Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 192: 185-195, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769880

ABSTRACT

Dogs are the main source of animal and human cystic echinococcosis caused by the Cestode parasite Echinococcus granulosus. Dog vaccination seems to be a good strategy to control this parasitic disease. Here we present the development of a polymeric nanoparticle-based oral vaccine for dogs against Echinococcus granulosus delivered in enteric-coated capsules. To achieve our target, we encapsulated two recombinant antigens into biodegradable polymeric nanoparticles in the presence of Monophosphoryl lipid A as an adjuvant to ensure efficient delivery and activation of a protective mucosal immune response. The formulated delivery system showed a nanoparticle size less than 200 nm with more than 80 % antigen encapsulation efficiency and conserved integrity and immunogenicity. The nanoparticle surface was coated with chitosan to enhance adhesion to the gut mucosa and a subsequent antigen delivery. Chitosan-coated nanoparticles showed a higher cell internalization in murine macrophages and dendritic cells as well as a higher penetration into Caco-2 cells in vitro. Antigen-loaded nanoparticles were freeze-dried and enteric-coated capsules were filled with the obtained powder. The obtained results show a promising nanoparticles delivery system for oral vaccination.


Subject(s)
Chitosan , Echinococcosis , Echinococcus granulosus , Vaccines , Dogs , Humans , Animals , Mice , Echinococcus granulosus/physiology , Caco-2 Cells , Echinococcosis/prevention & control , Echinococcosis/parasitology , Antigens
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902138

ABSTRACT

Fatty acids have received growing interest in Leishmania biology with the characterization of the enzymes allowing the complete fatty acid synthesis of this trypanosomatid parasite. This review presents a comparative analysis of the fatty acid profiles of the major classes of lipids and phospholipids in different species of Leishmania with cutaneous or visceral tropism. Specificities relating to the parasite forms, resistance to antileishmanial drugs, and host/parasite interactions are described as well as comparisons with other trypanosomatids. Emphasis is placed on polyunsaturated fatty acids and their metabolic and functional specificities, in particular, their conversion into oxygenated metabolites that are inflammatory mediators able to modulate metacyclogenesis and parasite infectivity. The impact of lipid status on the development of leishmaniasis and the potential of fatty acids as therapeutic targets or candidates for nutritional interventions are discussed.


Subject(s)
Leishmania , Leishmaniasis , Parasites , Animals , Fatty Acids , Biomarkers
3.
Lipids ; 58(2): 81-92, 2023 03.
Article in English | MEDLINE | ID: mdl-36544247

ABSTRACT

Leishmania parasites are the causative agents of visceral or cutaneous leishmaniasis in humans and of canine leishmaniosis. The macrophage is the predilected host cell of Leishmania in which the promastigote stage is transformed into amastigote. We previously showed changes in the fatty acid composition (FA) of lipids in two strains of Leishmania donovani upon differentiation of promastigote to amastigote, including increased proportions of arachidonic acid (AA) and to a less extent of docosahexaenoic acid (DHA). Here, we carried out supplementation with AA or DHA on two Leishmania infantum strains, a visceral (MON-1) and a cutaneous (MON-24), to evaluate the role of these FA in parasite/macrophage interactions. The proportions of AA or DHA in total lipids were significantly increased in promastigotes cultured in AA- or DHA-supplemented media compared to controls. The content of FA-derived oxygenated metabolites was enhanced in supplemented strains, generating especially epoxyeicosatrienoic acids (11,12- and 14,15-EET) and hydroxyeicosatetraenoic acids (5- and 8- HETE) from AA, and hydroxydocosahexaenoic acids (14- and 17-HDoHE) from DHA. For both MON-1 and MON-24, AA-supplemented promastigotes showed higher infectivity towards J774 macrophages as evidenced by higher intracellular amastigote numbers. Higher infectivity was observed after DHA supplementation for MON-24 but not MON-1 strain. ROS production by macrophages increased upon parasite infection, but only minor change was observed between control and supplemented parasites. We propose that under high AA or DHA environment that is associated with AA or DHA enrichment of promastigote lipids, FA derivatives can accumulate in the parasite, thereby modulating parasite infectivity towards host macrophages.


Subject(s)
Leishmania infantum , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Parasites , Humans , Mice , Animals , Dogs , Leishmania infantum/metabolism , Macrophages/parasitology , Leishmaniasis, Cutaneous/parasitology , Arachidonic Acid/pharmacology , Arachidonic Acid/metabolism , Leishmaniasis, Visceral/parasitology , Mice, Inbred BALB C
4.
Drug Deliv Transl Res ; 11(2): 675-691, 2021 04.
Article in English | MEDLINE | ID: mdl-33738676

ABSTRACT

This study explored the design of supersaturable self-microemulsifying drug delivery systems (S-SMEDDS) to address poor solubility and oral bioavailability of a novel benzimidazole derivative anticancer drug (BI). Firstly, self-microemulsifying drug delivery systems SMEDDS made of Miglyol® 812, Kolliphor® RH40, Transcutol® HP, and ethanol were prepared and loaded with the BI drug. Upon dispersion, the systems formed neutrally charged droplets of around 20 nm. However, drug precipitation was observed following incubation with simulated gastric fluid (pH 1.2). Aiming at reducing this precipitation and enhancing drug payload, supersaturable systems were then prepared by adding 1% hydroxypropyl cellulose as precipitation inhibitor. Supersaturable systems maintained a higher amount of drug in a supersaturated state in gastric medium compared with conventional formulations and were stable in simulated intestinal medium (pH 6.8). In vitro cell studies using Caco-2 cell line showed that these formulations reduced in a transient manner the transepithelial electrical resistance of the monolayers without toxicity. Accordingly, confocal images revealed that the systems accumulated at tight junctions after a 2 h exposure. In vivo pharmacokinetic studies carried out following oral administration of BI-loaded S-SMEDDS, SMEDDS, and free drug to healthy mice showed that supersaturable systems promoted drug absorption compared with the other formulations. Overall, these data highlight the potential of using the supersaturable approach as an alternative to conventional SMEDDS for improving oral systemic absorption of lipophilic drugs.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Administration, Oral , Animals , Benzimidazoles , Biological Availability , Caco-2 Cells , Emulsions , Humans , Mice , Rats , Rats, Sprague-Dawley , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...