Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Alzheimers Dement ; 20(5): 3364-3377, 2024 May.
Article En | MEDLINE | ID: mdl-38561254

INTRODUCTION: We assessed whether macro- and/or micro-structural white matter properties are associated with cognitive resilience to Alzheimer's disease pathology years prior to clinical onset. METHODS: We examined whether global efficiency, an indicator of communication efficiency in brain networks, and diffusion measurements within the limbic network and default mode network moderate the association between amyloid-ß/tau pathology and cognitive decline. We also investigated whether demographic and health/risk factors are associated with white matter properties. RESULTS: Higher global efficiency of the limbic network, as well as free-water corrected diffusion measures within the tracts of both networks, attenuated the impact of tau pathology on memory decline. Education, age, sex, white matter hyperintensities, and vascular risk factors were associated with white matter properties of both networks. DISCUSSION: White matter can influence cognitive resilience against tau pathology, and promoting education and vascular health may enhance optimal white matter properties. HIGHLIGHTS: Aß and tau were associated with longitudinal memory change over ∼7.5 years. White matter properties attenuated the impact of tau pathology on memory change. Health/risk factors were associated with white matter properties.


White Matter , tau Proteins , Humans , White Matter/pathology , Male , Female , Aged , tau Proteins/metabolism , Alzheimer Disease/pathology , Brain/pathology , Amyloid beta-Peptides/metabolism , Cognition/physiology , Diffusion Tensor Imaging , Neuropsychological Tests , Cognitive Dysfunction/pathology , Risk Factors
2.
IEEE Trans Med Imaging ; 43(3): 1191-1202, 2024 Mar.
Article En | MEDLINE | ID: mdl-37943635

Parcellation of anatomically segregated cortical and subcortical brain regions is required in diffusion MRI (dMRI) analysis for region-specific quantification and better anatomical specificity of tractography. Most current dMRI parcellation approaches compute the parcellation from anatomical MRI (T1- or T2-weighted) data, using tools such as FreeSurfer or CAT12, and then register it to the diffusion space. However, the registration is challenging due to image distortions and low resolution of dMRI data, often resulting in mislabeling in the derived brain parcellation. Furthermore, these approaches are not applicable when anatomical MRI data is unavailable. As an alternative we developed the Deep Diffusion Parcellation (DDParcel), a deep learning method for fast and accurate parcellation of brain anatomical regions directly from dMRI data. The input to DDParcel are dMRI parameter maps and the output are labels for 101 anatomical regions corresponding to the FreeSurfer Desikan-Killiany (DK) parcellation. A multi-level fusion network leverages complementary information in the different input maps, at three network levels: input, intermediate layer, and output. DDParcel learns the registration of diffusion features to anatomical MRI from the high-quality Human Connectome Project data. Then, to predict brain parcellation for a new subject, the DDParcel network no longer requires anatomical MRI data but only the dMRI data. Comparing DDParcel's parcellation with T1w-based parcellation shows higher test-retest reproducibility and a higher regional homogeneity, while requiring much less computational time. Generalizability is demonstrated on a range of populations and dMRI acquisition protocols. Utility of DDParcel's parcellation is demonstrated on tractography analysis for fiber tract identification.


Connectome , Deep Learning , Humans , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Connectome/methods
3.
Neuroimage ; 279: 120288, 2023 10 01.
Article En | MEDLINE | ID: mdl-37495198

White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIbEr Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically calibrated pipeline based on deep autoencoders that can dissect and fully populate white matter bundles. This pipeline is built upon previous works that demonstrated how autoencoders can be used successfully for streamline filtering, bundle segmentation, and streamline generation in tractography. Our proposed method improves bundle segmentation coverage by recovering hard-to-track bundles with generative sampling through the latent space seeding of the subject bundle and the atlas bundle. A latent space of streamlines is learned using autoencoder-based modeling combined with contrastive learning. Using an atlas of bundles in standard space (MNI), our proposed method segments new tractograms using the autoencoder latent distance between each tractogram streamline and its closest neighbor bundle in the atlas of bundles. Intra-subject bundle reliability is improved by recovering hard-to-track streamlines, using the autoencoder to generate new streamlines that increase the spatial coverage of each bundle while remaining anatomically correct. Results show that our method is more reliable than state-of-the-art automated virtual dissection methods such as RecoBundles, RecoBundlesX, TractSeg, White Matter Analysis and XTRACT. Our framework allows for the transition from one anatomical bundle definition to another with marginal calibration efforts. Overall, these results show that our framework improves the practicality and usability of current state-of-the-art bundle segmentation framework.


Diffusion Tensor Imaging , White Matter , Humans , Diffusion Tensor Imaging/methods , Reproducibility of Results , Image Processing, Computer-Assisted/methods , White Matter/diagnostic imaging , Dissection , Brain/diagnostic imaging
4.
Med Image Anal ; 85: 102761, 2023 04.
Article En | MEDLINE | ID: mdl-36773366

Current tractography methods use the local orientation information to propagate streamlines from seed locations. Many such seeds provide streamlines that stop prematurely or fail to map the true white matter pathways because some bundles are "harder-to-track" than others. This results in tractography reconstructions with poor white and gray matter spatial coverage. In this work, we propose a generative, autoencoder-based method, named GESTA (Generative Sampling in Bundle Tractography using Autoencoders), that produces streamlines achieving better spatial coverage. Compared to other deep learning methods, our autoencoder-based framework uses a single model to generate streamlines in a bundle-wise fashion, and does not require to propagate local orientations. GESTA produces new and complete streamlines for any given white matter bundle, including hard-to-track bundles. Applied on top of a given tractogram, GESTA is shown to be effective in improving the white matter volume coverage in poorly populated bundles, both on synthetic and human brain in vivo data. Our streamline evaluation framework ensures that the streamlines produced by GESTA are anatomically plausible and fit well to the local diffusion signal. The streamline evaluation criteria assess anatomy (white matter coverage), local orientation alignment (direction), and geometry features of streamlines, and optionally, gray matter connectivity. The GESTA framework offers considerable gains in bundle overlap using a reduced set of seeding streamlines with a 1.5x improvement for the "Fiber Cup", and 6x for the ISMRM 2015 Tractography Challenge datasets. Similarly, it provides a 4x white matter volume increase on the BIL&GIN callosal homotopic dataset, and successfully populates bundles on the multi-subject, multi-site, whole-brain in vivo TractoInferno dataset. GESTA is thus a novel deep generative bundle tractography method that can be used to improve the tractography reconstruction of the white matter.


Diffusion Tensor Imaging , White Matter , Humans , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Brain/anatomy & histology , White Matter/anatomy & histology , Corpus Callosum
5.
Hum Brain Mapp ; 43(7): 2134-2147, 2022 05.
Article En | MEDLINE | ID: mdl-35141980

The segmentation of brain structures is a key component of many neuroimaging studies. Consistent anatomical definitions are crucial to ensure consensus on the position and shape of brain structures, but segmentations are prone to variation in their interpretation and execution. White-matter (WM) pathways are global structures of the brain defined by local landmarks, which leads to anatomical definitions being difficult to convey, learn, or teach. Moreover, the complex shape of WM pathways and their representation using tractography (streamlines) make the design and evaluation of dissection protocols difficult and time-consuming. The first iteration of Tractostorm quantified the variability of a pyramidal tract dissection protocol and compared results between experts in neuroanatomy and nonexperts. Despite virtual dissection being used for decades, in-depth investigations of how learning or practicing such protocols impact dissection results are nonexistent. To begin to fill the gap, we evaluate an online educational tractography course and investigate the impact learning and practicing a dissection protocol has on interrater (groupwise) reproducibility. To generate the required data to quantify reproducibility across raters and time, 20 independent raters performed dissections of three bundles of interest on five Human Connectome Project subjects, each with four timepoints. Our investigation shows that the dissection protocol in conjunction with an online course achieves a high level of reproducibility (between 0.85 and 0.90 for the voxel-based Dice score) for the three bundles of interest and remains stable over time (repetition of the protocol). Suggesting that once raters are familiar with the software and tasks at hand, their interpretation and execution at the group level do not drastically vary. When compared to previous work that used a different method of communication for the protocol, our results show that incorporating a virtual educational session increased reproducibility. Insights from this work may be used to improve the future design of WM pathway dissection protocols and to further inform neuroanatomical definitions.


Connectome , White Matter , Brain , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results , White Matter/diagnostic imaging
6.
Med Image Anal ; 72: 102126, 2021 08.
Article En | MEDLINE | ID: mdl-34161915

Current brain white matter fiber tracking techniques show a number of problems, including: generating large proportions of streamlines that do not accurately describe the underlying anatomy; extracting streamlines that are not supported by the underlying diffusion signal; and under-representing some fiber populations, among others. In this paper, we describe a novel autoencoder-based learning method to filter streamlines from diffusion MRI tractography, and hence, to obtain more reliable tractograms. Our method, dubbed FINTA (Filtering in Tractography using Autoencoders) uses raw, unlabeled tractograms to train the autoencoder, and to learn a robust representation of brain streamlines. Such an embedding is then used to filter undesired streamline samples using a nearest neighbor algorithm. Our experiments on both synthetic and in vivo human brain diffusion MRI tractography data obtain accuracy scores exceeding the 90% threshold on the test set. Results reveal that FINTA has a superior filtering performance compared to conventional, anatomy-based methods, and the RecoBundles state-of-the-art method. Additionally, we demonstrate that FINTA can be applied to partial tractograms without requiring changes to the framework. We also show that the proposed method generalizes well across different tracking methods and datasets, and shortens significantly the computation time for large (>1 M streamlines) tractograms. Together, this work brings forward a new deep learning framework in tractography based on autoencoders, which offers a flexible and powerful method for white matter filtering and bundling that could enhance tractometry and connectivity analyses.


Image Processing, Computer-Assisted , White Matter , Algorithms , Brain/diagnostic imaging , Diffusion Tensor Imaging , Humans , White Matter/diagnostic imaging
7.
Neuron ; 109(11): 1769-1775, 2021 06 02.
Article En | MEDLINE | ID: mdl-33932337

Brainhack is an innovative meeting format that promotes scientific collaboration and education in an open, inclusive environment. This NeuroView describes the myriad benefits for participants and the research community and how Brainhacks complement conventional formats to augment scientific progress.


Communication , Internet , Neurosciences/organization & administration , Congresses as Topic , Practice Guidelines as Topic
8.
Neuroimage ; 184: 140-160, 2019 01 01.
Article En | MEDLINE | ID: mdl-30193974

Spherical deconvolution methods are widely used to estimate the brain's white-matter fiber orientations from diffusion MRI data. In this study, eight spherical deconvolution algorithms were implemented and evaluated. These included two model selection techniques based on the extended Bayesian information criterion (i.e., best subset selection and the least absolute shrinkage and selection operator), iteratively reweighted l2- and l1-norm approaches to approximate the l0-norm, sparse Bayesian learning, Cauchy deconvolution, and two accelerated Richardson-Lucy algorithms. Results from our exhaustive evaluation show that there is no single optimal method for all different fiber configurations, suggesting that further studies should be conducted to find the optimal way of combining solutions from different methods. We found l0-norm regularization algorithms to resolve more accurately fiber crossings with small inter-fiber angles. However, in voxels with very dominant fibers, algorithms promoting more sparsity are less accurate in detecting smaller fibers. In most cases, the best algorithm to reconstruct fiber crossings with two fibers did not perform optimally in voxels with one or three fibers. Therefore, simplified validation systems as employed in a number of previous studies, where only two fibers with similar volume fractions were tested, should be avoided as they provide incomplete information. Future studies proposing new reconstruction methods based on high angular resolution diffusion imaging data should validate their results by considering, at least, voxels with one, two, and three fibers, as well as voxels with dominant fibers and different diffusion anisotropies.


Algorithms , Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , White Matter/anatomy & histology , Bayes Theorem , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Signal Processing, Computer-Assisted , Surveys and Questionnaires
9.
Comput Med Imaging Graph ; 50: 9-23, 2016 06.
Article En | MEDLINE | ID: mdl-25747803

An abdominal aortic aneurysm (AAA) is a pathological dilation of the abdominal aorta that may lead to a rupture with fatal consequences. Endovascular aneurysm repair (EVAR) is a minimally invasive surgical procedure consisting of the deployment and fixation of a stent-graft that isolates the damaged vessel wall from blood circulation. The technique requires adequate endovascular device sizing, which may be performed by vascular analysis and quantification on Computerized Tomography Angiography (CTA) scans. This paper presents a novel 3D CTA image-based software for AAA inspection and EVAR sizing, eVida Vascular, which allows fast and accurate 3D endograft sizing for standard and fenestrated endografts. We provide a description of the system and its innovations, including the underlying vascular image analysis and visualization technology, functional modules and user interaction. Furthermore, an experimental validation of the tool is described, assessing the degree of agreement with a commercial, clinically validated software, when comparing measurements obtained for standard endograft sizing in a group of 14 patients.


Aortic Aneurysm, Abdominal , Blood Vessel Prosthesis , Endovascular Procedures , Aortic Aneurysm, Abdominal/therapy , Humans , Imaging, Three-Dimensional , Software , Stents
...