Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38410441

ABSTRACT

WNT/ß-catenin signaling is mediated by the transcriptional coactivator ß-catenin (CTNNB1). CTNNB1 abundance is regulated by phosphorylation and proteasomal degradation promoted by a destruction complex composed of the scaffold proteins APC and AXIN1 or AXIN2, and the kinases CSNK1A1 and GSK3A or GSK3B. Loss of CSNK1A1 increases CTNNB1 abundance, resulting in hyperactive WNT signaling. Previously, we demonstrated that the HECT domain ubiquitin ligase HUWE1 is necessary for hyperactive WNT signaling in HAP1 haploid human cells lacking CSNK1A1. Here, we investigate the mechanism underlying this requirement. In the absence of CSNK1A1, GSK3A/GSK3B still phosphorylated a fraction of CTNNB1, promoting its degradation. HUWE1 loss enhanced GSK3A/GSK3B-dependent CTNNB1 phosphorylation, further reducing CTNNB1 abundance. However, the reduction in CTNNB1 caused by HUWE1 loss was disproportionately smaller than the reduction in WNT target gene transcription. To test if the reduction in WNT signaling resulted from reduced CTNNB1 abundance alone, we engineered the endogenous CTNNB1 locus in HAP1 cells to encode a CTNNB1 variant insensitive to destruction complex-mediated phosphorylation and degradation. HUWE1 loss in these cells reduced WNT signaling with no change in CTNNB1 abundance. Genetic interaction and overexpression analyses revealed that the effects of HUWE1 on WNT signaling were not only mediated by GSK3A/GSK3B, but also by APC and AXIN1. Regulation of WNT signaling by HUWE1 required its ubiquitin ligase activity. These results suggest that in cells lacking CSNK1A1, a destruction complex containing APC, AXIN1 and GSK3A/GSK3B downregulates WNT signaling by phosphorylating and targeting CTNNB1 for degradation. HUWE1 enhances WNT signaling by antagonizing this activity. Therefore, HUWE1 enhances WNT/CTNNB1 signaling through two mechanisms, one that regulates CTNNB1 abundance and another that is independent of CTNNB1 stability. Coordinated regulation of CTNNB1 abundance and an independent signaling step by HUWE1 would be an efficient way to control WNT signaling output, enabling sensitive and robust activation of the pathway.

2.
Nat Commun ; 14(1): 6174, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798281

ABSTRACT

The control of Wnt receptor abundance is critical for animal development and to prevent tumorigenesis, but the mechanisms that mediate receptor stabilization remain uncertain. We demonstrate that stabilization of the essential Wingless/Wnt receptor Arrow/LRP6 by the evolutionarily conserved Usp46-Uaf1-Wdr20 deubiquitylase complex controls signaling strength in Drosophila. By reducing Arrow ubiquitylation and turnover, the Usp46 complex increases cell surface levels of Arrow and enhances the sensitivity of target cells to stimulation by the Wingless morphogen, thereby increasing the amplitude and spatial range of signaling responses. Usp46 inactivation in Wingless-responding cells destabilizes Arrow, reduces cytoplasmic accumulation of the transcriptional coactivator Armadillo/ß-catenin, and attenuates or abolishes Wingless target gene activation, which prevents the concentration-dependent regulation of signaling strength. Consequently, Wingless-dependent developmental patterning and tissue homeostasis are disrupted. These results reveal an evolutionarily conserved mechanism that mediates Wnt/Wingless receptor stabilization and underlies the precise activation of signaling throughout the spatial range of the morphogen gradient.


Subject(s)
Drosophila Proteins , Wnt Signaling Pathway , Animals , Drosophila Proteins/metabolism , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , Drosophila/genetics , Transcription Factors/metabolism
3.
Nat Commun ; 14(1): 6173, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798301

ABSTRACT

The relative abundance of Wnt receptors plays a crucial role in controlling Wnt signaling in tissue homeostasis and human disease. While the ubiquitin ligases that ubiquitylate Wnt receptors are well-characterized, the deubiquitylase that reverses these reactions remains unclear. Herein, we identify USP46, UAF1, and WDR20 (USP46 complex) as positive regulators of Wnt signaling in cultured human cells. We find that the USP46 complex is similarly required for Wnt signaling in Xenopus and zebrafish embryos. We demonstrate that Wnt signaling promotes the association between the USP46 complex and cell surface Wnt coreceptor, LRP6. Knockdown of USP46 decreases steady-state levels of LRP6 and increases the level of ubiquitylated LRP6. In contrast, overexpression of the USP46 complex blocks ubiquitylation of LRP6 by the ubiquitin ligases RNF43 and ZNFR3. Size exclusion chromatography studies suggest that the size of the USP46 cytoplasmic complex increases upon Wnt stimulation. Finally, we show that USP46 is essential for Wnt-dependent intestinal organoid viability, likely via its role in LRP6 receptor homeostasis. We propose a model in which the USP46 complex increases the steady-state level of cell surface LRP6 and facilitates the assembly of LRP6 into signalosomes via a pruning mechanism that removes sterically hindering ubiquitin chains.


Subject(s)
Endopeptidases , Wnt Signaling Pathway , beta Catenin , Animals , Humans , beta Catenin/genetics , beta Catenin/metabolism , Ligases/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Receptors, Wnt , Ubiquitin , Zebrafish/metabolism , Endopeptidases/metabolism
4.
bioRxiv ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37886503

ABSTRACT

Homeostatic control of intracellular ionic strength is essential for protein, organelle and genome function, yet mechanisms that sense and enable adaptation to ionic stress remain poorly understood in animals. We find that the transcription factor NFAT5 directly senses solution ionic strength using a C-terminal intrinsically disordered region. Both in intact cells and in a purified system, NFAT5 forms dynamic, reversible biomolecular condensates in response to increasing ionic strength. This self-associative property, conserved from insects to mammals, allows NFAT5 to accumulate in the nucleus and activate genes that restore cellular ion content. Mutations that reduce condensation or those that promote aggregation both reduce NFAT5 activity, highlighting the importance of optimally tuned associative interactions. Remarkably, human NFAT5 alone is sufficient to reconstitute a mammalian transcriptional response to ionic or hypertonic stress in yeast. Thus NFAT5 is both the sensor and effector of a cell-autonomous ionic stress response pathway in animal cells.

5.
Curr Top Dev Biol ; 150: 25-89, 2022.
Article in English | MEDLINE | ID: mdl-35817504

ABSTRACT

Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.


Subject(s)
Thrombospondins , Wnt Signaling Pathway , Hedgehog Proteins , Homeostasis , Ligands , Thrombospondins/chemistry , Thrombospondins/metabolism , Ubiquitin , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
6.
Cell Biosci ; 12(1): 119, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35908024

ABSTRACT

BACKGROUND: Developmental signaling pathways such as those of Hedgehog (HH) and WNT play critical roles in cancer stem cell self-renewal, migration, and differentiation. They are often constitutively activated in many human malignancies, including non-small cell lung cancer (NSCLC). Previously, we reported that two oxysterol derivatives, Oxy186 and Oxy210, are potent inhibitors of HH/GLI signaling and NSCLC cancer cell growth. In addition, we also showed that Oxy210 is a potent inhibitor of TGF-ß/SMAD signaling. In this follow-up study, we further explore the mechanism of action by which these oxysterols control NSCLC cell proliferation and tumor growth. RESULTS: Using a GLI-responsive luciferase reporter assay, we show here that HH ligand could not mount a signaling response in the NSCLC cell line A549, even though Oxy186 and Oxy210 still inhibited non-canonical GLI activity and suppressed the proliferation of A549 cells. Further, we uncover an unexpected activity of these two oxysterols in inhibiting the WNT/ß-catenin signaling at the level of LRP5/6 membrane receptors. We also show that in a subcutaneous xenograft tumor model generated from A549 cells, Oxy186, but not Oxy210, exhibits strong inhibition of tumor growth. Subsequent RNA-seq analysis of the xenograft tumor tissue reveal that the WNT/ß-catenin pathway is the target of Oxy186 in vivo. CONCLUSION: The oxysterols Oxy186 and Oxy210 both possess inhibitory activity towards WNT/ß-catenin signaling, and Oxy186 is also a potent inhibitor of NSCLC tumor growth.

7.
Elife ; 92020 05 20.
Article in English | MEDLINE | ID: mdl-32432544

ABSTRACT

R-spondins (RSPOs) amplify WNT signaling during development and regenerative responses. We previously demonstrated that RSPOs 2 and 3 potentiate WNT/ß-catenin signaling in cells lacking leucine-rich repeat-containing G-protein coupled receptors (LGRs) 4, 5 and 6 (Lebensohn and Rohatgi, 2018). We now show that heparan sulfate proteoglycans (HSPGs) act as alternative co-receptors for RSPO3 using a combination of ligand mutagenesis and ligand engineering. Mutations in RSPO3 residues predicted to contact HSPGs impair its signaling capacity. Conversely, the HSPG-binding domains of RSPO3 can be entirely replaced with an antibody that recognizes heparan sulfate (HS) chains attached to multiple HSPGs without diminishing WNT-potentiating activity in cultured cells and intestinal organoids. A genome-wide screen for mediators of RSPO3 signaling in cells lacking LGRs 4, 5 and 6 failed to reveal other receptors. We conclude that HSPGs are RSPO co-receptors that potentiate WNT signaling in the presence and absence of LGRs.


Subject(s)
Heparan Sulfate Proteoglycans/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Wnt Signaling Pathway , Cells, Cultured , Developmental Biology , Heparan Sulfate Proteoglycans/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Ligands , Organoids , Receptors, G-Protein-Coupled/genetics , Thrombospondins
8.
PLoS One ; 14(1): e0198463, 2019.
Article in English | MEDLINE | ID: mdl-30695034

ABSTRACT

The systematic identification of regulatory elements that control gene expression remains a challenge. Genetic screens that use untargeted mutagenesis have the potential to identify protein-coding genes, non-coding RNAs and regulatory elements, but their analysis has mainly focused on identifying the former two. To identify regulatory elements, we conducted a new bioinformatics analysis of insertional mutagenesis screens interrogating WNT signaling in haploid human cells. We searched for specific patterns of retroviral gene trap integrations (used as mutagens in haploid screens) in short genomic intervals overlapping with introns and regions upstream of genes. We uncovered atypical patterns of gene trap insertions that were not predicted to disrupt coding sequences, but caused changes in the expression of two key regulators of WNT signaling, suggesting the presence of cis-regulatory elements. Our methodology extends the scope of haploid genetic screens by enabling the identification of regulatory elements that control gene expression.


Subject(s)
Introns , Models, Genetic , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA , Animals , Computational Biology , Genomics , Haploidy , Humans , Mutagenesis, Insertional , Retroviridae/genetics
9.
Elife ; 72018 02 06.
Article in English | MEDLINE | ID: mdl-29405118

ABSTRACT

The WNT signaling pathway regulates patterning and morphogenesis during development and promotes tissue renewal and regeneration in adults. The R-spondin (RSPO) family of four secreted proteins, RSPO1-4, amplifies target cell sensitivity to WNT ligands by increasing WNT receptor levels. Leucine-rich repeat-containing G-protein coupled receptors (LGRs) 4-6 are considered obligate high-affinity receptors for RSPOs. We discovered that RSPO2 and RSPO3, but not RSPO1 or RSPO4, can potentiate WNT/ß-catenin signaling in the absence of all three LGRs. By mapping the domains on RSPO3 that are necessary and sufficient for this activity, we show that the requirement for LGRs is dictated by the interaction between RSPOs and the ZNRF3/RNF43 E3 ubiquitin ligases and that LGR-independent signaling depends on heparan sulfate proteoglycans (HSPGs). We propose that RSPOs can potentiate WNT signals through distinct mechanisms that differ in their use of either LGRs or HSPGs, with implications for understanding their biological functions.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Thrombospondins/metabolism , Wnt Signaling Pathway , Cell Line , Humans
10.
Elife ; 52016 12 20.
Article in English | MEDLINE | ID: mdl-27996937

ABSTRACT

The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling ß-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the ß-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Genetic Testing/methods , Wnt Signaling Pathway , Casein Kinase I/deficiency , Cytoskeletal Proteins/deficiency , Genes, Reporter , Haploidy , Humans , Wnt Proteins/genetics , Wnt Proteins/metabolism
11.
Cancer Res ; 76(19): 5810-5821, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27503929

ABSTRACT

Anthracyclines are among the most effective yet most toxic drugs used in the oncology clinic. The nucleosome-remodeling SWI/SNF complex, a potent tumor suppressor, is thought to promote sensitivity to anthracyclines by recruiting topoisomerase IIa (TOP2A) to DNA and increasing double-strand breaks. In this study, we discovered a novel mechanism through which SWI/SNF influences resistance to the widely used anthracycline doxorubicin based on the use of a forward genetic screen in haploid human cells, followed by a rigorous single and double-mutant epistasis analysis using CRISPR/Cas9-mediated engineering. Doxorubicin resistance conferred by loss of the SMARCB1 subunit of the SWI/SNF complex was caused by transcriptional upregulation of a single gene, encoding the multidrug resistance pump ABCB1. Remarkably, both ABCB1 upregulation and doxorubicin resistance caused by SMARCB1 loss were dependent on the function of SMARCA4, a catalytic subunit of the SWI/SNF complex. We propose that residual SWI/SNF complexes lacking SMARCB1 are vital determinants of drug sensitivity, not just to TOP2A-targeted agents, but to the much broader range of cancer drugs effluxed by ABCB1. Cancer Res; 76(19); 5810-21. ©2016 AACR.


Subject(s)
Chromatin Assembly and Disassembly , DNA Helicases/physiology , Nuclear Proteins/physiology , SMARCB1 Protein/physiology , Transcription Factors/physiology , ATP Binding Cassette Transporter, Subfamily B/genetics , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Haploidy , Humans , Transcription, Genetic
12.
Mol Cell ; 36(3): 512-24, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-19917258

ABSTRACT

WAVE proteins link upstream signals to actin nucleation by activating the Arp2/3 complex and are at the core of regulatory pathways driving membrane protrusion. They are found in heteropentameric complexes whose role in regulating WAVE function is presently unclear. Here we demonstrate that purified native WAVE complexes are basally inactive; previous reports of constitutive activity are artifacts of in vitro manipulation. Further, the native complexes are not activated by Rac alone. Activation of the WAVE2 complex requires simultaneous interactions with prenylated Rac-GTP and acidic phospholipids, as well as a specific state of phosphorylation. Together these signals promote full activation in a highly cooperative process on the membrane surface, by inducing an allosteric change in the complex rather than by simple recruitment or by dissociation of the subunits. These results explain how the WAVE complex can integrate coincident signals to promote localized actin nucleation during cell motility.


Subject(s)
Actins/metabolism , Signal Transduction , Wiskott-Aldrich Syndrome Protein Family/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Cattle , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement , Humans , Microscopy, Confocal , Molecular Sequence Data , Oncogene Proteins/metabolism , Phospholipids/metabolism , Phosphorylation , Prenylation , Swine , rac GTP-Binding Proteins/metabolism
13.
Chem Biol ; 13(4): 443-52, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16632257

ABSTRACT

Identification of small-molecule targets remains an important challenge for chemical genetics. We report an approach for target identification and protein discovery based on functional suppression of chemical inhibition in vitro. We discovered pirl1, an inhibitor of actin assembly, in a screen conducted with cytoplasmic extracts. Pirl1 was used to partially inhibit actin assembly in the same assay, and concentrated biochemical fractions of cytoplasmic extracts were added to find activities that suppressed pirl1 inhibition. Two activities were detected, separately purified, and identified as Arp2/3 complex and Cdc42/RhoGDI complex, both known regulators of actin assembly. We show that pirl1 directly inhibits activation of Cdc42/RhoGDI, but that Arp2/3 complex represents a downstream suppressor. This work introduces a general method for using low-micromolar chemical inhibitors to identify both inhibitor targets and other components of a signaling pathway.


Subject(s)
Drug Evaluation, Preclinical/methods , Signal Transduction/drug effects , Actin-Related Protein 2-3 Complex/antagonists & inhibitors , Actins/metabolism , Animals , Cell Surface Extensions/drug effects , Female , Guanine Nucleotide Dissociation Inhibitors/antagonists & inhibitors , In Vitro Techniques , Oocytes/drug effects , Oocytes/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Xenopus laevis , cdc42 GTP-Binding Protein/antagonists & inhibitors , rho-Specific Guanine Nucleotide Dissociation Inhibitors
14.
Methods Enzymol ; 406: 156-73, 2006.
Article in English | MEDLINE | ID: mdl-16472657

ABSTRACT

Xenopus egg cytoplasmic extracts have been used to study a variety of complex cellular processes. Given their amenability to biochemical manipulation and physiological balance of regulatory proteins, these extracts are an ideal system to dissect signal transduction pathways leading to actin assembly. We have developed methods to study Cdc42 and PI(4,5)P2-induced actin assembly in Xenopus egg extracts. In this chapter, we describe detailed procedures to prepare Xenopus egg extracts, Cdc42, and PI(4,5)P2 for use in actin assembly experiments. We also describe a fluorometric pyrene actin assay for quantitative kinetic analysis of actin polymerization and a microscopic rhodamine actin assay for quick measurement of actin rearrangements in extracts. Finally we provide a protocol for immunodepletion of proteins and discuss the use of immunodepletion and rescue experiments for functional analysis of components in the extracts.


Subject(s)
Actins/metabolism , Phosphatidylinositol 4,5-Diphosphate/physiology , cdc42 GTP-Binding Protein/physiology , Animals , Carrier Proteins/physiology , Cell Separation/methods , Fatty Acid-Binding Proteins , Liposomes/chemical synthesis , Ovum/metabolism , Protein Prenylation , Xenopus Proteins/deficiency , Xenopus Proteins/physiology , Xenopus laevis
15.
Methods Enzymol ; 406: 174-90, 2006.
Article in English | MEDLINE | ID: mdl-16472658

ABSTRACT

In the accompanying chapter, we describe an in vitro system that uses Xenopus egg extracts to study actin assembly induced by phosphatidylinositol (4,5)bisphosphate (PIP2) and Cdc42. Biochemical fractionation and candidate screening experiments conducted in the extract system have identified the Arp2/3 complex, the N-WASP-WIP (or N-WASP-CR16) complex, and the Cdc42-binding protein Toca-1 as important mediators of PIP2- and Cdc42-actin signaling. Toward our ultimate goal of reconstituting an in vitro system that recapitulates the signaling properties observed in vivo, we then developed a purified actin assembly assay system consisting of the regulatory components that we discovered from extracts. In these assays, the stereotypical sigmoidal kinetics of actin polymerization are monitored by pyrene-actin fluorescence in the presence of defined recombinant or purified proteins, enabling the detailed study of mechanism and protein function. In this chapter, we describe the preparation of the components used in these purified actin assembly reactions, as well as the assay conditions under which we monitor actin polymerization kinetics in vitro.


Subject(s)
Actin-Related Protein 2-3 Complex/physiology , Actins/biosynthesis , Wiskott-Aldrich Syndrome Protein, Neuronal/physiology , cdc42 GTP-Binding Protein/physiology , Actin-Related Protein 2-3 Complex/isolation & purification , Actins/metabolism , Animals , Brain Chemistry , Carrier Proteins/isolation & purification , Carrier Proteins/physiology , Cattle , Cytoskeletal Proteins , Humans , Intracellular Signaling Peptides and Proteins , Nerve Tissue Proteins/physiology , Ovum/chemistry , Phosphatidylinositol 4,5-Diphosphate/physiology , Phosphoproteins/physiology , Pyrenes/chemistry , Recombinant Proteins/isolation & purification , Signal Transduction , Spodoptera , Wiskott-Aldrich Syndrome Protein, Neuronal/isolation & purification , Xenopus laevis
16.
Cell ; 118(2): 203-16, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15260990

ABSTRACT

An important signaling pathway to the actin cytoskeleton links the Rho family GTPase Cdc42 to the actin-nucleating Arp2/3 complex through N-WASP. Nevertheless, these previously identified components are not sufficient to mediate Cdc42-induced actin polymerization in a physiological context. In this paper, we describe the biochemical purification of Toca-1 (transducer of Cdc42-dependent actin assembly) as an essential component of the Cdc42 pathway. Toca-1 binds both N-WASP and Cdc42 and is a member of the evolutionarily conserved PCH protein family. Toca-1 promotes actin nucleation by activating the N-WASP-WIP/CR16 complex, the predominant form of N-WASP in cells. Thus, the cooperative actions of two distinct Cdc42 effectors, the N-WASP-WIP complex and Toca-1, are required for Cdc42-induced actin assembly. These findings represent a significantly revised view of Cdc42-signaling and shed light on the pathogenesis of Wiskott-Aldrich syndrome.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Carrier Proteins/metabolism , Nerve Tissue Proteins/metabolism , Xenopus Proteins/metabolism , cdc42 GTP-Binding Protein/metabolism , Actins/biosynthesis , Amino Acid Sequence/genetics , Animals , Base Sequence/genetics , Carrier Proteins/genetics , Carrier Proteins/isolation & purification , Cattle , Cytoskeletal Proteins , DNA, Complementary/analysis , DNA, Complementary/genetics , Evolution, Molecular , Fatty Acid-Binding Proteins , Humans , Intracellular Signaling Peptides and Proteins , Macromolecular Substances , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Phosphatidylinositol 4,5-Diphosphate/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phylogeny , Protein Binding/physiology , Signal Transduction/genetics , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal , Xenopus Proteins/genetics , Xenopus Proteins/isolation & purification , cdc42 GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...