Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Ecotoxicol Environ Saf ; 276: 116290, 2024 May.
Article En | MEDLINE | ID: mdl-38599154

Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.


Arabidopsis , Oxidative Stress , Thallium , Arabidopsis/drug effects , Arabidopsis/genetics , Thallium/toxicity , Oxidative Stress/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Gene Expression Regulation, Plant/drug effects , Plant Leaves/drug effects , Soil Pollutants/toxicity
2.
Sci Adv ; 9(47): eadk1910, 2023 11 24.
Article En | MEDLINE | ID: mdl-37992165

Endozoicomonas are often predominant bacteria and prominently important in coral health. Their role in dimethylsulfoniopropionate (DMSP) degradation has been a subject of discussion for over a decade. A previous study found that Endozoicomonas degraded DMSP through the dddD pathway. This process releases dimethyl sulfide, which is vital for corals coping with thermal stress. However, little is known about the related gene regulation and metabolic abilities of DMSP metabolism in Endozoicomonadaceae. In this study, we isolated a novel Endozoicomonas DMSP degrader and observed a distinct DMSP metabolic trend in two phylogenetically close dddD-harboring Endozoicomonas species, confirmed genetically by comparative transcriptomic profiling and visualization of the change of DMSP stable isotopes in bacterial cells using nanoscale secondary ion spectrometry. Furthermore, we found that DMSP cleavage enzymes are ubiquitous in coral Endozoicomonas with a preference for having DddD lyase. We speculate that harboring DMSP degrading genes enables Endozoicomonas to successfully colonize various coral species across the globe.


Anthozoa , Sulfonium Compounds , Animals , Anthozoa/metabolism , Bacteria/metabolism , Sulfonium Compounds/metabolism
3.
Sci Adv ; 8(27): eabo2431, 2022 Jul 08.
Article En | MEDLINE | ID: mdl-35857470

Bacteria commonly form aggregates in a range of coral species [termed coral-associated microbial aggregates (CAMAs)], although these structures remain poorly characterized despite extensive efforts studying the coral microbiome. Here, we comprehensively characterize CAMAs associated with Stylophora pistillata and quantify their cell abundance. Our analysis reveals that multiple Endozoicomonas phylotypes coexist inside a single CAMA. Nanoscale secondary ion mass spectrometry imaging revealed that the Endozoicomonas cells were enriched with phosphorus, with the elemental compositions of CAMAs different from coral tissues and endosymbiotic Symbiodiniaceae, highlighting a role in sequestering and cycling phosphate between coral holobiont partners. Consensus metagenome-assembled genomes of the two dominant Endozoicomonas phylotypes confirmed their metabolic potential for polyphosphate accumulation along with genomic signatures including type VI secretion systems allowing host association. Our findings provide unprecedented insights into Endozoicomonas-dominated CAMAs and the first direct physiological and genomic linked evidence of their biological role in the coral holobiont.

4.
mBio ; 13(3): e0125522, 2022 06 28.
Article En | MEDLINE | ID: mdl-35608299

Methane-oxidizing bacteria (methanotrophs) play an ecological role in methane and nitrogen fluxes because they are capable of nitrogen fixation and methane oxidation, as indicated by genomic and cultivation-dependent studies. However, the chemical relationships between methanotrophy and diazotrophy and aerobic and anaerobic reactions, respectively, in methanotrophs remain unclear. No study has demonstrated the cooccurrence of both bioactivities in a single methanotroph bacterium in its natural environment. Here, we demonstrate that both bioactivities in type II methanotrophs occur at the single-cell level in the root tissues of paddy rice (Oryza sativa L. cv. Nipponbare). We first verified that difluoromethane, an inhibitor of methane monooxygenase, affected methane oxidation in rice roots. The results indicated that methane assimilation in the roots mostly occurred due to oxygen-dependent processes. Moreover, the results indicated that methane oxidation-dependent and methane oxidation-independent nitrogen fixation concurrently occurred in bulk root tissues. Subsequently, we performed fluorescence in situ hybridization and NanoSIMS analyses, which revealed that single cells of type II methanotrophs (involving six amplicon sequence variants) in paddy rice roots simultaneously and logarithmically fixed stable isotope gases 15N2 and 13CH4 during incubation periods of 0, 23, and 42 h, providing in vivo functional evidence of nitrogen fixation in methanotrophic cells. Furthermore, 15N enrichment in type II methanotrophs at 42 h varied among cells with an increase in 13C accumulation, suggesting that either the release of fixed nitrogen into root systems or methanotroph metabolic specialization is dependent on different microenvironmental niches in the root. IMPORTANCE Atmospheric methane concentrations have been continually increasing, causing methane to become a considerable environmental concern. Methanotrophy may be the key to regulating methane fluxes. Although research suggests that type II methanotrophs are involved in methane oxidation aerobically and nitrogen fixation anaerobically, direct evidence of simultaneous aerobic and anaerobic bioreactions of methanotrophs in situ is still lacking. In this study, a single-cell isotope analysis was performed to demonstrate these in vivo parallel functions of type II methanotrophs in the root tissues of paddy rice (Oryza sativa L. cv. Nipponbare). The results of this study indicated that methanotrophs might provide fixed nitrogen to root systems or depend on cells present in the spatially localized niche of the root tissue. Furthermore, our results suggested that single type II methanotrophic cells performed simultaneous methane oxidation and nitrogen fixation in vivo. Under natural conditions, however, nitrogen accumulation varied at the single-cell level.


Oryza , In Situ Hybridization, Fluorescence , Isotopes , Methane/metabolism , Nitrogen/metabolism , Oryza/microbiology , Oxidation-Reduction , Soil Microbiology
5.
J Hazard Mater ; 387: 121983, 2020 04 05.
Article En | MEDLINE | ID: mdl-31911383

The use of indium in semiconductor products has increased markedly in recent years. The release of indium into the ecosystem is inevitable. Under such circumstances, effective and accurate assessment of indium risk is important. An indispensable aspect of indium risk assessment is to understand the interactions of indium with plants, which are fundamental components of all ecosystems. Physiological responses of Arabidopsis thaliana exposed to indium were investigated by monitoring toxic effects, accumulation and speciation of indium in the plant. Indium can be taken up by plants and is accumulated mainly in roots. Limited indium root-to-shoot translocation occurs because of immobilization of indium in the root intercellular space and blockage of indium by the Casparian band in the endodermis. Indium caused stunted growth, oxidative stress, anthocyanization and unbalanced phosphorus nutrition. Indium jeopardizes phosphate uptake and translocation by inhibiting the accumulation of phosphate transporters PHOSPHATE TRANSPORTER1 (PHT1;1/4), responsible for phosphate uptake, and PHOSPHATE1 (PHO1), responsible for phosphate xylem loading. Organic acid secretion is stimulated by indium exposure. Secreted citrate could function as a potential detoxifier to lower indium uptake. Our findings provide insights into the potential fate and effects of indium in plants and will aid the evaluation of risks with indium contamination.


Arabidopsis/drug effects , Indium/toxicity , Arabidopsis Proteins/metabolism , Citric Acid/metabolism , Gene Expression Regulation, Plant/drug effects , Homeostasis/drug effects , Oxidative Stress/drug effects , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Toxicity Tests
6.
J Trace Elem Med Biol ; 58: 126421, 2020 Mar.
Article En | MEDLINE | ID: mdl-31805477

BACKGROUND: Iron isotopic composition serves as a biological indicator of Fe metabolism in humans. In the process of Fe metabolism, essential carriers of Fe circulate in the blood and pass through storage organs and intestinal absorptive tissues. This study aimed to establish an analytical method for high-precision Fe isotopic measurement, investigate Fe concentration and isotopic composition in different parts of whole blood, and explore the potential of Fe isotopic composition as an indicator for Fe status within individuals. ANALYTICAL METHODS: A total of 23 clinically healthy Taiwanese adults of Han descent were enrolled randomly and Fe isotopic compositions of their whole blood, erythrocytes, and serum were measured. The Fe isotopic analysis was performed by Neptune Plus multiple-collector inductively coupled plasma mass spectrometry with double-spike technique. The precision and reproducibility of the Fe isotopic analysis were monitored by international biological and geological reference materials. MAIN FINDINGS: High-precision Fe isotopic measurements were achieved alongside with high consistency in the isotopic data for well-characterized reference materials. The Fe isotopic signatures of whole blood and erythrocytes were resolvable from that of serum, where both whole blood and erythrocytes contained significantly lighter Fe isotopic compositions compared to the case of serum (P = 0.0296 and P = 0.0004, respectively). The δ56/54Fe value of the serum sample was 0.2‰ heavier on an average than those of whole blood or erythrocytes. This isotopic fractionation observed in different parts of whole blood may indicate redox processes involved in Fe cycling, e.g. erythrocyte production and Fe transportation. Moreover, the δ56/54Fe values of whole blood and serum significantly correlated with the hemoglobin level (P = 0.0126 and P = 0.0020, respectively), erythrocyte count (P = 0.0014 and P = 0.0005, respectively), and Mentzer index (P = 0.0055 and P = 0.0011, respectively), suggesting the Fe isotopic composition as an indicator of functional Fe status in healthy adults. The relationships between blood Fe isotopic compositions and relevant biodemographic variables were also examined. While the average Fe concentration of whole blood was significantly higher in males than in females (P = 0.0028), females exhibited a heavier Fe isotopic composition compared to that of males in whole blood (P = 0.0010) and serum (P < 0.0001). A significantly inverse correlation of the whole blood δ56/54Fe value with body mass index of individuals (P = 0.0095) was also observed. CONCLUSION: The results presented herein reveal that blood Fe isotopic signature is consequentially linked to baseline erythrocyte parameters in individuals and is significantly affected by the gender and body mass index in the adult population. These findings support the role of Fe isotopic composition as an indicator for the variance of Fe metabolism among adult individuals and populations and warrant further study to elucidate the underlying mechanisms.


Erythrocytes/chemistry , Iron Isotopes/blood , Adult , Female , Geologic Sediments/chemistry , Humans , Male , Middle Aged , Reference Standards , Taiwan , Young Adult
7.
Microbiome ; 7(1): 3, 2019 01 04.
Article En | MEDLINE | ID: mdl-30609942

BACKGROUND: Endolithic microbes in coral skeletons are known to be a nutrient source for the coral host. In addition to aerobic endolithic algae and Cyanobacteria, which are usually described in the various corals and form a green layer beneath coral tissues, the anaerobic photoautotrophic green sulfur bacteria (GSB) Prosthecochloris is dominant in the skeleton of Isopora palifera. However, due to inherent challenges in studying anaerobic microbes in coral skeleton, the reason for its niche preference and function are largely unknown. RESULTS: This study characterized a diverse and dynamic community of endolithic microbes shaped by the availability of light and oxygen. In addition, anaerobic bacteria isolated from the coral skeleton were cultured for the first time to experimentally clarify the role of these GSB. This characterization includes GSB's abundance, genetic and genomic profiles, organelle structure, and specific metabolic functions and activity. Our results explain the advantages endolithic GSB receive from living in coral skeletons, the potential metabolic role of a clade of coral-associated Prosthecochloris (CAP) in the skeleton, and the nitrogen fixation ability of CAP. CONCLUSION: We suggest that the endolithic microbial community in coral skeletons is diverse and dynamic and that light and oxygen are two crucial factors for shaping it. This study is the first to demonstrate the ability of nitrogen uptake by specific coral-associated endolithic bacteria and shed light on the role of endolithic bacteria in coral skeletons.


Anthozoa/microbiology , Chlorobi/classification , Metagenomics/methods , Animals , Chlorobi/genetics , Chlorobi/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Rapid Commun Mass Spectrom ; 32(15): 1250-1256, 2018 Aug 15.
Article En | MEDLINE | ID: mdl-29781092

RATIONALE: Nitrogen and carbon stable isotope ratios (δ15 N and δ13 C values) of carbonate-bound organic materials in otoliths can provide information to address the biological and ecological functions of fish. Correct interpretation of otolith δ15 N and δ13 C profiles requires knowledge of the metabolic routes of nitrogen and carbon isotopes. However, the isotopic assimilation of δ15 N and δ13 C compositions from diets to otoliths has rarely been investigated. METHODS: This study traced the daily nitrogen and carbon isotopic assimilation between diets and otoliths using nanoscale secondary ion mass spectrometry (NanoSIMS). Isotopically labeled algae (Tetraselmis chui) were fed to tilapia (Oreochromis niloticus) for 14-17 days. NanoSIMS and conventional isotope ratio mass spectrometry were used to measure δ15 N and δ13 C variations in the otoliths and fish muscle, respectively. RESULTS: Otolith δ15 N values abruptly surged from natural abundance levels by 1000-2300‰ after the fish ate 15 N-spiked algae with δ15 N values of approximately 2200‰. However, the δ15 N values of fish muscle increased to only approximately 500‰ at the end of the feeding experiment. Much higher δ15 N values (3700-14 000‰) and moderate δ13 C values (60-200‰) were detected in the otoliths after the tilapia ate 15 N- and 13 C-spiked algae with a δ15 N value of 36667‰ and a δ13 C value of 272‰. Mapping analysis showed sub-micrometer-scale distribution of 15 N embedded in the otolith growth increments with a low-to-high δ15 N signal after the tilapia shifted diets from non-spiked to 15 N-labeled algae. CONCLUSIONS: These results suggest that otolith nitrogen and carbon isotopes from food were directly assimilated on the same day. Food is the major and in some cases only source of otolith nitrogen isotopes but makes only a partial contribution to otolith carbon isotopes. Therefore, the δ15 N values recorded in the sclerochronological layers of the otoliths can be used to determine the trophic levels, food sources and diet changes of fish.


Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Otolithic Membrane/chemistry , Spectrometry, Mass, Secondary Ion/methods , Tilapia/metabolism , Animals , Carbon Isotopes/metabolism , Diet , Muscles/chemistry , Muscles/metabolism , Nanotechnology , Nitrogen Isotopes/metabolism , Otolithic Membrane/metabolism
9.
New Phytol ; 211(2): 569-83, 2016 07.
Article En | MEDLINE | ID: mdl-26948158

To acquire appropriate iron (Fe), vascular plants have developed two unique strategies, the reduction-based strategy I of nongraminaceous plants for Fe(2+) and the chelation-based strategy II of graminaceous plants for Fe(3+) . However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha uses reduction-based Fe acquisition. Enhanced activities of ferric chelate reductase and proton ATPase were detected under Fe-deficient conditions. However, M. polymorpha did not show mugineic acid family phytosiderophores, the key components of strategy II, or the precursor nicotianamine. Five ZIP (ZRT/IRT-like protein) homologs were identified and speculated to be involved in Fe uptake in M. polymorpha. MpZIP3 knockdown conferred reduced growth under Fe-deficient conditions, and MpZIP3 overexpression increased Fe content under excess Fe. Thus, a nonvascular liverwort, M. polymorpha, uses strategy I for Fe acquisition. This system may have been acquired in the common ancestor of land plants and coopted from the gametophyte to sporophyte generation in the evolution of land plants.


Biological Evolution , Iron/metabolism , Marchantia/metabolism , Arabidopsis/metabolism , FMN Reductase/metabolism , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Genes, Plant , Hordeum/metabolism , Marchantia/genetics , Membrane Transport Proteins/metabolism , Phylogeny , Plant Proteins/metabolism , Proton-Translocating ATPases/metabolism , Subcellular Fractions/metabolism , Transcription, Genetic
10.
Plant Physiol ; 166(2): 839-52, 2014 Oct.
Article En | MEDLINE | ID: mdl-25118254

Hyperaccumulators tolerate and accumulate extraordinarily high concentrations of heavy metals. Content of the metal chelator nicotianamine (NA) in the root of zinc hyperaccumulator Arabidopsis halleri is elevated compared with nonhyperaccumulators, a trait that is considered to be one of the markers of a hyperaccumulator. Using metabolite-profiling analysis of root secretions, we found that excess zinc treatment induced secretion of NA in A. halleri roots compared with the nonhyperaccumulator Arabidopsis thaliana. Metal speciation analysis further revealed that the secreted NA forms a stable complex with Zn(II). Supplying NA to a nonhyperaccumulator species markedly increased plant zinc tolerance by decreasing zinc uptake. Therefore, NA secretion from A. halleri roots facilitates zinc hypertolerance through forming a Zn(II)-NA complex outside the roots to achieve a coordinated zinc uptake rate into roots. Secretion of NA was also found to be responsible for the maintenance of iron homeostasis under excess zinc. Together our results reveal root-secretion mechanisms associated with hypertolerance and hyperaccumulation.


Adaptation, Physiological , Arabidopsis/metabolism , Azetidinecarboxylic Acid/analogs & derivatives , Plant Roots/metabolism , Zinc/pharmacology , Arabidopsis/physiology , Azetidinecarboxylic Acid/metabolism , Biological Availability , Zinc/pharmacokinetics
11.
Science ; 295(5560): 1705-8, 2002 Mar 01.
Article En | MEDLINE | ID: mdl-11872837

Niobium-92 (92Nb) decays to zirconium-92 (92Zr) with a half-life of 36 million years and can be used to place constraints on the site of p-process nucleosynthesis and the timing of early solar system processes. Recent results have suggested that the initial 92Nb/93Nb of the solar system was high (>10(-3)). We report Nb-Zr internal isochrons for the ordinary chondrite Estacado (H6) and a clast of the mesosiderite Vaca Muerta, both of which define an initial 92Nb/93Nb ratio of approximately 10(-5). Therefore, the solar system appears to have started with a ratio of <3 x 10(-5), which implies that Earth's initial differentiation need not have been as protracted as recently suggested.

...