Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Biosci Rep ; 41(2)2021 02 26.
Article in English | MEDLINE | ID: mdl-33479740

ABSTRACT

Cell membranes have important functions in many steps of the blood coagulation cascade, including the activation of factor X (FX) by the factor VIIa (FVIIa)-tissue factor (TF) complex (extrinsic Xase). FVIIa shares structural similarity with factor IXa (FIXa) and FXa. FIXa and FXa are regulated by binding to phosphatidylserine (PS)-containing membranes via their γ-carboxyglutamic acid-rich domain (Gla) and epidermal growth-factor (EGF) domains. Although FVIIa also has a Gla-rich region, its affinity for PS-containing membranes is much lower compared with that of FIXa and FXa. Research suggests that a more common endothelial cell lipid, phosphatidylethanolamine (PE), might augment the contribution of PS in FVIIa membrane-binding and proteolytic activity. We used soluble forms of PS and PE (1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), 1,2-dicaproyl-sn-glycero-3-phospho-ethanolamine (C6PE)) to test the hypothesis that the two lipids bind to FVIIa jointly to promote FVIIa membrane binding and proteolytic activity. By equilibrium dialysis and tryptophan fluorescence, we found two sites on FVIIa that bound equally to C6PE and C6PS with Kd of ∼ 150-160 µM, however, deletion of Gla domain reduced the binding affinity. Binding of lipids occurred with greater affinity (Kd∼70-80 µM) when monitored by FVIIa proteolytic activity. Global fitting of all datasets indicated independent binding of two molecules of each lipid. The proteolytic activity of FVIIa increased by ∼50-100-fold in the presence of soluble TF (sTF) plus C6PS/C6PE. However, the proteolytic activity of Gla-deleted FVIIa in the presence of sTF was reduced drastically, suggesting the importance of Gla domain to maintain full proteolytic activity.


Subject(s)
Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Prothrombin/metabolism , Thromboplastin/metabolism , Fluorescence , Humans , Proteolysis , Prothrombin/chemistry , Structure-Activity Relationship , Tryptophan/chemistry
2.
J Phys Chem B ; 121(7): 1640-1648, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28125233

ABSTRACT

Membrane fusion, one of the most fundamental processes in life, occurs when two separate lipid membranes merge into a single continuous bilayer. Membrane fusion is essential for the entry of lipid-sheathed viruses such as influenza and HIV. Influenza virus is internalized via receptor-mediated endocytosis and then fuses with the endosomal membrane at low pH. Hemagglutinin, a glycoprotein found on the surface of influenza virus, is responsible for the fusion of the viral sheath with the endosomal membrane. The ∼20 amino acid long N-terminus of hemagglutinin, known as the fusion peptide, plays a crucial role in the viral fusion process. Although there exists vast literature on the importance and role of the fusion peptide in promoting membrane fusion, there is no consensus on the mechanism by which it promotes fusion. A recent report suggested that the fusion peptide occupies and orders space in the outer leaflets of contacting bilayers so as to promote acyl chain protrusion into interbilayer space and promote fusion "stalk" formation. We report here the effect of the wild type, G1S, G1V, and W14A mutants of hemagglutinin fusion peptide on depth-dependent ordering of model membranes along the bilayer normal. We utilized fluorescence anisotropy, lifetime measurements, and lifetime distribution analyses of different anthroyloxy stearic acid probes (n-AS) in order to examine the effect of fusion peptides at various depths along the bilayer normal. Wild type peptide uniquely ordered a region ∼12 Šfrom the bilayer midpoint, W14A and G1S mutants mainly ordered the bilayer interface, while G1V had little ordering influence. On the basis of recent analysis of the effects of these peptides on fusion, ordering of the mid-upper region of the bilayer appears to promote fusion pore formation, while ordering of the bilayer interface inhibits it.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Lipid Bilayers/chemistry , Membrane Fusion , Peptides/chemistry , Viral Fusion Proteins/chemistry , Anthracenes/chemistry , Fluorescence Polarization , Fluorescent Dyes/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mutation , Orthomyxoviridae , Peptides/genetics , Phosphatidylcholines/chemistry , Protein Conformation , Stearates/chemistry , Viral Fusion Proteins/genetics
4.
Biophys J ; 109(9): 1863-72, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26536263

ABSTRACT

Although the importance of a SNARE complex in neurotransmitter release is widely accepted, there exist different views on how the complex promotes fusion. One hypothesis is that the SNARE complex's ability to bring membranes into contact is sufficient for fusion, another points to possible roles of juxtamembrane regions (JMRs) and transmembrane domains (TMDs) in catalyzing lipid rearrangement, and another notes the complex's presumed ability to bend membranes near the point of contact. Here, we performed experiments with highly curved vesicles brought into contact using low concentrations of polyethylene glycol (PEG) to investigate the influence of the synaptobrevin (SB) TMD with an attached JMR (SB-JMR-TMD) on the rates of stalk and pore formation during vesicle fusion. SB-JMR-TMD enhanced the rates of stalk and fusion pore (FP) formation in a sharply sigmoidal fashion. We observed an optimal influence at an average of three peptides per vesicle, but only with phosphatidylserine (PS)-containing vesicles. Approximately three SB-JMR-TMDs per vesicle optimally ordered the bilayer interior and excluded water in a similar sigmoidal fashion. The catalytic influences of hexadecane and SB-JMR-TMD on fusion kinetics showed little in common, suggesting different mechanisms. Both kinetic and membrane structure measurements support the hypotheses that SB-JMR-TMD 1) catalyzes initial intermediate formation as a result of its basic JMR disrupting ordered interbilayer water and permitting closer interbilayer approach, and 2) catalyzes pore formation by forming a membrane-spanning complex that increases curvature stress at the circumference of the hemifused diaphragm of the prepore intermediate state.


Subject(s)
Lipid Bilayers/chemistry , Phosphatidylserines/chemistry , R-SNARE Proteins/metabolism , Unilamellar Liposomes/chemistry , Catalysis , Exocytosis/physiology , Kinetics , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Polyethylene Glycols/chemistry , Synaptic Vesicles/metabolism , Thermodynamics
5.
Integr Biol (Camb) ; 7(4): 402-11, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25720532

ABSTRACT

Platelet integrin αIIbß3 is a key mediator of platelet activation and thrombosis. Upon activation αIIbß3 undergoes significant conformational rearrangement, inducing complex bidirectional signalling and protein recruitment leading to platelet activation. Reconstituted lipid models of the integrin can enhance our understanding of the structural and mechanistic details of αIIbß3 behaviour away from the complexity of the platelet machinery. Here, a novel method of αIIbß3 insertion into Giant Unilamellar Vesicles (GUVs) is described that allows for effective integrin reconstitution unrestricted by lipid composition. αIIbß3 was inserted into two GUV lipid compositions that seek to better mimic the platelet membrane. First, "nature's own", comprising 32% DOPC, 25% DOPE, 20% CH, 15% SM and 8% DOPS, intended to mimic the platelet cell membrane. Fluorescence Lifetime Correlation Spectroscopy (FLCS) reveals that exposure of the integrin to the activators Mn(2+) or DTT does not influence the diffusion coefficient of αIIbß3. Similarly, exposure to αIIbß3's primary ligand fibrinogen (Fg) alone does not affect αIIbß3's diffusion coefficient. However, addition of Fg with either activator reduces the integrin diffusion coefficient from 2.52 ± 0.29 to µm(2) s(-1) to 1.56 ± 0.26 (Mn(2+)) or 1.49 ± 0.41 µm(2) s(-1) (DTT) which is consistent with aggregation of activated αIIbß3 induced by fibrinogen binding. The Multichannel Scaler (MCS) trace shows that the integrin-Fg complex diffuses through the confocal volume in clusters. Using the Saffman-Delbrück model as a first approximation, the diffusion coefficient of the complex suggests at least a 20-fold increase in the radius of membrane bound protein, consistent with integrin clustering. Second, αIIbß3 was also reconstituted into a "raft forming" GUV with well defined liquid disordered (Ld) and liquid ordered (Lo) phases. Using confocal microscopy and lipid partitioning dyes, αIIbß3 showed an affinity for the DOPC rich Ld phase of the raft forming GUVs, and was effectively excluded from the cholesterol and sphingomyelin rich Lo phase. Activation and Fg binding of the integrin did not alter the distribution of αIIbß3 between the lipid phases. This observation suggests partitioning of the activated fibrinogen bound αIIbß3 into cholesterol rich domains is not responsible for the integrin clustering observed.


Subject(s)
Biomimetic Materials/chemical synthesis , Blood Platelets/chemistry , Cell Membrane/chemistry , Fibrinogen/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Unilamellar Liposomes/chemistry , Diffusion , Humans , Multiprotein Complexes/chemical synthesis , Protein Binding
6.
Biochem J ; 467(1): 37-46, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25572019

ABSTRACT

Exposure of phosphatidylserine (PS) molecules on activated platelet membrane surface is a crucial event in blood coagulation. Binding of PS to specific sites on factor Xa (fXa) and factor Va (fVa) promotes their assembly into a complex that enhances proteolysis of prothrombin by approximately 105. Recent studies demonstrate that both soluble PS and PS-containing model membranes promote formation of inactive fXa dimers at 5 mM Ca²âº. In the present study, we show how competition between fXa dimerization and prothrombinase formation depends on Ca²âº and lipid membrane concentrations. We used homo-FRET measurements between fluorescein-E-G-R-chloromethylketone (CK)-Xa [fXa irreversibly inactivated by alkylation of the active site histidine residue with FEGR (FEGR-fXa)] and prothrombinase activity measurements to reveal the balance between fXa dimer formation and fXa-fVa complex formation. Changes in FEGR-fXa dimer homo-FRET with addition of fVa to model-membrane-bound FEGR-fXa unambiguously demonstrated that formation of the FEGR-fXa-fVa complex dissociated the dimer. Quantitative global analysis according to a model for protein interaction equilibria on a surface provided an estimate of a surface constant for fXa dimer dissociation (K(fXa×fXa)(d, σ)) approximately 10-fold lower than K(fXa×fVa)(d,σ) for fXa-fVa complex. Experiments performed using activated platelet-derived microparticles (MPs) showed that competition between fXa dimerization and fXa-fVa complex formation was even more prominent on MPs. In summary, at Ca²âº concentrations found in the maturing platelet plug (2-5 mM), fVa can compete fXa off of inactive fXa dimers to significantly amplify thrombin production, both because it releases dimer inhibition and because of its well-known cofactor activity. This suggests a hitherto unanticipated mechanism by which PS-exposing platelet membranes can regulate amplification and propagation of blood coagulation.


Subject(s)
Blood Coagulation , Blood Platelets/metabolism , Cell Membrane/metabolism , Factor V/metabolism , Factor Xa/metabolism , Models, Biological , Animals , Binding Sites , Binding, Competitive , Calcium Signaling , Catalytic Domain , Cattle , Dimerization , Factor V/chemistry , Factor Xa/chemistry , Histidine/analogs & derivatives , Histidine/chemistry , Humans , Kinetics , Phosphatidylserines/metabolism , Platelet Activation , Protein Interaction Domains and Motifs , Protein Multimerization
7.
Biophys J ; 107(6): 1318-26, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25229140

ABSTRACT

We propose mechanisms by which the transmembrane domain of vesicular stomatitis virus (VSV-TMD) promotes both initiation of fusion and formation of a fusion pore. Time courses of polyethyleneglycol (PEG)-mediated fusion of 25 nm small unilamellar vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine (DOPE), bovine brain sphingomyelin, and cholesterol (35:30:15:20 molar ratio) were recorded at pH 7.4 at five different temperatures (from 17°C to 37°C) and compared with time courses obtained with the same vesicles containing the fusion-active TMD of the G protein of VSV. Multiple time courses were fitted globally to a one-intermediate ensemble kinetic model to estimate the rate constants for conversion of the aggregated state to an intermediate hemifused state (k1, stalk, or I1) that rapidly transits to an unstable intermediate (I2 state) that converts to a final fusion pore state with a combined rate k3. The probabilities of lipid mixing, contents mixing, and contents leakage in the three states were also obtained from this analysis. The activation thermodynamics for each step were consistent with previously published models of lipid rearrangements during intermediate and pore formation. The influences of VSV-TMD, hexadecane, and VSV-TMD + hexadecane on the kinetics, activation thermodynamics, and membrane structure support the hypothesis that these two agents do not catalyze fusion by a common mechanism, except possibly at the lowest temperatures examined. VSV-TMD primarily catalyzed initial intermediate formation, although it substantially increased the probability of contents mixing in the intermediate state. Our results support the hypothesis that the catalytic influence of VSV-TMD on the initial-intermediate- and pore-forming steps of PEG-mediated fusion derives from its ability to impose a positive intrinsic curvature and thereby stress small unilamellar vesicle outer leaflets as well as the periphery of intermediate microstructures.


Subject(s)
Cell Membrane/metabolism , Peptides/chemistry , Peptides/metabolism , Polyethylene Glycols/pharmacology , Vesiculovirus/physiology , Viral Proteins/chemistry , Virus Internalization/drug effects , Alkanes/pharmacology , Amino Acid Sequence , Animals , Cattle , Cell Membrane/virology , Lipid Bilayers/metabolism , Molecular Sequence Data , Porosity , Protein Structure, Tertiary , Thermodynamics , Vesiculovirus/drug effects , Viral Proteins/metabolism
8.
Biophys J ; 107(6): 1327-38, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25229141

ABSTRACT

Here, we examine the different mechanisms of poly(ethylene glycol)-mediated fusion of small unilamellar vesicles composed of dioleoylphosphatidylcholine/dioleoylphosphatidylethanolamine (DOPE)/sphingomyelin/cholesterol in a molar ratio of 35:30:15:20 at pH 7.4 versus pH 5. In doing so, we test the hypothesis that fusion of this lipid mixture should be influenced by differences in hydration of DOPE at these two pH values. An examination of the literature reveals that DOPE should be less hydrated at pH 5 (where influenza virus particles fuse with endosome membranes) than at pH 7.4 (where synaptic vesicles or HIV virus particles fuse with plasma membrane). Ensemble kinetic experiments revealed substantial differences in fusion of this plasma membrane mimetic system at these two pH values. The most dramatic difference was the observation of two intermediates at pH 5 but loss of one of these fusion intermediates at pH 7.4. Analysis of data collected at several temperatures also revealed that formation of the initial fusion intermediate (stalk) was favored at pH 7.4 due to increased activation entropy. Our observations support the hypothesis that the different negative intrinsic curvature of DOPE can account for different fusion paths and activation thermodynamics in steps of the fusion process at these two pH values. Finally, the effects of 2 mol % hexadecane on fusion at both pH values seemed to have similar origins for step 1 (promotion of acyl chain or hydrocarbon excursion into interbilayer space) and step 3 (reduction of interstice energy leading to expansion to a critical stalk radius). Different hexadecane effects on activation thermodynamics at these two pH values can also be related to altered DOPE hydration. The results support our kinetic model for fusion and offer insight into the critical role of phosphatidylethanolamine in fusion.


Subject(s)
Membrane Fusion/drug effects , Phosphatidylethanolamines/metabolism , Polyethylene Glycols/pharmacology , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , Alkanes/pharmacology , Animals , Cattle , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Cholesterol/metabolism , Hydrogen-Ion Concentration , Kinetics , Phosphatidylcholines/metabolism , Sphingomyelins/metabolism , Thermodynamics
9.
PLoS One ; 9(6): e100006, 2014.
Article in English | MEDLINE | ID: mdl-24979705

ABSTRACT

Clinical studies have demonstrated a correlation between elevated levels of FIX and the risk of coronary heart disease, while reduced plasma FIX causes hemophilia B. FIXa interacts with FVIIIa in the presence of Ca2+ and phosphatidylserine (PS)-containing membranes to form a factor X-activating complex (Xase) that is key to propagation of the initiated blood coagulation process in human. We test the hypothesis that PS in these membranes up-regulates the catalytic activity of this essential enzyme. We used a soluble form of phosphatidylserine, 1, 2-dicaproyl-sn-glycero-3-phospho-L-serine (C6PS), as a tool to do so. C6PS and PS in membranes are reported to regulate the homologous FXa nearly identically. FIXa binds a molecule of C6PS at each of with two sites with such different affinities (∼100-fold) that these appear to be independent. A high affinity C6PS binding site (Kd∼1.4 µM) regulates structure, whereas a low-affinity binding site (Kd∼140 µM) regulates activity. Equilibrium dialysis experiments were analyzed globally with four other data sets (proteolytic and amidolytic activities, intrinsic fluorescence, ellipticity) to unequivocally demonstrate stoichiometries of one for both sites. Michaelis-Menten parameters for FIXa proteolytic activity were the same in the presence of C6PS or PS/PC membranes. We conclude that the PS molecule and not a membrane surface is the key regulator of both factors Xa and IXa. Despite some minor differences in the details of regulation of factors Xa and IXa, the similarities we found suggest that lipid regulation of these two proteases may be similar, a hypothesis that we continue to test.


Subject(s)
Calcium/chemistry , Factor IXa/chemistry , Factor X/chemistry , Phosphatidylserines/chemistry , Binding Sites , Blood Coagulation , Calcium/metabolism , Chromogenic Compounds/chemistry , Circular Dichroism , Factor IXa/metabolism , Factor X/metabolism , Humans , Kinetics , Phosphatidylserines/metabolism , Protein Binding , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solutions , Spectrometry, Fluorescence
10.
Biochem J ; 462(3): 591-601, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24920080

ABSTRACT

Calcium (Ca2+) plays a pivotal role in cellular and organismal physiology. The Ca2+ ion has an intermediate protein-binding affinity and thus it can serve as an on/off switch in the regulation of different biochemical processes. The serum level of ionized Ca2+ is regulated with normal ionized Ca2+ being in the range 1.10-1.3 mM. Hypocalcaemia (free Ca2+<1.1 mM) in critically ill patients is commonly accompanied by haemostatic abnormalities, ranging from isolated thrombocytopenia to complex defects such as disseminated intravascular coagulation, commonly thought to be due to insufficient functioning of anticoagulation pathways. A small amount of fXa (Factor Xa) produced by Factor VIIa and exposed tissue factor is key to initiating blood coagulation by producing enough thrombin to induce the later stages of coagulation. fXa must bind to PS (phosphatidylserine)-containing membranes to produce thrombin at a physiologically significant rate. In the present study, we show that overall fXa activity on PS-containing membranes is sharply regulated by a 'Ca2+ switch' centred at 1.16 mM, below which fXa is active and above which fXa forms inactive dimers on PS-exposing membranes. Our data lead to a mathematical model that predicts the variation of fXa activity as a function of both Ca2+ and membrane concentrations. Because the critical Ca2+ concentration is at the lower end of the normal plasma ionized Ca2+ concentration range, we propose a new regulatory mechanism by which local Ca2+ concentration switches fXa from an intrinsically active form to a form requiring its cofactor [fVa (Factor Va)] to achieve significant activity.


Subject(s)
Blood Coagulation/physiology , Calcium/metabolism , Factor Xa/metabolism , Humans , Phosphatidylserines/metabolism , Protein Multimerization , Unilamellar Liposomes
11.
Biochem J ; 459(1): 229-39, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24467409

ABSTRACT

Human coagulation FXa (Factor Xa) plays a key role in blood coagulation by activating prothrombin to thrombin on 'stimulated' platelet membranes in the presence of its cofactor FVa (Factor Va). PS (phosphatidylserine) exposure on activated platelet membranes promotes prothrombin activation by FXa by allosterically regulating FXa. To identify the structural basis of this allosteric regulation, we used FRET to monitor changes in FXa length in response to (i) soluble short-chain PS [C6PS (dicaproylphosphatidylserine)], (ii) PS membranes, and (iii) FVa in the presence of C6PS and membranes. We incorporated a FRET pair with donor (fluorescein) at the active site and acceptor (Alexa Fluor® 555) at the FXa N-terminus near the membrane. The results demonstrated that FXa structure changes upon binding of C6PS to two sites: a regulatory site at the N-terminus [identified previously as involving the Gla (γ-carboxyglutamic acid) and EGFN (N-terminus of epidermal growth factor) domains] and a presumptive protein-recognition site in the catalytic domain. Binding of C6PS to the regulatory site increased the interprobe distance by ~3 Å (1 Å=0.1 nm), whereas saturation of both sites increased the distance by a further ~6.4 Å. FXa binding to a membrane produced a smaller increase in length (~1.4 Å), indicating that FXa has a somewhat different structure on a membrane from when bound to C6PS in solution. However, when both FVa2 (a FVa glycoform) and either C6PS- or PS-containing membranes were bound to FXa, the overall change in length was comparable (~5.6-5.8 Å), indicating that C6PS- and PS-containing membranes in conjunction with FVa2 have comparable regulatory effects on FXa. We conclude that the similar functional regulation of FXa by C6PS or membranes in conjunction with FVa2 correlates with similar structural regulation. The results demonstrate the usefulness of FRET in analysing structure-function relationships in FXa and in the FXa·FVa2 complex.


Subject(s)
Factor Va/physiology , Factor Xa/chemistry , Factor Xa/metabolism , Phosphatidylserines/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Cell Line , Cricetinae , Humans , Phosphatidylserines/pharmacology , Protein Binding/physiology , Quantitative Structure-Activity Relationship
12.
Biophys J ; 105(11): 2495-506, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24314080

ABSTRACT

Viral fusion peptides are short N-terminal regions of type-1 viral fusion proteins that are critical for virus entry. Although the importance of viral fusion peptides in virus-cell membrane fusion is established, little is known about how they function. We report the effects of wild-type (WT) hemagglutinin (HA) fusion peptide and its G1S, G1V, and W14A mutants on the kinetics of poly(ethylene glycol)(PEG)-mediated fusion of small unilamellar vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, sphingomyelin, and cholesterol (molar ratio of 35:30:15:20). Time courses of lipid mixing, content mixing, and content leakage were obtained using fluorescence assays at multiple temperatures and analyzed globally using either a two-step or three-step sequential ensemble model of the fusion process to obtain the rate constant and activation thermodynamics of each step. We also monitored the influence of peptides on bilayer interfacial order, acyl chain order, bilayer free volume, and water penetration. All these data were considered in terms of a recently published mechanistic model for the thermodynamic transition states for each step of the fusion process. We propose that WT peptide catalyzes Step 1 by occupying bilayer regions vacated by acyl chains that protrude into interbilayer space to form the Step 1 transition state. It also uniquely contributes a positive intrinsic curvature to hemi-fused leaflets to eliminate Step 2 and catalyzes Step 3 by destabilizing the highly stressed edges of the hemi-fused microstructures that dominate the ensemble of the intermediate state directly preceding fusion pore formation. Similar arguments explain the catalytic and inhibitory properties of the mutant peptides and support the hypothesis that the membrane-contacting fusion peptide of HA fusion protein is key to its catalytic activity.


Subject(s)
Hemagglutinins, Viral/chemistry , Lipid Bilayers/chemistry , Models, Biological , Mutation, Missense , Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/metabolism , Kinetics , Lipid Bilayers/metabolism , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Thermodynamics
13.
Biochemistry ; 52(47): 8510-7, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24164461

ABSTRACT

Membrane fusion is broadly envisioned as a two- or three-step process proceeding from contacting bilayers through one or two semistable, nonlamellar lipidic intermediate structures to a fusion pore. A true fusion event requires mixing of contents between compartments and is monitored by the movement of soluble molecules between trapped compartments. We have used poly(ethylene glycol) (PEG) to rapidly generate an ensemble aggregated state A that proceeds sequentially through intermediates (I1 and/or I2) to a final fusion pore state (FP) with rate constants k1, k2, and k3. Movement of moderately sized solutes (e.g., Tb³âº/dipicolinic acid) has been used to detect pores assigned to intermediate states as well as to the final state (FP). Analysis of ensemble kinetic data has required that mixing of contents occurs with defined probabilities (αi) in each ensemble state, although it is unclear whether pores that form in different states are different. We introduce here a simple new assay that employs fluorescence resonance energy transfer (FRET) between a 6-carboxyfluorescein (donor) and tetramethylrhodamine (acceptor), which are covalently attached to complementary sequences of 10 bp oligonucleotides. Complementary sequences of fluorophore-labeled oligonucleotides were incorporated in vesicles separately, and the level of FRET increased in a simple exponential fashion during PEG-mediated fusion. The resulting rate constant corresponded closely to the slow rate constant of FP formation (k3) derived from small molecule assays. Additionally, the total extent of oligonucleotide mixing corresponded to the fraction of content mixing that occurred in state FP in the small molecule assay. The results show that both large "final pores" and small (presumably transient) pores can form between vesicles throughout the fusion process. The implications of this result for the mechanism of membrane fusion are discussed.


Subject(s)
Cell Membrane Structures/chemistry , Membrane Fusion , Fluoresceins/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Indicators and Reagents/chemistry , Kinetics , Oligonucleotides/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Picolinic Acids/chemistry , Polyethylene Glycols/chemistry , Porosity , Rhodamines/chemistry , Solubility , Sphingomyelins/chemistry , Surface Properties , Terbium/chemistry
14.
Biophys J ; 104(11): 2437-47, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23746516

ABSTRACT

Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca²âº) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca²âº in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca²âº differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca²âº affinity to a membrane-associated, higher Ca²âº affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca²âº influx is the basis for the cooperative response of annexin a5 toward Ca²âº, and the role of membrane organization in this response.


Subject(s)
Annexin A5/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Models, Biological , Cell Membrane/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Protein Binding
15.
Biophys J ; 104(5): 1029-37, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23473485

ABSTRACT

Small angle x-ray diffraction revealed a strong influence of the N-terminal influenza hemagglutinin fusion peptide on the formation of nonlamellar lipid phases. Comparative measurements were made on a series of three peptides, a 20-residue wild-type X-31 influenza virus fusion peptide, GLFGAIAGFIENGWEGMIDG, and its two point-mutant, fusion-incompetent peptides G1E and G13L, in mixtures with hydrated phospholipids, either dipalmitoleoylphosphatidylethanolamine (DPoPE), or monomethylated dioleoyl phosphatidylethanolamine (DOPE-Me), at lipid/peptide molar ratios of 200:1 and 50:1. All three peptides suppressed the HII phase and shifted the L(α)-H(II) transition to higher temperatures, simultaneously promoting formation of inverted bicontinuous cubic phases, Q(II), which becomes inserted between the L(α) and H(II) phases on the temperature scale. Peptide-induced Q(II) had strongly reduced lattice constants in comparison to the Q(II) phases that form in pure lipids. Q(II) formation was favored at the expense of both L(α) and H(II) phases. The wild-type fusion peptide, WT-20, was distinguished from G1E and G13L by the markedly greater magnitude of its effect. WT-20 disordered the L(α) phase and completely abolished the HII phase in DOPE-Me/WT-20 50:1 dispersions, converted the Q(II) phase type from Im3m to Pn3m and reduced the unit cell size from ∼38 nm for the Im3m phase of DOPE-Me dispersions to ∼15 nm for the Pn3m phase in DOPE-Me/WT-20 peptide mixtures. The strong reduction of the cubic phase lattice parameter suggests that the fusion-promoting WT-20 peptide may function by favoring bilayer states of more negative gaussian curvature and promoting fusion along pathways involving Pn3m phase-like fusion pore intermediates rather than pathways involving H(II) phase-like intermediates.


Subject(s)
Lipid Bilayers/chemistry , Peptides/chemistry , Phospholipids/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Models, Molecular , Temperature , X-Ray Diffraction
16.
Biochemistry ; 52(1): 143-51, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23214401

ABSTRACT

A soluble, short chain phosphatidylserine, 1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), binds to discrete sites on FXa, FVa, and prothrombin to alter their conformations, to promote FXa dimerization (K(d) ~ 14 nM), and to enhance both the catalytic activity of FXa and the cofactor activity of FVa. In the presence of calcium, C6PS binds to two sites on FXa, one in the epidermal growth factor-like (EGF) domain and one in the catalytic domain; the latter interaction is sensitive to Na(+) binding and probably represents a protein recognition site. Here we ask whether dimerization of FXa and its binding to FVa in the presence of C6PS are competitive processes. We monitored FXa activity at 5, 20, and 50 nM FXa while titrating with FVa in the presence of 400 µM C6PS and 3 or 5 mM Ca(2+) to show that the apparent K(d) of FVa-FXa interaction increased with an increase in FXa concentration at 5 mM Ca(2+), but the K(d) was only slightly affected at 3 mM Ca(2+). A mixture of 50 nM FXa and 50 nM FVa in the presence of 400 µM C6PS yielded both Xa homodimers and Xa·Va heterodimers, but no FXa dimers bound to FVa. A mutant FXa (R165A) that has reduced prothrombinase activity showed both weakened dimerization (K(d) ~ 147 nM) and weakened FVa binding (apparent K(d) values of 58, 92, and 128 nM for 5, 20, and 50 nM R165A FXa, respectively). Native gel electrophoresis showed that the GLA-EGF(NC) fragment of FXa (lacking the catalytic domain) neither dimerized nor formed a complex with FVa in the presence of 400 µM C6PS and 5 mM Ca(2+). Our results demonstrate that the dimerization site and FVa-binding site are both located in the catalytic domain of FXa and that these sites are linked thermodynamically.


Subject(s)
Factor Va/metabolism , Factor Xa/chemistry , Factor Xa/metabolism , Phosphatidylserines/metabolism , Calcium/metabolism , Catalytic Domain , Enzyme Activation , Factor Xa/genetics , Humans , Phosphatidylserines/chemistry , Point Mutation , Protein Binding , Protein Interaction Mapping , Protein Multimerization , Thermodynamics , Thromboplastin/metabolism
17.
Biophys J ; 103(9): 1880-9, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23199916

ABSTRACT

PEG-mediated fusion of SUVs composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, sphingomyelin, cholesterol, and dioleoylphosphatidylserine was examined to investigate the effects of PS on the fusion mechanism. Lipid mixing, content mixing, and content leakage measurements were carried out with vesicles containing from 0 to 8 mol % PS and similar amounts of phosphatidylglycerol. Fitting these time courses globally to a 3-state (aggregate, intermediate, pore) sequential model established rate constants for each step and probabilities of lipid mixing, content mixing, and leakage in each state. Charged lipids inhibited both the rates of intermediate and pore formation as well as the extents of lipid and contents mixing, although electrostatics were not solely responsible for inhibition. Ca(2+) counteracted this inhibition and increased the extent of fusion in the presence of PS to well beyond that seen in the absence of charged lipids. The effects of both PS and Ca(2+) could be interpreted in terms of a previous proposal for the nature of lipid fluctuations that account for transition states for the two steps of the fusion process examined. The results suggest a more significant role for Ca(2+)-lipid interactions than is acknowledged in current thinking about cell membrane fusion.


Subject(s)
Calcium/pharmacology , Membrane Fusion , Phosphatidylserines/pharmacology , Unilamellar Liposomes/metabolism , Membrane Fusion/drug effects , Static Electricity , Unilamellar Liposomes/chemistry
18.
Biophys J ; 102(12): 2751-60, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22735525

ABSTRACT

Membrane fusion, essential to eukaryotic life, is broadly envisioned as a three-step process proceeding from contacting bilayers through two semistable, nonlamellar lipidic intermediate states to a fusion pore. Here, we introduced a new, to our knowledge, experimental approach to gain insight into the nature of the transition states between initial, intermediate, and final states. Recorded time courses of lipid-mixing, content-mixing, and content-leakage associated with fusion of 23 nm vesicles in the presence of poly(ethylene glycol) at multiple temperatures were fitted globally to a three-step sequential model to yield rate constants and thereby activation thermodynamics for each step of the process, as well as probabilities of occurrence of lipid-mixing, content-mixing, or content-leakage in each state. Experiments with membranes containing hexadecane, known to reduce interstice energy in nonlamellar structures, provided additional insight into the nature of fusion intermediates and transition states. The results support a hypothesis for the mechanism of stalk formation (step-1) that involves acyl chain protrusions into the interbilayer contact region, a hypothesis for a step-2 mechanism involving continuous interconversion of semistable nonlamellar intermediates, and a hypothesis for step-3 (pore formation) mechanism involving correlated movement of whole lipid molecules into hydrophobic spaces created by geometry mismatch between intermediate structures.


Subject(s)
Membrane Fusion , Models, Biological , Polyethylene Glycols/metabolism , Alkanes/metabolism , Porosity , Thermodynamics
19.
Biochemistry ; 51(5): 1005-8, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22264128

ABSTRACT

Circular dichroism (CD) spectroscopy is an important technique in structural biology for examining folding and conformational changes of proteins in solution. However, the use of CD spectroscopy in a membrane medium (and also in a nonhomogeneous medium) is limited by (i) high light scattering and (ii) differential scattering of incident left and right circularly polarized light, especially at shorter wavelengths (<200 nm). We report a novel methodology for estimating the distortion of CD spectra caused by light scattering for membrane-bound peptides and proteins. The method is applied to three proteins with very different secondary structures to illustrate the limits of its capabilities when calibrated with a simple soluble peptide ([Ac]ANLKALEAQKQKEQRQAAEELANAK[OH], standard peptide) with a balanced secondary structure. The method with this calibration standard was quite successful in estimating α-helix but more limited when it comes to proteins with very high ß-sheet or ß-turn content.


Subject(s)
Circular Dichroism/methods , Membrane Proteins/chemistry , Unilamellar Liposomes/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray , Horses , Light , Membrane Lipids/chemistry , Molecular Sequence Data , Myoglobin/chemistry , Peptides/chemistry , Protein Structure, Secondary , Scattering, Radiation , Tryptophan-tRNA Ligase/chemistry
20.
Biophys J ; 101(5): 1095-104, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21889446

ABSTRACT

While the importance of viral fusion peptides (e.g., hemagglutinin (HA) and gp41) in virus-cell membrane fusion is established, it is unclear how these peptides enhance membrane fusion, especially at low peptide/lipid ratios for which the peptides are not lytic. We assayed wild-type HA fusion peptide and two mutants, G1E and G13L, for their effects on the bilayer structure of 1,2-dioleoyl-3-sn-phosphatidylcholine/1,2-dioleoyl-3-sn-phosphatidylethanolamine/Sphingomyelin/Cholesterol (35:30:15:20) membranes, their structures in the lipid bilayer, and their effects on membrane fusion. All peptides bound to highly curved vesicles, but fusion was triggered only in the presence of poly(ethylene glycol). At low (1:200) peptide/lipid ratios, wild-type peptide enhanced remarkably the extent of content mixing and leakage along with the rate constants for these processes, and significantly enhanced the bilayer interior packing and filled the membrane free volume. The mutants caused no change in contents mixing or interior packing. Circular dichroism, polarized-attenuated total-internal-reflection Fourier-transform infrared spectroscopy measurements, and membrane perturbation measurements all conform to the inverted-V model for the structure of wild-type HA peptide. Similar measurements suggest that the G13L mutant adopts a less helical conformation in which the N-terminus moves closer to the bilayer interface, thus disrupting the V-structure. The G1E peptide barely perturbs the bilayer and may locate slightly above the interface. Fusion measurements suggest that the wild-type peptide promotes conversion of the stalk to an expanded trans-membrane contact intermediate through its ability to occupy hydrophobic space in a trans-membrane contact structure. While wild-type peptide increases the rate of initial intermediate and final pore formation, our results do not speak to the mechanisms for these effects, but they do leave open the possibility that it stabilizes the transition states for these events.


Subject(s)
Cell Membrane/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Mutation , Peptide Fragments/chemistry , Polyethylene Glycols/pharmacology , Viral Fusion Proteins/chemistry , Virus Internalization/drug effects , Cell Membrane/chemistry , Cell Membrane/drug effects , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/drug effects , Influenza A virus/physiology , Kinetics , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Physical Phenomena , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , Viral Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...