Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 23(9): e13731, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35920116

ABSTRACT

Accurate coregistration of computed tomography (CT) and magnetic resonance (MR) imaging can provide clinically relevant and complementary information and can serve to facilitate multiple clinical tasks including surgical and radiation treatment planning, and generating a virtual Positron Emission Tomography (PET)/MR for the sites that do not have a PET/MR system available. Despite the long-standing interest in multimodality co-registration, a robust, routine clinical solution remains an unmet need. Part of the challenge may be the use of mutual information (MI) maximization and local phase difference (LPD) as similarity metrics, which have limited robustness, efficiency, and are difficult to optimize. Accordingly, we propose registering MR to CT by mapping the MR to a synthetic CT intermediate (sCT) and further using it in a sCT-CT deformable image registration (DIR) that minimizes the sum of squared differences. The resultant deformation field of a sCT-CT DIR is applied to the MRI to register it with the CT. Twenty-five sets of abdominopelvic imaging data are used for evaluation. The proposed method is compared to standard MI- and LPD-based methods, and the multimodality DIR provided by a state of the art, commercially available FDA-cleared clinical software package. The results are compared using global similarity metrics, Modified Hausdorff Distance, and Dice Similarity Index on six structures. Further, four physicians visually assessed and scored registered images for their registration accuracy. As evident from both quantitative and qualitative evaluation, the proposed method achieved registration accuracy superior to LPD- and MI-based methods and can refine the results of the commercial package DIR when using its results as a starting point. Supported by these, this manuscript concludes the proposed registration method is more robust, accurate, and efficient than the MI- and LPD-based methods.


Subject(s)
Magnetic Resonance Imaging , Tomography, X-Ray Computed , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multimodal Imaging , Positron-Emission Tomography , Tomography, X-Ray Computed/methods
2.
J Appl Clin Med Phys ; 21(12): 263-271, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33270974

ABSTRACT

PURPOSE/OBJECTIVES: The purpose of this study is to dually evaluate the effectiveness of PlanIQ in predicting the viability and outcome of dosimetric planning in cases of complex re-irradiation as well as generating an equivalent plan through Pinnacle integration. The study also postulates that a possible strength of PlanIQ lies in mitigating pre-optimization uncertainties tied directly to dose overlap regions where re-irradiation is necessary. METHODS: A retrospective patient selection (n = 20) included a diverse range of re-irradiation cases to be planned using Pinnacle auto-planning with PlanIQ integration. A consistent planning template was developed and applied across all cases. Direct plan comparisons of manual plans against feasibility-produced plans were performed by physician(s) with dosimetry recording relevant proximal OAR and planning timeline data. RESULTS AND DISCUSSION: All re-irradiation cases were successfully predicted to be achievable per PlanIQ analyses with three cases (3/20) necessitating 95% target coverage conditions, previously exhibited in the manually planned counterparts, and determined acceptable under institutional standards. At the same time, PlanIQ consistently produced plans of equal or greater quality to the previously manually planned re-irradiation across all (20/20) trials (P = 0.05). Proximal OAR exhibited similar to slightly improved maximum point doses from feasibility-based planning with the largest advantages gained found within the subset of cranial and spine overlap cases, where improvements upward of 10.9% were observed. Mean doses to proximal tissues were found to be a statistically significant (P < 0.05) 5.0% improvement across the entire study. Documented planning times were markedly less than or equal to the time contributed to manual planning across all cases. CONCLUSION: Initial findings indicate that PlanIQ effectively provides the user clear feasibility feedback capable of facilitating decision-making on whether re-irradiation dose objectives and prescription dose coverage are possible at the onset of treatment planning thus eliminating possible trial and error associated with some manual planning. Introducing model-based prediction tools into planning of complex re-irradiation cases yielded positive outcomes on the final treatment plans.


Subject(s)
Radiotherapy, Intensity-Modulated , Re-Irradiation , Benchmarking , Feasibility Studies , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...