Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.113
Filter
1.
iScience ; 27(8): 110458, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39108717

ABSTRACT

Acute myeloid leukemia (AML) is highly heterogeneous, necessitating personalized prognosis prediction and treatment strategies. Many of the current patient classifications are based on molecular features. Here, we classified the primary AML patients by predicted death risk curves and investigated the survival-directly-related molecular features. We developed a deep learning model to predict 5-year continuous-time survival probabilities for each patient and converted them to death risk curves. This method captured disease progression dynamics with high temporal resolution and identified seven patient groups with distinct risk peak timing. Based on clusters of death risk curves, we identified two robust AML prognostic biomarkers and discovered a subgroup within the European LeukemiaNet (ELN) 2017 Favorable category with an extremely poor prognosis. Additionally, we developed a web tool, De novo AML Prognostic Prediction (DAPP), for individualized prognosis prediction and expression perturbation simulation. This study utilized deep learning-based continuous-time risk modeling coupled with clustering-predicted risk distributions, facilitating dissecting time-specific molecular features of disease progression.

2.
Sci Adv ; 10(32): eado1739, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121223

ABSTRACT

During lagging strand chromatin replication, multiple Okazaki fragments (OFs) require processing and nucleosome assembly, but the mechanisms linking these processes remain unclear. Here, using transmission electron microscopy and rapid degradation of DNA ligase Cdc9, we observed flap structures accumulated on lagging strands, controlled by both Pol δ's strand displacement activity and Fen1's nuclease digestion. The distance between neighboring flap structures exhibits a regular pattern, indicative of matured OF length. While fen1Δ or enhanced strand displacement activities by polymerase δ (Pol δ; pol3exo-) minimally affect inter-flap distance, mutants affecting replication-coupled nucleosome assembly, such as cac1Δ and mcm2-3A, do significantly alter it. Deletion of Pol32, a subunit of DNA Pol δ, significantly increases this distance. Mechanistically, Pol32 binds to histone H3-H4 and is critical for nucleosome assembly on the lagging strand. Together, we propose that Pol32 establishes a connection between nucleosome assembly and the processing of OFs on lagging strands.


Subject(s)
DNA Polymerase III , DNA , Histones , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Nucleosomes/metabolism , Histones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , DNA Polymerase III/metabolism , DNA Polymerase III/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , DNA/metabolism , DNA Replication , Protein Binding , DNA-Directed DNA Polymerase
3.
J Hazard Mater ; 478: 135505, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39146587

ABSTRACT

Struvite recovery shows significant potential for simultaneously recovering nitrogen (N) and phosphorus (P) from swine wastewater but is challenged by the occurrence and transformation of antibiotic residuals. Electrochemically mediated struvite precipitation with sacrificial magnesium anode (EMSP-Mg) is promising due to its automation and chemical-free merits. However, the fate of antibiotics remains underexplored. We investigated the behavior of sulfadiazine (SD), an antibiotic frequently detected but less studied than others within the EMSP-Mg system. Significantly less SD (≤ 5%) was co-precipitated with recovered struvite in EMSP-Mg than conventional chemical struvite precipitation (CSP) processes (15.0 to 50.0%). The reduced SD accumulation in struvite recovered via EMSP was associated with increased pH and electric potential differences, which likely enhanced the electrostatic repulsion between SD and struvite. In contrast, the typical strategies used in enhancing P removal in the EMSP-Mg system, including increasing the Mg/P ratio or the Mg-release rates, have shown negligible effects on SD adsorption. Furthermore, typical coexisting ions (Ca2+, Cl-, and HCO3-) inhibited SD adsorption onto recovered products. These results provide new insights into the interactions between antibiotics and struvite within the EMSP-Mg system, enhancing our understanding of antibiotic migration pathways and aiding the development of novel EMSP processes for cleaner struvite recovery.

4.
Am J Gastroenterol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38976522

ABSTRACT

BACKGROUND AIMS: Clinically significant post-endoscopic retrograde cholangiopancreatography (ERCP) bleeding (CSPEB) is common. Contemporary estimates of risk are lacking. We aimed to identify risk factors for and outcomes following CSPEB. METHODS: We analyzed multi-center prospective ERCP data between 2018-2023 with 30-day follow-up. The primary outcome was CSPEB, defined as hematemesis, melena, or hematochezia resulting in: hemoglobin drop ≥20 g/L or transfusion and/or endoscopy to evaluate suspected bleeding, and/or unplanned healthcare visitation and/or prolongation of existing admission. Firth logistic regression was employed. P-values <0.05 were significant, with odds ratios (ORs) and 95% confidence intervals reported. RESULTS: CSPEB occurred following 129 (1.5%) of 8,517 ERCPs (mean onset 3.2 days), with 110 of 4,849 events (2.3%) occurring following higher-risk interventions (sphincterotomy, sphincteroplasty, pre-cut sphincterotomy, and/or needle-knife access). CSPEB patients required endoscopy and transfusion in 86.0% and 53.5% of cases, respectively, with three cases (2.3%) being fatal. P2Y12 inhibitors were held for a median of 4 days (IQR 4) prior to higher-risk ERCP. Following higher-risk interventions, P2Y12 inhibitors (OR 3.33, 1.26-7.74), warfarin (OR 8.54, 3.32-19.81), dabigatran (OR 13.40, 2.06-59.96), rivaroxaban (OR 7.42, 3.43-15.24) and apixaban (OR 4.16, 1.99-8.20) were associated with CSPEB. Significant intraprocedural bleeding post sphincterotomy (OR 2.32, 1.06-4.60), but not post sphincteroplasty, was also associated. Concomitant cardiorespiratory events occurred more frequently within 30 days following CSPEB (OR 12.71, 4.75-32.54). CONCLUSIONS: Risks of antiplatelet-related CSPEB may be underestimated by endoscopists based on observations of suboptimal holding before higher-risk ERCP. Appropriate periprocedural antithrombotic management is essential and could represent novel quality initiative targets.

5.
Complement Ther Med ; : 103068, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004289

ABSTRACT

BACKGROUND: The utilization of Tuina as a therapeutic intervention for the management of chronic pain has experienced a gradually increase in its popularity, and the purpose of this bibliometric analysis is to offer a comprehensive understanding of the current state and frontier trends, as well as to provide recommendations for future research directions. METHODS: Publications on Tuina for chronic pain published between 2004 and 2023 were retrieved from the Web of Science Core Collection (WoSCC). Microsoft Excel, CiteSpace, VOSViewer, and the R package "bibliometrix" were used to quantitatively analyse the annual publication volume, countries/regions, journals, institutions, cited references, authors, and keywords. RESULTS: A total of 287 publications were retrieved. The number of annual publications on the use of Tuina for treating chronic pain has gradually increased. Most publications were published in China and the United States. Notably, the most productive institution and author were identified as Shanghai University of Traditional Chinese Medicine and Min Fang, respectively. Medicine ranked first as the most influential affiliate and most productive journal. These publications came from 1,650 authors, among whom Edzard Ernst had the most co-citations. Keyword analysis revealed that the new research frontier was low back pain. CONCLUSION: The utilization of Tuina for the treatment of chronic pain has been gaining increasing recognition. Acupuncture, randomised controlled trials, systematic reviews, etc. were the main research subjects. Furthermore, low back pain is the new research frontier. This study provides an in-depth perspective on Tuina for chronic pain, which provides valuable reference material for clinicians with insights of therapeutic strategy, educators with valuable topics, and researchers with new research directions.

6.
Food Microbiol ; 123: 104588, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038893

ABSTRACT

Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.


Subject(s)
Aflatoxin B1 , Antifungal Agents , Aspergillus flavus , Reactive Oxygen Species , Zea mays , Aspergillus flavus/drug effects , Aspergillus flavus/genetics , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Zea mays/microbiology , Antifungal Agents/pharmacology , Reactive Oxygen Species/metabolism , Arachis/microbiology , Cell Wall/drug effects , Cell Wall/metabolism
7.
BMC Musculoskelet Disord ; 25(1): 597, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075431

ABSTRACT

OBJECTIVE: To investigate the biomechanical effects of percutaneous vertebroplasty combined with cement pedicle plasty (PVCPP) on the unstable osteoporotic vertebral fractures (OVFs) through finite element (FE) analysis. The study compares the biomechanical stability of finite element models between percutaneous vertebroplasty (PVP) and percutaneous vertebroplasty combined with cement pedicle plasty. METHODS: Two patients with unstable OVFs underwent computed tomography (CT) examination at the thoracolumbar vertebral body levels, respectively. The CT images were reconstructed into three-dimensional finite element models to simulate stress conditions across six dimensions and to evaluate the vertebral von Mises stress before and after bone cement reinforcement. RESULTS: The study found that stress distribution differed between groups mainly at the pedicle base. In the surgical vertebral bodies, the maximum stress in the PVP group decreased during flexion and left bending, while it increased in other states. In the PVCPP group, all maximum stresses decreased. In the inferior vertebral bodies, the maximum stress in the PVP group generally increased, while it decreased in the PVCPP group. In the superior vertebral bodies, postoperatively, the maximum stress in the PVP group generally increased, while it almost remained unchanged in the PVCPP group. PVP group had higher cement stress and displacement. CONCLUSION: PVCPP is an effective treatment method for patients with unstable OVFs. It can quickly relieve pain and enhance the stability of the three columns, thereby reducing the risk of some complications.


Subject(s)
Bone Cements , Finite Element Analysis , Lumbar Vertebrae , Osteoporotic Fractures , Spinal Fractures , Vertebroplasty , Humans , Vertebroplasty/methods , Biomechanical Phenomena/physiology , Spinal Fractures/surgery , Spinal Fractures/diagnostic imaging , Spinal Fractures/physiopathology , Female , Lumbar Vertebrae/surgery , Lumbar Vertebrae/diagnostic imaging , Aged , Osteoporotic Fractures/surgery , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/physiopathology , Thoracic Vertebrae/surgery , Thoracic Vertebrae/diagnostic imaging , Tomography, X-Ray Computed , Male , Stress, Mechanical , Aged, 80 and over
8.
Water Res ; 262: 122117, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39053207

ABSTRACT

Phosphonates are widely used scale inhibitors, but the residual phosphonates in drainage are challenging to remove because of their chelating capacity and resistance to biodegradation. Here, we reported a highly efficient and robust Fe-electrocoagulation (Fe-EC) system for phosphonate removal. Surprisingly, we found for the first time that phosphonates like NTMP were more efficiently removed under anoxic conditions (80% of total soluble phosphorus (TSP) in 4 min) than oxic conditions (0% of TSP within 6 min) in NaCl solution. A similar phenomenon was observed when other phosphonates, such as EDTMP and DTPMP, were removed, highlighting the importance of iron complexation and floc formation toward phosphonate removal with Fe-EC. We also showed that the removal efficiency of NTMP by electrochemically in-situ formed flocs (97%) was much higher than post-adsorption systems (ex-situ, 40%), revealing that the growth of flocs consumed the active site for NTMP adsorption. Beyond the removal of TSP, 10 % of NTMP-P was also degraded after the electrolysis phase, evidenced by the evolution of phosphate-P. However, this did not happen in anoxic or chemical coagulation processes, which confirms the formation of reactive oxygen species via Fe(II) oxidation in the oxic Fe-EC system. The primary removal mechanism of phosphonates is due to their complexation with iron (hydr)oxide generated in the Fe-EC system by forming a Fe-O-P bond. Encouragingly, the Fe-EC system exhibits comparable or even better performance in treating phosphonate-laden wastewater (i.e., cooling water). Our preliminary cost calculation suggests the proposed system (€ 0.009/m3) has a much lower OPEX under oxic conditions than existing approaches. This study sheds light on the removal mechanism of phosphonate and the treatment of phosphonate-laden wastewater by playing with the iron complexion and flocs formation in classical Fe-EC systems.

9.
J Mater Chem B ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058226

ABSTRACT

Medical adhesives have been used for wound closure with many advantages over sutures, but the wet environment in the human body poses a big challenge for its application. The currently used dry double-sided tape (DST) can remove the water barrier by water absorption, but its over-swelling makes it difficult to achieve long-term adhesion. In this study, a dry double-sided tape post-treated with tannic acid (DST-TA) was developed. A double network adhesive composed of polyacrylic acid and gelatin was first prepared by free radical photocrosslinking, and was post-treated in acidic (pH = 2) tannic acid solution. Tannic acid was immobilized in the DST through the catecholyl group, which could form hydrogen bonds with the DST, or react with the amino group on the gelatin by oxidizing to quinone. In vivo and in vitro studies demonstrated that DST-TA had significantly higher swelling resistance and tensile strength than DST. The introduced catecholyl group could reduce over-swelling of the DST, and improve short-term and long-term adhesion in a wet environment. We also demonstrated that the DST-TA had good hemocompatibility, biodegradability, and no cytotoxicity, offering a potential option for long-term medical adhesive in a wet environment.

10.
Sci Total Environ ; 946: 174463, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964385

ABSTRACT

The increasingly urgent issue of climate change is driving the development of carbon dioxide (CO2) capture and separation technologies in flue gas after combustion. The monolithic adsorbent stands out in practical adsorption applications for its simplified powder compaction process while maintaining the inherent balance between energy consumption for regeneration and selectivity for adsorption. However, optimizing the adsorption capacity and selectivity of CO2 separation materials remains a significant challenge. Herein, we synthesized monolithic polymer networks (N-CMPs) with triphenylamine adsorption sites, acid-base environment tolerance, and precise narrow microchannel pore systems for the selective sieving of CO2 and particulate matter (PM) in flue gas. The inherent continuous covalent bonding of N-CMPs, along with their highly delocalized π-π conjugated porous framework, ensures the stability of the monolithic polymer network's adsorption and separation capabilities under wet and acid-base conditions. Specifically, under the conditions of 1 bar at 273 K, the CO2 adsorption capacity of N-CMP-1 is 3.35 mmol/g. Attributed to the highly polar environment generated by triphenylamine and the inherent high micropore/mesopore ratio, N-CMPs exhibit an excellent ideal adsorbed solution theory (IAST) selectivity for CO2/N2 under simulated flue gas conditions (CO2/N2 = 15:85). Dynamic breakthrough experiments further visualize the high separation efficiency of N-CMPs in practical adsorption applications. Moreover, under acid-base conditions, N-CMPs achieve a capture efficiency exceeding 99.76 % for PM0.3, enabling the selective separation of CO2 and PM in flue gas. In fact, the combined capture of hazardous PM and CO2 from the exhaust gases produced by the combustion of fossil fuels will play a pivotal role in mitigating climate change and environmental issues until low-carbon and alternative energy technologies are widely adopted.

11.
J Hazard Mater ; 476: 135132, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39002483

ABSTRACT

The widespread presence of microplastics (MPs) in aquatic environments has become a significant concern, with freshwater sediments acting as terminal sinks, rapidly picking up these emerging anthropogenic particles. However, the accumulation, transport, degradation and biochemical impacts of MPs in freshwater sediments remain unresolved issues compared to other environmental compartments. Therefore, this paper systematically revealed the spatial distribution and characterization information of MPs in freshwater (rivers, lakes, and estuaries) sediments, in which small-size (<1 mm), fibers, transparent, polyethylene (PE), and polypropylene (PP) predominate, and the average abundance of MPs in river sediments displayed significant heterogeneity compared to other matrices. Next, the transport kinetics and drivers of MPs in sediments are summarized, MPs transport is controlled by the particle diversity and surrounding environmental variability, leading to different migration behaviors and transport efficiencies. Also emphasized the spatio-temporal evolution of MPs degradation processes and biodegradation mechanisms in sediments, different microorganisms can depolymerize high molecular weight polymers into low molecular weight biodegradation by-products via secreting hydrolytic enzymes or redox enzymes. Finally, discussed the ecological impacts of MPs on microbial-nutrient coupling in sediments, MPs can interfere with the ecological balance of microbially mediated nutrient cycling by altering community networks and structures, enzyme activities, and nutrient-related functional gene expressions. This work aims to elucidate the plasticity characteristics, fate processes, and potential ecological impact mechanisms of MPs in freshwater sediments, facilitating a better understanding of environmental risks of MPs in freshwater sediments.


Subject(s)
Fresh Water , Geologic Sediments , Microplastics , Water Pollutants, Chemical , Microplastics/toxicity , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Fresh Water/chemistry , Environmental Monitoring , Biodegradation, Environmental
12.
Orthop Surg ; 16(8): 1963-1973, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38961670

ABSTRACT

OBJECTIVE: Currently, there is no established guideline on whether to opt for percutaneous endoscopic lumbar discectomy (PELD) or traditional transforaminal lumbar interbody fusion (TLIF) surgery based on specific types of lumbar disc herniation (LDH). Based on the Michigan State University (MSU) classification system, this study conducted a medium- to long-term follow-up analysis of two surgical methods over 5 years for the first time, aiming to provide empirical evidence to assist in making more informed decisions before surgery for LDH treatment. METHODS: This was a retrospective study that included 273 patients with single-level LDH who underwent PELD or TLIF treatment at our hospital between January 1, 2016, and December 31, 2018. Detailed metrics included preoperative and postoperative visual analogue scale (VAS) scores and Oswestry disability index (ODI) at 1-day, 1-week, 1-year, and 5-year follow-ups. Complications, recurrences, and 5-year postoperative modified MacNab criteria scores were also recorded. Statistical methods included independent sample t-tests, repeated measures analysis of variance (ANOVA), and χ2 tests. RESULTS: Classified into seven groups according to the MSU classification, it was found that there was an improvement in the VAS and ODI scores at four postoperative follow-ups (p < 0.001). PELD showed better results than TLIF in reducing pain and improving the ODI scores in the classifications of 3B, 2B, and 2C (p < 0.05). TLIF demonstrated consistent superiority over PELD in 2A, 2AB, 3A, and 3AB classifications (p < 0.05). The total recurrence rate in the PELD group (11.05%) within 5 years after surgery was higher (p < 0.05) than that in the TLIF group (3.96%). These were mainly concentrated in the 2A, 2AB, 3A, and 3AB types. Moreover, the rate of excellent and good outcomes in the PELD was higher than in the TLIF but no significant difference (χ2 = 1.0568, p = 0.5895). CONCLUSION: This study suggests that PELD and TLIF may relieve LDH, but have advantages under different MSU classifications. The MSU classification has specific guiding significance and could aid in the surgical selection of PELD or TLIF to achieve optimal treatment outcomes for patients with lumbar disc herniation.


Subject(s)
Diskectomy, Percutaneous , Endoscopy , Intervertebral Disc Displacement , Lumbar Vertebrae , Spinal Fusion , Humans , Retrospective Studies , Intervertebral Disc Displacement/surgery , Intervertebral Disc Displacement/classification , Diskectomy, Percutaneous/methods , Male , Female , Lumbar Vertebrae/surgery , Middle Aged , Spinal Fusion/methods , Adult , Endoscopy/methods , Pain Measurement , Disability Evaluation , Aged
13.
Toxins (Basel) ; 16(7)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39057925

ABSTRACT

Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 µM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 µM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 µM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.


Subject(s)
Aflatoxin B1 , Anthraquinones , Aspergillus flavus , Reactive Oxygen Species , Aspergillus flavus/drug effects , Aspergillus flavus/metabolism , Aspergillus flavus/growth & development , Anthraquinones/pharmacology , Reactive Oxygen Species/metabolism , Aflatoxin B1/biosynthesis , Aflatoxin B1/toxicity , Energy Metabolism/drug effects , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Mycelium/drug effects , Mycelium/growth & development , Antifungal Agents/pharmacology
14.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062956

ABSTRACT

Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.


Subject(s)
Drug Delivery Systems , Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Drug Delivery Systems/methods , Animals , Drug Carriers/chemistry , Neoplasms/therapy
15.
J Hazard Mater ; 477: 135240, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39079302

ABSTRACT

Despite extensive substitution of biodegradable plastics (BPs) for conventional plastics (CPs), research on their environmental ecological consequences as microplastics (MPs) is scarce. This study aimed to fill this gap by investigating the impacts of six prototypical MPs (categorized into BMPs and CMPs) on plant growth, cadmium (Cd) translocation, and bacterial communities in contaminated sediments. Results showed both BMPs and CMPs hindered plant development; yet interestingly, BMPs provoked more pronounced physiological and biochemical changes alongside increased oxidative stress due to reactive oxygen species accumulation. Notably, most MP types promoted the absorption of Cd by plant roots potentially via a "dilution effect". BMPs also induced larger shifts in soil microbial metabolic functions compared to CMPs. Ramlibacter was identified as a key biomarker distinguishing BMPs from CMPs, with link to multiple N metabolic pathways and N assimilation. This study offers novel insights into intricate biochemical mechanisms and environmental chemistry behaviors underpinning MP-Cd interactions within the plant-microbe-sediment system, emphasizing BMPs' higher potential ecological risks based on their significant effects on plant health and microbial ecology. This work contributes to enhancing the comprehensive understanding of their ecological implications and potential threats to environmental security.


Subject(s)
Cadmium , Geologic Sediments , Microplastics , Soil Microbiology , Soil Pollutants , Cadmium/metabolism , Cadmium/toxicity , Microplastics/toxicity , Microplastics/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Soil Pollutants/metabolism , Biodegradation, Environmental , Plant Roots/metabolism , Plant Roots/microbiology , Biodegradable Plastics/metabolism , Plants/metabolism , Plant Development/drug effects
16.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931074

ABSTRACT

The tree peony, a traditional flower in China, has a short and concentrated flowering period, restricting the development of the tree peony industry. To explore the molecular mechanism of tree peony flowering-stage regulation, PoEP1, which regulated the flowering period, was identified and cloned based on the transcriptome and degradome data of the early-flowering mutant Paeonia ostii 'Fengdan' (MU) and Paeonia ostii 'Fengdan' (FD). Through bioinformatics analysis, expression pattern analysis, and transgene function verification, the role of PoEP1 in the regulation of tree peony flowering was explored. The open-reading frame of PoEP1 is 1161 bp, encoding 386 amino acids, containing two conserved domains. PoEP1 was homologous to the EP1 of other species. Subcellular localization results showed that the protein was localized in the cell wall and that PoEP1 expression was highest in the initial decay stage of the tree peony. The overexpression of PoEP1 in transgenic plants advanced and shortened the flowering time, indicating that PoEP1 overexpression promotes flowering and senescence and shorten the flowering time of plants. The results of this study provide a theoretical basis for exploring the role of PoEP1 in the regulation of tree peony flowering.

18.
J Trace Elem Med Biol ; 85: 127488, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38905877

ABSTRACT

BACKGROUND: Aluminum exerts neurotoxic effects through various mechanisms, mainly manifested as impaired learning and memory function. METHODS: Forty SD rats were divided into 0, 10, 20, and 40 mM maltol aluminum [Al(mal)3] groups. Cell experiments are divided into 0, 100, 200, and 400 µM Al(mal)3 dose group and control, Al(mal)3, Al(mal)3+inhibitor NC, Al(mal)3+miR-665 inhibitor intervention group. Water maze was used to detect the learning and memory function of rats, HE staining was used to observe the morphology and number of neurons in the CA1 area of the rat hippocampus, Flow cytometry was used to detect the apoptosis of PC12 cells, PCR and Western blotting were used to detect the expression of Caspase3, miR-665 and GNB3/PI3K/AKT proteins. The target binding relationship between miR-665 and GNB3 was verified by double luciferase reporter gene experiment. RESULTS: In vivo experimental results showed that with the increase of Al(mal)3 concentration, the escape latency of rats was prolonged, the target quadrant dwell time was shortened, and the number of crossing platform was reduced. Moreover, the arrangement of neurons was loose and the number decreased; the expression of Caspase3 and miR-665 increased, while the expression of GNB3/PI3K/AKT proteins decreased. In vitro experiments, with the increase of Al(mal)3 concentration, apoptosis rate of PC12 cells increased, the expression of Caspase3, miR-665 and GNB3/PI3K/AKT proteins were consistent with rat results. After inhibiting miR-665 in the intervention group experiment, apoptosis rate of PC12 cells in the aluminum exposure group decreased, the expression of Caspase3 and miR-665 decreased, and the expression of GNB3/PI3K/AKT proteins increased. CONCLUSION: MiR-665 plays an important role in aluminum induced neuronal apoptosis by targeting GNB3 and regulating the PI3K/AKT pathway.


Subject(s)
Aluminum , Apoptosis , MicroRNAs , Neurons , Rats, Sprague-Dawley , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Rats , Apoptosis/drug effects , Neurons/metabolism , Neurons/drug effects , Aluminum/toxicity , PC12 Cells , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Maze Learning/drug effects , Caspase 3/metabolism
20.
Food Microbiol ; 122: 104550, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839218

ABSTRACT

Listeria monocytogenes presents significant risk to human health due to its high resistance and capacity to form toxin-producing biofilms that contaminate food. The objective of this study was to assess the inhibitory effect of citronella aldehyde (CIT) on L. monocytogenes and investigate the underlying mechanism of inhibition. The results indicated that the minimum inhibitory concentration (MIC) and Minimum sterilisation concentration (MBC) of CIT against L. monocytogenes was 2 µL/mL. At this concentration, CIT was able to effectively suppress biofilm formation and reduce metabolic activity. Crystalline violet staining and MTT reaction demonstrated that CIT was able to inhibit biofilm formation and reduce bacterial cell activity. Furthermore, the motility assessment assay revealed that CIT inhibited bacterial swarming and swimming. Scanning electron microscopy (SEM) and laser confocal microscopy (LSCM) observations revealed that CIT had a significant detrimental effect on L. monocytogenes cell structure and biofilm integrity. LSCM also observed that nucleic acids of L. monocytogenes were damaged in the CIT-treated group, along with an increase in bacterial extracellular nucleic acid leakage. The proteomic results also confirmed the ability of CIT to affect the expression of proteins related to processes including metabolism, DNA replication and repair, transcription and biofilm formation in L. monocytogenes. Consistent with the proteomics results are ATPase activity and ATP content of L. monocytogenes were significantly reduced following treatment with various concentrations of CIT. Notably, CIT showed good inhibitory activity against L. monocytogenes on cheese via fumigation at 4 °C.This study establishes a foundation for the potential application of CIT in food safety control.


Subject(s)
Biofilms , Cheese , Listeria monocytogenes , Microbial Sensitivity Tests , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/physiology , Cheese/microbiology , Biofilms/drug effects , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Food Microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aldehydes/pharmacology , Plant Extracts/pharmacology , Acyclic Monoterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL