Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineered ; 4(1): 25-9, 2013.
Article in English | MEDLINE | ID: mdl-22909933

ABSTRACT

Sweet taste is mediated by a dimeric receptor composed of two distinct subunits, T1R2 and T1R3, whereas the T1R1/T1R3 receptor is involved in umami taste perception. The T1R1, T1R2, and T1R3 subunits are members of the small family of class C G protein-coupled receptors (GPCRs). The members of this family are characterized by a large N-terminal domain (NTD), which is structurally similar to bacterial periplasmic-binding proteins and contains the primary ligand-binding site. In a recent study, we described a strategy to produce a functional dimeric human T1R3-NTD. Although the protein was expressed as inclusion bodies (IBs) using the Escherichia coli system, the conditions for the refolding of functional hT1R3-NTD were determined using a fractional factorial screen coupled to a binding assay. Here, we report that this refolding strategy can be used to produce T1R1- and T1R2-NTDs in large quantities. We also discuss that our findings could be more generally applicable to other class C GPCR-NTDs, including the γ-aminobutyric acid type B receptor (GABABR), the extracellular calcium-sensing receptor (CaSR) and the large family of pheromone (V2R) orphan receptors.

2.
Protein Expr Purif ; 83(1): 75-83, 2012 May.
Article in English | MEDLINE | ID: mdl-22450161

ABSTRACT

The sweet taste receptor is a heterodimeric receptor composed of the T1R2 and T1R3 subunits, while T1R1 and T1R3 assemble to form the umami taste receptor. T1R receptors belong to the family of class C G-protein coupled receptors (GPCRs). In addition to a transmembrane heptahelical domain, class C GPCRs have a large extracellular N-terminal domain (NTD), which is the primary ligand-binding site. The T1R2 and T1R1 subunits have been shown to be responsible for ligand binding, via their NTDs. However, little is known about the contribution of T1R3-NTD to receptor functions. To enable biophysical characterization, we overexpressed the human NTD of T1R3 (hT1R3-NTD) using Escherichia coli in the form of inclusion bodies. Using a fractional factorial screen coupled to a functional assay, conditions were determined for the refolding of hT1R3-NTD. Far-UV circular dichroism spectroscopic studies revealed that hT1R3-NTD was well refolded. Using size-exclusion chromatography, we found that the refolded protein behaves as a dimer. Ligand binding quantified by tryptophan fluorescence quenching and microcalorimetry showed that hT1R3-NTD is functional and capable of binding sucralose with an affinity in the millimolar range. This study also provides a strategy to produce functional hT1R3-NTD by heterologous expression in E. coli; this is a prerequisite for structural determination and functional analysis of ligand-binding regions of other class C GPCRs.


Subject(s)
Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/chemistry , Recombinant Proteins/biosynthesis , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Humans , Inclusion Bodies/chemistry , Protein Binding , Protein Conformation , Protein Refolding , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sucrose/analogs & derivatives , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL