazil. Here, the osteology of Pam. barberenai is fully described for the first time. Detailed comparisons with other Carnian sauropodomorphs reveal a unique anatomy, corroborating its status as a valid species. Potential autapomorphies of Pam. barberenai can be seen in the articulation of the sacral zygapophyses, the length of the pectoral epipodium, the shape of the distal articulation of the femur and the proximal articulation of metatarsal 1. A novel phylogenetic study shows that relationships among the Carnian sauropodomorphs are poorly constrained, possibly because they belong to a "zone of variability", where homoplasy abounds. Yet, there is some evidence that Pam. barberenai may nest within Saturnaliidae, along with Saturnalia tupiniquim and Chromogisaurus novasi, which represents the sister group to the larger sauropodomorphs, i.e. Bagualosauria.


Subject(s)
Dinosaurs/anatomy & histology , Fossils/anatomy & histology , Animals , Biological Evolution , Bone and Bones/chemistry , Brazil , Dinosaurs/genetics , Phylogeny
15.
Biol Lett ; 14(11)2018 11 21.
Article in English | MEDLINE | ID: mdl-30463923

ABSTRACT

The rise of sauropodomorphs is still poorly understood due to the scarcity of well-preserved fossils in early Norian rocks. Here, we present an association of complete and exceptionally well-preserved dinosaur skeletons that helps fill that gap. They represent a new species, which is recovered as a member of a clade solely composed of Gondwanan Triassic taxa. The new species allows the definition of a set of anatomical changes that shaped sauropodomorph evolution along a period from 233 to 225 Ma, as recorded in the well dated Late Triassic beds of Brazil. In that time span, apart from achieving a more herbivorous diet, sauropodomorph dinosaurs increased their size in a ratio of 230% and their typical long neck was also established, becoming proportionally twice longer than those of basal taxa. Indeed, the new dinosaur is the oldest-known sauropodomorph with such an elongated neck, suggesting that the ability to feed on high vegetation was a key trait achieved along the early Norian. Finally, the clustered preservation mode of the skeletons represents the oldest evidence of gregarious behaviour among sauropodomorphs.


Subject(s)
Biological Evolution , Dinosaurs/anatomy & histology , Fossils/anatomy & histology , Animals , Brazil , Dinosaurs/classification , Phylogeny , Skeleton/anatomy & histology
16.
Sci Rep ; 8(1): 15179, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315223

ABSTRACT

Metacryphaeus is a calmoniid trilobite genus from the Devonian Malvinokaffric Realm, exclusive to the Gondwanan regions. It includes eleven species, which are for the first time included here in a single phylogenetic analysis. The resulting hypotheses establish relations among the Metacryphaeus species with few ambiguities, also suggesting the inclusion of both Plesiomalvinella pujravii and P. boulei within the genus, as originally considered. The results of palaeobiogeographic analyses employing the Dispersal-Extinction-Cladogenesis (DEC) model reinforce the hypothesis that Bolivia and Peru form the ancestral home of Metacryphaeus. The radiation of the genus to other Gondwanan areas took place during transgressive eustatic episodes during the Lochkovian-Pragian. The Lochkovian dispersal occurred from Bolivia and Peru to Brazil (Paraná and Parnaíba basins) and the Falklands, and Pragian dispersal occurred towards South Africa. Dispersal events from Bolivia and Peru to the Parnaíba Basin (Brazil) were identified during the Lochkovian-Pragian, suggesting the presence of marine connections between those areas earlier than previously thought.


Subject(s)
Coleoptera/classification , Phylogeny , Phylogeography , Animals , Bolivia , Brazil , Coleoptera/anatomy & histology , Coleoptera/genetics , Likelihood Functions , Paleontology , Peru , Skeleton , South Africa
17.
R Soc Open Sci ; 5(5): 180482, 2018 May.
Article in English | MEDLINE | ID: mdl-29892465

ABSTRACT

In the last three decades, records of tribosphenidan mammals from India, continental Africa, Madagascar and South America have challenged the notion of a strictly Laurasian distribution of the group during the Cretaceous. Here, we describe a lower premolar from the Late Cretaceous Adamantina Formation, São Paulo State, Brazil. It differs from all known fossil mammals, except for a putative eutherian from the same geologic unity and Deccanolestes hislopi, from the Maastrichtian of India. The incompleteness of the material precludes narrowing down its taxonomic attribution further than Tribosphenida, but it is larger than most coeval mammals and shows a thin layer of parallel crystallite enamel. The new taxon helps filling two major gaps in the fossil record: the paucity of Mesozoic mammals in more northern parts of South America and of tribosphenidans in the Cretaceous of that continent. In addition, high-precision U-Pb geochronology provided a post-Turonian maximal age (≤87.8 Ma) for the type stratum, which is overlain by the dinosaur-bearing Marília Formation, constraining the age of the Adamantina Formation at the site to late Coniacian-late Maastrichtian. This represents the first radioisotopic age for the Bauru Group, a key stratigraphic unit for the study of Cretaceous tetrapods in Gondwana.

18.
Zootaxa ; 4392(1): 149-158, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29690420

ABSTRACT

Despite representing a key-taxon in dinosauromorph phylogeny, Lagerpertidae is one of the most obscure and enigmatic branches from the stem that leads to the dinosaurs. Recent new findings have greatly increased our knowledge about lagerpetids, but no phylogenetic analysis has so far included all known members of this group. Here, we present the most inclusive phylogenetic study so far conducted for Lagerpetidae. Phylogenetic analyses were performed based on three independent data matrixes. In two of them, Lagerpeton chanarensis Romer, 1971 is the sister taxon to all other known Lagerpetidae, whereas Ixalerpeton polesinensis Cabreira et al., 2016 is in a sister group relationship with a clade that includes PVSJ 883 and Dromomeron. Conversely, the other analysis supports an alternative topology, where I. polesinensis is the sister taxon to either L. chanarensis or all other Lagerpetidae. Although coeval and geographically close, I. polesinensis and PVSJ 883 do not form a clade exclusive of other lagerpetids. As previously suggested D. gigas Martínez, Apaldetti, Correa Abelín, 2016 is the sister taxon of D. romeri Irmis et al., 2007. The phylogenetic analyses also indicate that the earliest lagerpetids are restricted to southwestern Pangea, whereas later forms spread across the entire western portion of the supercontinent. Finally, quantification of the codified characters of our analysis reveals that Lagerpetidae is one of the poorest known among the Triassic dinosauromorph groups in terms of their anatomy, so that new discoveries of more complete specimens are awaited to establish a more robust phylogeny.


Subject(s)
Dinosaurs , Animals , Fossils , Phylogeny
19.
R Soc Open Sci ; 5(3): 171773, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29657780

ABSTRACT

Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa-Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous-Palaeogene or the Eocene-Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages.

20.
PeerJ ; 5: e4038, 2017.
Article in English | MEDLINE | ID: mdl-29152419

ABSTRACT

The upper Triassic deposits of the Selous Basin in south Tanzania have not been prospected for fossil tetrapods since the middle of last century, when Gordon M. Stockley collected two rhynchosaur bone fragments from the so called "Tunduru beds". Here we present the results of a field trip conducted in July 2015 to the vicinities of Tunduru and Msamara, Ruvuma Region, Tanzania, in search for similar remains. Even if unsuccessful in terms of fossil discoveries, the geological mapping conducted during the trip improved our knowledge of the deposition systems of the southern margin of the Selous Basin during the Triassic, allowing tentative correlations to its central part and to neighbouring basins. Moreover, we reviewed the fossil material previously collected by Gordon M. Stockley, confirming that the remains correspond to a valid species, Supradapedon stockleyi, which was incorporated into a comprehensive phylogeny of rhynchosaurs and found to represent an Hyperodapedontinae with a set of mostly plesiomorphic traits for the group. Data gathered form the revision and phylogenetic placement of Su. stockleyi helps understanding the acquisition of the typical dental traits of Late Triassic rhynchosaurs, corroborating the potential of hyperodapedontines as index fossils of the Carnian-earliest Norian.

SELECTION OF CITATIONS
SEARCH DETAIL