Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
Asian J Androl ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119686

ABSTRACT

ABSTRACT: Testicular descent occurs in two consecutive stages: the transabdominal stage and the inguinoscrotal stage. Androgens play a crucial role in the second stage by influencing the development of the gubernaculum, a structure that pulls the testis into the scrotum. However, the mechanisms of androgen actions underlying many of the processes associated with gubernaculum development have not been fully elucidated. To identify the androgen-regulated genes, we conducted large-scale gene expression analyses on the gubernaculum harvested from luteinizing hormone/choriogonadotropin receptor knockout (Lhcgr KO) mice, an animal model of inguinoscrotal testis maldescent resulting from androgen deficiency. We found that the expression of secreted protein acidic and rich in cysteine (SPARC)-related modular calcium binding 1 (Smoc1) was the most severely suppressed at both the transcript and protein levels, while its expression was the most dramatically induced by testosterone administration in the gubernacula of Lhcgr KO mice. The upregulation of Smoc1 expression by testosterone was curtailed by the addition of an androgen receptor antagonist, flutamide. In addition, in vitro studies demonstrated that SMOC1 modestly but significantly promoted the proliferation of gubernacular cells. In the cultures of myogenic differentiation medium, both testosterone and SMOC1 enhanced the expression of myogenic regulatory factors such as paired box 7 (Pax7) and myogenic factor 5 (Myf5). After short-interfering RNA-mediated knocking down of Smoc1, the expression of Pax7 and Myf5 diminished, and testosterone alone did not recover, but additional SMOC1 did. These observations indicate that SMOC1 is pivotal in mediating androgen action to regulate gubernaculum development during inguinoscrotal testicular descent.

2.
Cell Prolif ; : e13680, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38817099

ABSTRACT

Leydig cell failure (LCF) caused by gene mutations leads to testosterone deficiency, infertility and reduced physical function. Adeno-associated virus serotype 8 (AAV8)-mediated gene therapy shows potential in treating LCF in the Lhcgr-deficient (Lhcgr-/-) mouse model. However, the gene-treated mice still cannot naturally sire offspring, indicating the modestly restored testosterone and spermatogenesis in AAV8-treated mice remain insufficient to support natural fertility. Recognizing this, we propose that enhancing gene delivery could yield superior results. Here, we screened a panel of AAV serotypes through in vivo transduction of mouse testes and identified AAVDJ as an impressively potent vector for testicular cells. Intratesticular injection of AAVDJ achieved markedly efficient transduction of Leydig cell progenitors, marking a considerable advance over conventional AAV8 vectors. AAVDJ-Lhcgr gene therapy was well tolerated and resulted in significant recovery of testosterone production, substantial improvement in sexual development, and remarkable restoration of spermatogenesis in Lhcgr-/- mice. Notably, this therapy restored fertility in Lhcgr-/- mice through natural mating, enabling the birth of second-generation. Additionally, this treatment led to remarkable improvements in adipose, muscle, and bone function in Lhcgr-/- mice. Collectively, our findings underscore AAVDJ-mediated gene therapy as a promising strategy for LCF and suggest its broader potential in addressing various reproductive disorders.

3.
Int J Mol Sci ; 23(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36555365

ABSTRACT

In the mouse, two distinct populations of Leydig cells arise during testis development. Fetal Leydig cells arise from a stem cell population and produce T required for masculinization. It is debated whether they persist in the adult testis. A second adult Leydig stem cell population gives rise to progenitor-immature-mature adult type Leydig cells that produce T in response to LH to maintain spermatogenesis. In testis of adult null male mice lacking either only LH (Lhb-/-) or LHR (Lhr-/-), mature Leydig cells are absent but fetal Leydig cells persist. Thus, it is not clear whether other ligands signal via LHRs in Lhb null mice or LH signals via other receptors in the absence of LHR in Lhr null mice. Moreover, it is not clear whether truncated LHR isoforms generated from the same Lhr gene promoter encode functionally relevant LH receptors. To determine the in vivo roles of LH-LHR signaling pathway in the Leydig cell lineage, we generated double null mutant mice lacking both LH Ligand and all forms of LHR. Phenotypic analysis indicated testis morpho-histological characteristics are identical among double null and single mutants which all showed poorly developed interstitium with a reduction in Leydig cell number and absence of late stage spermatids. Gene expression analyses confirmed that the majority of the T biosynthesis pathway enzyme-encoding mRNAs expressed in Leydig cells were all suppressed. Expression of thrombospondin-2, a fetal Leydig cell marker gene was upregulated in single and double null mutants indicating that fetal Leydig cells originate and develop independent of LH-LHR signaling pathway in vivo. Serum and intratesticular T levels were similarly suppressed in single and double mutants. Consequently, expression of AR-regulated genes in Sertoli and germ cells were similarly affected in single and double mutants without any evidence of any additive effect in the combined absence of both LH and LHR. Our studies unequivocally provide genetic evidence that in the mouse testis, fetal Leydig cells do not require LH-LHR signaling pathway and a one-to-one LH ligand-LHR signaling pathway exists in vivo to regulate adult Leydig cell lineage and spermatogenesis.


Subject(s)
Leydig Cells , Testis , Mice , Male , Animals , Leydig Cells/metabolism , Ligands , Testis/metabolism , Receptors, LH/genetics , Receptors, LH/metabolism , Signal Transduction , Testosterone/metabolism
4.
Cell Rep Med ; 3(11): 100792, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36270285

ABSTRACT

Leydig cell failure (LCF) caused by gene mutation results in testosterone deficiency and infertility. Serum testosterone levels can be recovered via testosterone replacement; however, established therapies have shown limited success in restoring fertility. Here, we use a luteinizing hormone/choriogonadotrophin receptor (Lhcgr)-deficient mouse model of LCF to investigate the feasibility of gene therapy for restoring testosterone production and fertility. We screen several adeno-associated virus (AAV) serotypes and identify AAV8 as an efficient vector to drive exogenous Lhcgr expression in progenitor Leydig cells through interstitial injection. We observe considerable testosterone recovery and Leydig cell maturation after AAV8-Lhcgr treatment in pubertal Lhcgr-/- mice. Of note, this gene therapy partially recovers sexual development, substantially restores spermatogenesis, and effectively produces fertile offspring. Furthermore, these favorable effects can be reproduced in adult Lhcgr-/- mice. Our proof-of-concept experiments in the mouse model demonstrate that AAV-mediated gene therapy may represent a promising therapeutic approach for patients with LCF.


Subject(s)
Leydig Cells , Receptors, LH , Male , Mice , Animals , Leydig Cells/metabolism , Receptors, LH/genetics , Dependovirus/genetics , Chorionic Gonadotropin/genetics , Testosterone , Fertility/genetics , Disease Models, Animal , Genetic Therapy
5.
Front Physiol ; 13: 991719, 2022.
Article in English | MEDLINE | ID: mdl-36060690

ABSTRACT

KRAS plays critical roles in regulating a range of normal cellular events as well as pathological processes in many tissues mediated through a variety of signaling pathways, including ERK1/2 and AKT signaling, in a cell-, context- and development-dependent manner. The in vivo function of KRAS and its downstream targets in gonadal steroidogenic cells for the development and homeostasis of reproductive functions remain to be determined. To understand the functions of KRAS signaling in gonadal theca and interstitial cells, we generated a Kras mutant (tKrasMT) mouse line that selectively expressed a constitutively active Kras G12D in these cells. Kras G12D expression in ovarian theca cells did not block follicle development to the preovulatory stage. However, tKrasMT females failed to ovulate and thus were infertile. The phosphorylated ERK1/2 and forkhead box O1 (FOXO1) and total FOXO1 protein levels were markedly reduced in tKrasMT theca cells. Kras G12D expression in theca cells also curtailed the phosphorylation of ERK1/2 and altered the expression of several ovulation-related genes in gonadotropin-primed granulosa cells. To uncover downstream targets of KRAS/FOXO1 signaling in theca cells, we found that the expression of bone morphogenic protein 7 (Bmp7), a theca-specific factor involved in ovulation, was significantly elevated in tKrasMT theca cells. Chromosome immunoprecipitation assays demonstrated that FOXO1 interacted with the Bmp7 promoter containing forkhead response elements and that the binding activity was attenuated in tKrasMT theca cells. Moreover, Foxo1 knockdown caused an elevation, whereas Foxo1 overexpression resulted in an inhibition of Bmp7 expression, suggesting that KRAS signaling regulates FOXO1 protein levels to control Bmp7 expression in theca cells. Thus, the anovulation phenotype observed in tKrasMT mice may be attributed to aberrant KRAS/FOXO1/BMP7 signaling in theca cells. Our work provides the first in vivo evidence that maintaining normal KRAS activity in ovarian theca cells is crucial for ovulation and female fertility.

6.
J Cell Commun Signal ; 16(1): 75-92, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34101112

ABSTRACT

Numb (Nb) and Numb-like (Nbl) are functionally redundant adaptor proteins that critically regulate cell fate and morphogenesis in a variety of organs. We selectively deleted Nb and Nbl in testicular germ cells by breeding Nb/Nbl floxed mice with a transgenic mouse line Tex101-Cre. The mutant mice developed unilateral or bilateral cystic dilation in the rete testis (RT). Dye trace indicated partial blockages in the testicular hilum. Morphological and immunohistochemical evaluations revealed that the lining epithelium of the cysts possessed similar characteristics of RT epithelium, suggesting that the cyst originated from dilation of the RT lumen. Spermatogenesis and the efferent ducts were unaffected. In comparisons of isolated germ cells from mutants to control mice, the Notch activity considerably increased and the expression of Notch target gene Hey1 significantly elevated. Further studies identified that germ cell Fgf4 expression negatively correlated the Notch activity and demonstrated that blockade of FGF receptors mediated FGF4 signaling induced enlargement of the RT lumen in vitro. The crucial role of the FGF4 signaling in modulation of RT development was verified by the selective germ cell Fgf4 ablation, which displayed a phenotype similar to that of germ cell Nb/Nbl null mutant males. These findings indicate that aberrant over-activation of the Notch signaling in germ cells due to Nb/Nbl abrogation impairs the RT development, which is through the suppressing germ cell Fgf4 expression. The present study uncovers the presence of a lumicrine signal pathway in which secreted/diffusible protein FGF4 produced by germ cells is essential for normal RT development.

7.
Female Pelvic Med Reconstr Surg ; 27(11): e681-e686, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34705800

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the relationship between vaginal mesh exposure and vaginal bacterial community composition. METHODS: Vaginal swab samples were collected from 13 women undergoing excision of vaginal mesh with vaginal mesh exposure. Samples were collected at the midvagina, site of exposure, and underneath the vaginal epithelium at the exposure. Control samples were collected vaginally during 15 new patient examinations. For all samples, we extracted genomic DNA and polymerase chain reaction amplified and sequenced the 16S rRNA gene V4 region. We tested for differences in the microbiota among control and exposure samples with PERMANOVA tests of beta diversity measures (Morisita-Horn dissimilarity) and Wilcoxon rank sum tests of Lactobacillus distribution. RESULTS: Vaginal bacterial communities in both control and case groups were divided into 2 primary community types, one characterized by Lactobacillus dominance (>50% of community) and the other by low Lactobacillus and a high diversity of vaginal anaerobes. In 10 of 13 case women, bacterial communities were highly similar between the 3 vaginal sites (adonis R2 = 0.86, P = 0.0099). In the 3 women with community divergence, all 3 were characterized by decreased Lactobacillus abundance at the exposure site. Overall, Lactobacillus abundance was lower at the site of mesh exposure and under the epithelium than in the experimental control (W = 137, P = 0.072, r = 0.41; W = 146, P = 0.025, r = 0.50). Common putative pathogenic mesh colonizing bacteria were common (in 51 of 54 samples), but generally not abundant (median relative abundance = 0.014%). CONCLUSIONS: In vaginal mesh exposure cases, a woman is more likely to have a diverse, non-Lactobacillus-dominant community.


Subject(s)
Microbiota , Surgical Mesh , Bacteria/genetics , Female , Humans , RNA, Ribosomal, 16S/genetics , Surgical Mesh/adverse effects , Vagina
8.
Article in English | MEDLINE | ID: mdl-32998869

ABSTRACT

INTRODUCTION: Adenosine, 5'-Se-methyl-5'-seleno-,2',3'-diacetate (NPC43) is a recently identified small, non-peptidyl molecule which restores normal insulin signaling in a mouse model of type 2 diabetes (Lan et al). The present study investigated the ability of NPC43 as an oral and injectable insulin-replacing agent to activate insulin receptor (INSR) and counter hyperglycemia in streptozotocin (STZ)-induced type 1 diabetic (T1D) mice. RESEARCH DESIGN AND METHODS: In this study, STZ was intraperitoneally injected into wild-type mice to induce hyperglycemia and hypoinsulinemia, the main features of T1D. These STZ-induced T1D mice were given NPC43 orally or intraperitoneally and blood glucose levels were measured using a glucometer. Protein levels of phosphorylated and total Insrß, protein kinase B (Akt) and AS160 (critical for glucose uptake) in the skeletal muscle and liver of STZ-induced T1D mice following oral NPC43 treatment were determined by western blot analysis. In addition, hepatic expression of activated Insr in STZ-induced T1D mice after intraperitoneal NPC43 treatment was measured by ELISA. Student's t-test was used for statistical analysis. RESULTS: Oral administration of NPC43 at a dose of 5.4 or 10.8 mg/kg body weight (mpk) effectively lowered blood glucose levels in STZ-induced T1D mice at ≥1 hour post-treatment and the glucose-lowering activity of oral NPC43 persisted for 5 hours. Blood glucose levels were also reduced in STZ-induced T1D mice following intraperitoneal NPC43 (5.4 mpk) treatment. Protein levels of phosphorylated Insrß, Akt and AS160 were significantly increased in the skeletal muscle and liver of STZ-induced T1D mice after oral NPC43 (5.4 mpk) treatment. In addition, activation of hepatic Insr was observed in STZ-induced T1D mice following intraperitoneal NPC43 (5.4 mpk) treatment. CONCLUSIONS: We conclude that NPC43 is a de facto fast-acting oral and injectable insulin mimetic which activates Insr and mitigates hyperglycemia in a mouse model of T1D.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Hyperglycemia , Administration, Oral , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Hyperglycemia/drug therapy , Mice , Receptor, Insulin/therapeutic use , Streptozocin/therapeutic use
9.
Cell Mol Life Sci ; 77(8): 1623-1643, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31378829

ABSTRACT

The pathophysiology of type 2 diabetes mellitus (T2D) is characterized by reduced or absent insulin receptor (INSR) responsiveness to its ligand, elevated hepatic glucose output and impaired glucose uptake in peripheral tissues, particularly skeletal muscle. Treatments to reduce hyperglycemia and reestablish normal insulin signaling are much sought after. Any agent which could be orally administered to restore INSR function, in an insulin-independent manner, would have major implications for the management of this global disease. We have discovered a non-peptidyl small molecule, adenosine, 5'-Se-methyl-5'-seleno-, 2',3'-diacetate [referred to as non-peptidyl compound #43 (NPC43)], which restores INSR signaling in the complete absence of insulin. Initial screening of numerous compounds in human HepG2 liver cells revealed that NPC43 significantly inhibited glucose production. The compound was potently anti-hyperglycemic and anti-hyperinsulinemic in vivo, in insulin-resistant T2D Leprdb/db mice, following either acute or chronic treatment by oral gavage and intraperitoneal injection, respectively. The compound acted at the level of INSR and activated it in both liver and skeletal muscle of Leprdb/db mice. In cell culture, the compound activated INSR in both liver and skeletal muscle cells; furthermore, it cooperated with insulin to depress glucose-6-phosphatase catalytic subunit (G6pc) expression and stimulate glucose uptake, respectively. Our results indicated that the compound directly interacted with INSRα, triggering appropriate phosphorylation and activation of the receptor and its downstream targets. Unlike insulin, NPC43 did not activate insulin-like growth factor 1 receptor in either liver or skeletal muscle. We believe this compound represents a potential oral and/or injectable insulin replacement therapy for diabetes and diseases associated with insulin resistance.


Subject(s)
Adenosine/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Receptor, Insulin/metabolism , Adenosine/analogs & derivatives , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Hep G2 Cells , Humans , Hyperglycemia/complications , Hyperglycemia/metabolism , Hypoglycemic Agents/chemistry , Insulin/metabolism , Insulin Resistance , Male , Methylation , Mice , Mice, Inbred C57BL , Organoselenium Compounds/chemistry , Organoselenium Compounds/therapeutic use
10.
Article in English | MEDLINE | ID: mdl-31024861

ABSTRACT

Interstitial cystitis/bladder pain syndrome (ICBPS) may be related to an altered genitourinary microbiome. Our aim was to compare the vaginal and urinary microbiomes between premenopausal women with ICBPS and unaffected controls. This cross-sectional study screened premenopausal women with an O'Leary-Sant questionnaire (ICBPS if score ≥6 on either index; controls <6 on both). Women completed questionnaires on health characteristics, pelvic floor symptoms (OABq, PFDI-20), body image (mBIS), and sexual function (PISQ-IR). Bacterial genomic DNA was isolated from vaginal and clean-catch urinary specimens; the bacterial 16 rRNA gene was sequenced and analyzed using the QIIME pipeline. We performed UniFrac analysis (ß-diversity) and generated Chao1 estimator (richness) and Simpson index (richness and evenness) values. We analyzed 23 ICBPS and 18 non-ICBPS patients. ICBPS patients had increased vaginal deliveries, BMI, and public insurance as well as worsened OAB-q, PFDI-20, mBIS, and PISQ-IR domain scores. Lactobacilli was the most abundant genus in both cohorts, and anaerobic or fastidious predominance was similar between groups (p = 0.99). For both the urine and vagina specimens, Chao1 and Simpson indices were similar between ICBPS and unaffected women. Weighted and unweighted UniFrac analyses showed no differences between groups. A significant correlation existed between the urinary and vaginal Simpson indices in ICBPS women, but not in unaffected women. Premenopausal women with ICBPS, despite worsened socioeconomic indicators and pelvic floor function, were not found to have significantly different urinary and vaginal microbiomes compared to women without ICBPS.


Subject(s)
Cystitis, Interstitial/microbiology , Microbiota , Premenopause , Urine/microbiology , Vagina/microbiology , Adult , Cross-Sectional Studies , Female , Humans , Metagenomics , Surveys and Questionnaires , Young Adult
11.
J Assist Reprod Genet ; 36(1): 57-64, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30276597

ABSTRACT

PURPOSE: DNA repair genes Minichromosome maintenance complex component (MCM) 8 and 9 have been linked with gonadal development, primary ovarian insufficiency (POI), and age at menopause. Our objective was to characterize MCM 8 and 9 gene expression in the menstrual cycle, and to compare MCM 8/9 expression in POI vs normo-ovulatory women. METHODS: Normo-ovulatory controls (n = 11) and unexplained POI subjects (n = 6) were recruited. Controls provided three blood samples within one menstrual cycle: (1) early follicular phase, (2) ovulation, and (3) mid-luteal phase. Six of 11 controls only provided a follicular phase sample. Amenorrheic POI subjects provided a single, random blood sample. MCM8/9 expression in peripheral blood was assessed with qRTPCR. Analyses were performed using delta-Ct measurements; group differences were transformed to a fold change (FC) and confidence interval (CI). Differences across menstrual cycle phases were compared using random effects ANOVA. Two-sample t tests were used to compare two groups. RESULTS: MCM8 expression was significantly lower at ovulation and during the luteal phase, when compared to the follicular phase [FC = 0.69 in the luteal vs follicular phase (p = 0.012, CI = 0.53, 0.90); and 0.65 in the ovulatory vs follicular phase (p = 0.0057, CI = 0.50, 0.85)]. No change in MCM9 expression was noted throughout the menstrual cycle. No significant difference was seen in MCM8/9 expression when comparing POI to control subjects. CONCLUSIONS: Our study showed greater MCM8 expression in the follicular phase of the menstrual cycle, compared to the ovulatory and luteal phases. No cyclic changes were seen with MCM9. Significant differences in MCM8/9 expression were not detected between POI and controls; however, we recommend further investigation with a larger sample population.


Subject(s)
Gene Expression Regulation , Menstrual Cycle , Minichromosome Maintenance Proteins/genetics , Mutation , Primary Ovarian Insufficiency/genetics , Adolescent , Adult , Case-Control Studies , Female , Follicular Phase , Humans , Luteal Phase , Ovulation , Primary Ovarian Insufficiency/pathology , Young Adult
13.
J Cell Mol Med ; 22(10): 4863-4874, 2018 10.
Article in English | MEDLINE | ID: mdl-30055035

ABSTRACT

Gametogenetin (GGN) binding protein 2 (GGNBP2) is a zinc finger protein expressed abundantly in spermatocytes and spermatids. We previously discovered that Ggnbp2 resection caused metamorphotic defects during spermatid differentiation and resulted in an absence of mature spermatozoa in mice. However, whether GGNBP2 affects meiotic progression of spermatocytes remains to be established. In this study, flow cytometric analyses showed a decrease in haploid, while an increase in tetraploid spermatogenic cells in both 30- and 60-day-old Ggnbp2 knockout testes. In spread spermatocyte nuclei, Ggnbp2 loss increased DNA double-strand breaks (DSB), compromised DSB repair and reduced crossovers. Further investigations demonstrated that GGNBP2 co-immunoprecipitated with a testis-enriched protein GGN1. Immunofluorescent staining revealed that both GGNBP2 and GGN1 had the same subcellular localizations in spermatocyte, spermatid and spermatozoa. Ggnbp2 loss suppressed Ggn expression and nuclear accumulation. Furthermore, deletion of either Ggnbp2 or Ggn in GC-2spd cells inhibited their differentiation into haploid cells in vitro. Overexpression of Ggnbp2 in Ggnbp2 null but not in Ggn null GC-2spd cells partially rescued the defect coinciding with a restoration of Ggn expression. Together, these data suggest that GGNBP2, likely mediated by its interaction with GGN1, plays a role in DSB repair during meiotic progression of spermatocytes.


Subject(s)
Carrier Proteins/genetics , Meiosis/genetics , Spermatogenesis/genetics , Testicular Hormones/genetics , Adaptor Proteins, Signal Transducing , Animals , DNA Breaks, Double-Stranded , DNA Repair/genetics , Gene Expression Regulation, Developmental/genetics , Male , Mice , Spermatocytes/growth & development , Spermatocytes/metabolism , Spermatozoa/growth & development , Spermatozoa/metabolism
14.
Neuroscience ; 385: 1-10, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29890291

ABSTRACT

Luteinizing hormone (LH), produced in the anterior pituitary, has been detected in cadaver eyes and LH receptors (LHRs) have been identified in the retina, with the highest density in cone photoreceptors. Our aim was to confirm the presence of LH in the living, human eye as well as to examine the potential impact of a reduction in LHR signaling on visual processing. Vitreous samples were collected from 40 patients (23 diabetics, 17 non-diabetics) who were undergoing vitrectomies for various indications. LH concentration was quantified in each sample via an electro-chemiluminescence immunoassay and Meso Scale Discovery platform and normalized to total protein. In addition, full-field electroretinography (ERG) was performed on 11 adult LHR knockout heterozygous mice (B6;129X1-Lhcgrtm1Zmlei/J) and 11 wild types using the Celeris-Diagnosys system. The median LH values (pg/mg total protein) for non-diabetics, diabetics without proliferative diabetic retinopathy (PDR) and diabetics with PDR were 40.7, 41.9 and 167.8 respectively. LH levels were significantly higher in diabetics with PDR. In our ERG investigation, heterozygous LHRKOs were found to have significantly reduced amplitudes of a-wave and b-waves at high stimulus intensities with no significant change in a-wave or b-wave amplitudes at lower intensities; this is consistent with a selective impairment of cone-mediated responses. Our findings confirm LH is present in the adult human eye. Our findings also suggest that a reduction in LH receptor signaling negatively impacts visual processing of the cone photoreceptors. Overall, our study results support the theory that LH likely plays a physiologic role in the eye.


Subject(s)
Luteinizing Hormone/metabolism , Receptors, LH/metabolism , Retina/metabolism , Vitreous Body/metabolism , Animals , Diabetic Retinopathy/metabolism , Electroretinography , Humans , Mice , Mice, Knockout , Receptors, LH/genetics
16.
Reprod Toxicol ; 77: 137-142, 2018 04.
Article in English | MEDLINE | ID: mdl-29526646

ABSTRACT

Numerous studies have been conducted to understand the molecular mechanisms controlling mammalian secondary palate development such as growth, reorientation and fusion. However, little is known about the signaling factors regulating palate initiation. Mouse fibroblast growth factor (FGF) receptor 2 gene (Fgfr2) is expressed on E11.5 in the palate outgrowth within the maxillary process, in a region that is responsible for palate cell specification and shelf initiation. Fgfr2 continues to express in palate on E12.5 and E13.5 in both epithelial and mesenchymal cells, and inactivation of Fgfr2 expression in mesenchymal cells using floxed Fgfr2 allele and Osr2-Cre leads to cleft palate at various stages including reorientation, horizontal growth and fusion. Notably, some mutant embryos displayed no sign of palate shelf formation suggesting that FGF receptor 2 mediated FGF signaling may play an important role in palate initiation.


Subject(s)
Palate/growth & development , Receptor, Fibroblast Growth Factor, Type 2/genetics , Animals , Cleft Palate/genetics , Female , Loss of Function Mutation , Male , Mesenchymal Stem Cells/metabolism , Mice , Palate/cytology , Palate/metabolism
17.
Nat Med ; 24(2): 239-246, 2018 02.
Article in English | MEDLINE | ID: mdl-29309056

ABSTRACT

There is a substantial unmet clinical need for new strategies to protect the hematopoietic stem cell (HSC) pool and regenerate hematopoiesis after radiation injury from either cancer therapy or accidental exposure. Increasing evidence suggests that sex hormones, beyond their role in promoting sexual dimorphism, regulate HSC self-renewal, differentiation, and proliferation. We and others have previously reported that sex-steroid ablation promotes bone marrow (BM) lymphopoiesis and HSC recovery in aged and immunodepleted mice. Here we found that a luteinizing hormone (LH)-releasing hormone antagonist (LHRH-Ant), currently in wide clinical use for sex-steroid inhibition, promoted hematopoietic recovery and mouse survival when administered 24 h after an otherwise-lethal dose of total-body irradiation (L-TBI). Unexpectedly, this protective effect was independent of sex steroids and instead relied on suppression of LH levels. Human and mouse long-term self-renewing HSCs (LT-HSCs) expressed high levels of the LH/choriogonadotropin receptor (LHCGR) and expanded ex vivo when stimulated with LH. In contrast, the suppression of LH after L-TBI inhibited entry of HSCs into the cell cycle, thus promoting HSC quiescence and protecting the cells from exhaustion. These findings reveal a role of LH in regulating HSC function and offer a new therapeutic approach for hematopoietic regeneration after hematopoietic injury.


Subject(s)
Cell Self Renewal/genetics , Hematopoietic Stem Cells/metabolism , Luteinizing Hormone/metabolism , Radiation Injuries, Experimental/drug therapy , Animals , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Proliferation/radiation effects , Cell Self Renewal/drug effects , Cell Self Renewal/radiation effects , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Hematopoiesis/drug effects , Hematopoiesis/genetics , Hematopoiesis/radiation effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Humans , Luteinizing Hormone/pharmacology , Mice , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Receptors, LH/genetics , Regeneration/drug effects , Regeneration/genetics , Regeneration/radiation effects , Signal Transduction/drug effects , Signal Transduction/radiation effects , Whole-Body Irradiation
18.
Am J Pathol ; 187(11): 2508-2519, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28823874

ABSTRACT

Gametogenetin binding protein 2 (GGNBP2) is an evolutionarily conserved zinc finger protein. Although Ggnbp2-null embryos in the B6 background died because of a defective placenta, 6.8% of Ggnbp2-null mice in the B6/129 mixed background were viable and continued to adulthood. Adult Ggnbp2-null males were sterile, with smaller testes and an azoospermic phenotype, whereas mutant females were fertile. Histopathological analysis of 2-month-old Ggnbp2-null testes revealed absence of mature spermatozoa in the seminiferous tubules and epididymides and reduction of the number of spermatids. Ultrastructural analysis indicated dramatic morphological defects of developing spermatids in the Ggnbp2-null testes, including irregularly shaped acrosomes, acrosome detachment, cytoplasmic remnant, ectopic manchette, and ill-formed head shape in both elongating and elongated spermatids. However, the numbers of spermatogonia, spermatocytes, Leydig cells, and Sertoli cells in Ggnbp2-null testes did not significantly differ from the wild-type siblings. Gonadotropins, testosterone, and the blood-testis barrier were essentially unaffected. Western blot analyses showed increases in α-E-catenin, ß-catenin, and N-cadherin, decreases in E-cadherin, afadin, and nectin-3, and no changes in vinculin, nectin-2, focal adhesion kinase, and integrin-ß1 protein levels in Ggnbp2-null testes compared to wild-type siblings. Together, this study demonstrates that GGNBP2 is critically required for maintenance of the adhesion integrity of the adlumenal germ epithelium and is indispensable for normal spermatid transformation into mature spermatozoa in mice.


Subject(s)
Carrier Proteins/genetics , Infertility, Male/genetics , Mutation/genetics , Spermatogenesis/genetics , Adaptor Proteins, Signal Transducing , Animals , Blood-Testis Barrier/metabolism , Cadherins/metabolism , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Spermatids/metabolism , Spermatids/pathology , beta Catenin/genetics , beta Catenin/metabolism
19.
J Cent Nerv Syst Dis ; 9: 1179573517694529, 2017.
Article in English | MEDLINE | ID: mdl-28469524

ABSTRACT

BACKGROUND: Research into the pathophysiology of bipolar disorder (BD) is limited by the inability to examine brain cellular processes in subjects with the illness. METHODS: Endoscopic biopsy was performed in subjects with bipolar I disorder to establish olfactory neural progenitor (ONP) cell lines. Olfactory function was assessed prebiopsy and postbiopsy using the University of Pennsylvania Smell Identification Test (UPSIT). Cells were characterized to determine their lineage. RESULTS: There were no significant complications associated with the biopsy procedure, including olfaction. Outpatient olfactory neuroepithelial biopsy yielded ONP cells in three out of 13 biopsy attempts (23.1%). ONPs were positive for neuron-specific proteins (ß-tubulin III, nestin, hexaribonucleotide binding protein-3, and peripherin) and glia-specific proteins (glial fibrillary acidic protein and myelin basic protein). CONCLUSIONS: ONP cells can be obtained safely from awake outpatients and are potentially useful for pathophysiological studies of bipolar illness and perhaps other neuropsychiatric conditions. Such cells allow for the investigation of potential pathological cellular processes without the confounding factors of genetic manipulation, which is required for induced pluripotent cells.

20.
Stem Cell Reports ; 7(2): 279-91, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27509137

ABSTRACT

Spermatogenesis originates from self-renewal of spermatogonial stem cells (SSCs). Previous studies have reported conflicting roles of gonadotropic pituitary hormones in SSC self-renewal. Here, we explored the role of hormonal regulation of SSCs using Fshb and Lhcgr knockout (KO) mice. Although follicle-stimulating hormone (FSH) is thought to promote self-renewal by glial cell line-derived neurotrophic factor (GDNF), no abnormalities were found in SSCs and their microenvironment. In contrast, SSCs were enriched in Lhcgr-deficient mice. Moreover, wild-type SSCs transplanted into Lhcgr-deficient mice showed enhanced self-renewal. Microarray analysis revealed that Lhcgr-deficient testes have enhanced WNT5A expression in Sertoli cells, which showed an immature phenotype. Since WNT5A was upregulated by anti-androgen treatment, testosterone produced by luteinizing hormone (LH) is required for Sertoli cell maturation. WNT5A promoted SSC activity both in vitro and in vivo. Therefore, FSH is not responsible for GDNF regulation, while LH negatively regulates SSC self-renewal by suppressing WNT5A via testosterone.


Subject(s)
Cell Self Renewal , Luteinizing Hormone/metabolism , Sertoli Cells/metabolism , Spermatogonia/cytology , Stem Cells/cytology , Testosterone/metabolism , Wnt-5a Protein/metabolism , Animals , Cellular Microenvironment , Follicle Stimulating Hormone/metabolism , Male , Mice, Knockout , Phenotype , Receptors, LH/metabolism , Sertoli Cells/cytology , Stem Cell Transplantation , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL