Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 59(2): 214-226, 2009 Feb.
Article in English | MEDLINE | ID: mdl-29116913

ABSTRACT

The U.S. Environmental Protection Agency Clean Air Status and Trends Network (CASTNET) utilizes an open-face filter pack system to measure concentrations of atmospheric sulfur and nitrogen species. Concentration data for nitrogen species measured with filter pack systems sometimes deviate from data collected by other measurement systems used to measure the same species. The nature of these differences suggests that more than one sampling mechanism or atmospheric process is involved. The study presented here examines these differences by intercomparing CASTNET data with data from other studies, examining the results from earlier intercomparison studies, and conducting a field test to investigate the effect of particle size on filter pack measurement systems. Measurements of nitrogen species from the Maryland Aerosol Research and Characterization (MARCH) monitoring site were compared with nitrogen concentrations at three nearby CASTNET sites. Results indicate that CASTNET measured higher particulate nitrate (NO3-) and lower gaseous nitric acid (HNO3) concentrations. Comparisons of NO3- from 34 collocated CASTNET and Inter-agency Monitoring of Protected Visual Environments (IMPROVE) sites show that CASTNET NO3- measurements were typically higher than the corresponding IM PROVE values. Also, results from the Lake Michigan Air Director's Consortium Midwest Ammonia Monitoring Project demonstrated NO3- dissociation on Teflon filters. To investigate the effect of particle size, filter pack measurement systems were operated at three CASTNET sites with and without cyclones during six 7-day measurement periods from March to August 2006. Results indicate the size-selection cyclones had a significant effect on both NO3- and HNO3 concentrations, but little effect on sulfate (SO42-) and ammonium (NH4+) levels. NO3- concentrations sampled with the open-face filters were significantly higher than concentrations measured with a 2.5-µm cut point, as were HNO3 concentrations. Although limited in spatial and temporal coverage, the field study showed that the use of an open-face filter pack may allow for the collection of coarse NO3- particles and for the reaction of HNO3 with metals/salts on the Teflon filter.

2.
J Air Waste Manag Assoc ; 53(3): 291-308, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12661689

ABSTRACT

Cloud water deposition was estimated at three high-elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY; Whitetop Mountain, VA; and Clingman's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). This paper provides a summary of cloud water chemistry, cloud liquid water content, cloud frequency, estimates of cloud water deposition of sulfur and nitrogen species, and estimates of total deposition of sulfur and nitrogen at these sites. Other cloud studies in the Appalachians and their comparison to MADPro are also summarized. Whiteface Mountain exhibited the lowest mean and median concentrations of sulfur and nitrogen ions in cloud water, while Clingman's Dome exhibited the highest mean and median concentrations. This geographic gradient is partly an effect of the different meteorological conditions experienced at northern versus southern sites in addition to the difference in pollution content of air masses reaching the sites. All sites measured seasonal cloud water deposition rates of SO4(2-) greater than 50 kg/ha and NO3(-) rates of greater than 25 kg/ha. These high-elevation sites experienced additional deposition loading of SO4(2-) and NO3(-) on the order of 6-20 times greater compared with lower elevation Clean Air Status and Trends Network (CASTNet) sites. Approximately 80-90% of this extra loading is from cloud deposition.


Subject(s)
Acid Rain , Air Pollutants/analysis , Appalachian Region , Environmental Monitoring , Meteorological Concepts , Nitrates/analysis , Soil Pollutants/analysis , Sulfates/analysis , Trees
3.
Environ Sci Technol ; 36(12): 2614-29, 2002 Jun 15.
Article in English | MEDLINE | ID: mdl-12099457

ABSTRACT

The Clean Air Status and Trends Network (CASTNet) was established by the U.S. EPA in response to the requirements of the 1990 Clean Air Act Amendments. To satisfy these requirements CASTNet was designed to assess and report on geographic patterns and long-term, temporal trends in ambient air pollution and acid deposition in order to gauge the effectiveness of current and future mandated emission reductions. This paper presents an analysis of the spatial patterns of deposition of sulfur and nitrogen pollutants for the period 1990-2000. Estimates of deposition are provided for two 4-yr periods: 1990-1993 and 1997-2000. These two periods were selected to contrast deposition before and after the large decrease in SO2 emissions that occurred in 1995. Estimates of dry deposition were obtained from measurements at CASTNet sites combined with deposition velocities that were modeled using the multilayer model, a 20-layer model that simulates the various atmospheric processes that contribute to dry deposition. Estimates of wet deposition were obtained from measurements at sites operated bythe National Atmospheric Deposition Program. The estimates of dry and wet deposition were combined to calculate total deposition of atmospheric sulfur (dry SO2, dry and wet SO4(2-)) and nitrogen (dry HNO3, dry and wet NO3-, dry and wet NH4+). An analysis of the deposition estimates showed a significant decline in sulfur deposition and no change in nitrogen deposition. The highest rates of sulfur deposition were observed in the Ohio River Valley and downwind states. This region also observed the largest decline in sulfur deposition. The highest rates of nitrogen deposition were observed in the Midwest from Illinois to southern New York State. Sulfur and nitrogen deposition fluxes were significantly higher in the eastern United States as compared to the western sites. Dry deposition contributed approximately 38% of total sulfur deposition and 30% of total nitrogen deposition in the eastern United States. Percentages are similar for the two 4-yr periods. Wet sulfate and dry SO2 depositions were the largest contributors to sulfur deposition. Wet nitrate, wet ammonium, and dry HNO3 depositions were the largest contributors to nitrogen deposition.


Subject(s)
Air Pollutants/analysis , Nitrogen/analysis , Sulfur/analysis , Environmental Monitoring , Interinstitutional Relations , Quaternary Ammonium Compounds/chemistry , Reference Values , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...