Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Chem Commun (Camb) ; 60(35): 4723-4726, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38597243

ABSTRACT

Through controlling the ssDNA product length of rolling circle amplification with AcyNTP, here we develop a nanopore signal enhancement strategy (STSS), which can successfully transfer the short oligonucleotide targets into long ssDNAs with appropriate lengths that can generate significant translocation currents. By labelling the RCA product with tags such as tetrahedral structures and isothermal amplicons, the resolution, signal specificity, and target range of the STSS can be further extended.


Subject(s)
DNA, Single-Stranded , Nanopores , Nucleic Acid Amplification Techniques , DNA, Single-Stranded/chemistry
2.
Chem Commun (Camb) ; 60(33): 4487-4490, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38567405

ABSTRACT

The widespread implementation of solid-state nanopores faces challenges such as lower resolution and increased electrical noise when compared to biological nanopores. Incorporating specific nucleic acid reactions can enhance resolution. In this study, we've developed a nucleic acid amplifier to enhance the sensitivity of solid-state nanopores, utilizing a G-rich sequence and hybridization chain reaction. This amplifier improves target concentration and volume amplification, showing promise in nanopore sensitivity tests.

3.
Ying Yong Sheng Tai Xue Bao ; 35(2): 363-370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523093

ABSTRACT

Surface vegetations are one of the key factors affecting the spread of green space fires. To explore the combustibility of commonly used local surface layer herbaceous species in Beijing, and to provide a reference for the construction and management of urban green space, we comprehensively evaluated the combustibility of Carex giraldiana, Carex breviculis, Liriope spicata, Iris lactea, Iris tectorum, and Buffaloe dactyloides, with the entropy weight method and K-mean cluster analysis based on the principal component analysis method. We measured the combustion characteristics indicators (blade ignition point, combustion time and heat release rate), physical and chemical indicators (leaf moisture content and crude fat content), and biological characteristics indicators (blade thickness and unit load) during the key period of fire prevention. The results showed that blade thickness and ignition point got the highest weight and affected the overall combustibility most. Peak heat release rate and ignition time had the lowest weight and minimal impact on the overall combustibility. The combustibility of the six species followed an order of B. dactyloides > C. breviculmis > L. spicata > C. giraldiana > I. lactea > I. tectorum. Results of the clustering analysis showed that the combustion ability of B. dactyloides, C. breviculmis, and L. spicata were in class Ⅰ, with the strongest combustion ability; C. giraldiana was in class Ⅱ; I. lactea and I. tectorum were in class Ⅲ, with the lowest flammability. As widely used surface vegetations, critical attention should be paid on B. dactyloides, C. breviculmis and L. spicata for fire prevention in winter and spring.


Subject(s)
Fires , Beijing , Hot Temperature , Plant Leaves , Seasons
4.
Angew Chem Int Ed Engl ; 63(19): e202400340, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38497899

ABSTRACT

In order to realize portable pathogen diagnostics with easier quantitation, digitization and integration, we develop a ready-to-use electrochemical sensing strategy (Iso-E-Codelock) for real-time detection of isothermal nucleic acid amplification. Bridged by a branched DNA as codelock, the isothermal amplicon is transduced into increased current of an electrochemical probe, holding multiple advantages of high sensitivity, high selectivity, signal-on response, "zero" background and one-pot operation. Through a self-designed portable instrument (BioAlex PHE-T), the detection can be implemented on a multichannel microchip and output real-time amplification curves just like an expensive commercial PCR machine. The microchip is a rebuilding-free and disposable component. The branch codelock probe can be customized for different targets and designs. Such high performance and flexibility have been demonstrated utilizing four virus (SARS-CoV-2, African swine fever, FluA and FluB) genes as targets, and two branch (3-way and 4-way) DNAs as codelock probes.


Subject(s)
Electrochemical Techniques , Nucleic Acid Amplification Techniques , Electrochemical Techniques/methods , Nucleic Acid Amplification Techniques/methods , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/instrumentation , Animals , Lab-On-A-Chip Devices
5.
Anal Chem ; 95(50): 18522-18529, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38055961

ABSTRACT

Recent advances have demonstrated the significant potential and advantages to repurpose existing point-of-care reactions/devices to realize portable detection of nonoriginal targets, e.g., pathogen genes. However, pursuing this aim usually requires protein indicator-nucleic acid conjugation via a covalent bond, which may bring drawbacks such as high cost, complicated procedure, and annoying component rebuilding. Herein, we developed a conjugation-free, effective, and universal detection platform called CRIs-gel (CRISPR/Cas12a-Responsive Indicators@RCA hydrogels). Various protein indicators are pre-encapsulated into the hydrogels made of effective and high-yield rolling circle amplification (RCA). Upon a targeting sequence binding with its antisense crRNA, CRISPR/Cas12a starts its trans-cleavage activity to crush the hydrogel, which may directly release the indicator for downstream readout. Two proteins, amylase (GA) and human chorionic gonadotropin (hCG), are successfully used as model indicators to trigger the downstream amylum-I2 color change and pregnancy test strip response. After coupling with upstream isothermal nucleic acid amplification, both portable readouts may detect as few as 2 copies/µL genetic sequences of influenza A virus (FluA), human papilloma virus (HPV), SARS-CoV-2, and influenza B virus (FluB). This conjugation-free CRIs-gel platform is thus simple, sensitive, and universal and can provide innovative insights for portable point-of-care testing (POCT) development.


Subject(s)
CRISPR-Cas Systems , Nucleic Acids , Humans , Female , Pregnancy , CRISPR-Cas Systems/genetics , Colorimetry , Amylases , Hydrogels , Nucleic Acid Amplification Techniques
6.
Exp Ther Med ; 26(1): 342, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37383376

ABSTRACT

With time, the number of samples in clinical laboratories from therapeutic drug monitoring has increased. Existing analytical methods for blood cyclosporin A (CSA) monitoring, such as high-performance liquid chromatography (HPLC) and immunoassays, have limitations including cross-reactivity, time consumption, and the complicated procedures involved. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has long been considered the reference standard owing to its high accuracy, specificity, and sensitivity. However, large numbers of blood samples, multi-step preparation procedures, and longer analytical times (2.5-20 min) are required as a consequence of the different technical strategies, to ensure good analytical performance and routine quality assurance. A stable, reliable, and high throughput detection method will save personnel time and reduce laboratory costs. Therefore, a high throughput and simple LC-MS/MS method was developed and validated for the detection of whole-blood CSA with CSA-d12 as the internal standard in the present study. Whole blood samples were prepared through a modified one-step protein precipitation method. A C18 column (50x2.1 mm, 2.7 µm) with a mobile phase flow rate of 0.5 ml/min was used for chromatographic separation with a total running time of 4.3 min to avoid the matrix effect. To protect the mass spectrometer, only part of the sample after LC separation was allowed to enter the mass spectrum, using two HPLC systems coupled to one mass spectrometry. In this way, throughput was improved with detection of two samples possible within 4.3 min using a shorter analytical time for each sample of 2.15 min. This modified LC-MS/MS method showed excellent analytical performance and demonstrated less matrix effect and a wide linear range. The design of multi-LC systems coupled with one mass spectrometry may play a notable role in the improvement of daily detection throughput, speeding up LC-MS/MS, and allowing it to be an integral part of continuous diagnostics in the near future.

7.
Angew Chem Int Ed Engl ; 62(30): e202304891, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37230934

ABSTRACT

Nanopore sensing is highly promising in single molecular analysis but their broad applications have been challenged by the limited strategies that can transduce a target-of-interest into a specific and anti-false/inference signal, especially for solid-state nanopores with relatively lower resolution and higher noise. Here we report a high-resolution signal-production concept named target-induced duplex polymerization strategy (DPS). Through linking the same or different duplex substrates (DSs) with a special linker (L) and an optional structure tag (ST), the DPS can generate target-specific DS polymers with highly controllable duration times, duration intervals and even distinguished secondary tagging currents. Experimentally, DPS mono-polymerization of single DS and co-polymerization of multiple DSs has verified the duration time of a DPS product is the sum of those for each DS monomer. Tetrahedron-DNA structures with different sizes are used as the STs to provide needle-like secondary peaks for further resolution enhancement and multiplex assay. With these examples DPS represents a general, programmable and advanced strategy that may simultaneously provide size-amplification, concentration amplification, and signal-specificity for molecular recognition. It is also promisingly in various applications regarding to single molecular investigation, such as polymerization degree, structure/side chain conformation, programmable multiplex decoding and information index.

8.
ACS Appl Mater Interfaces ; 15(19): 23602-23612, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37141628

ABSTRACT

In this paper, we propose a "reciprocal strategy" that, on the one hand, explores the ability of solid-state nanopores in a homogeneous high-fidelity characterization of nucleic acid assembly and, on the other hand, the formed nucleic acid assembly with a large size serves as an amplifier to provide a highly distinguished and anti-interference signal for molecular sensing. Four-hairpin hybridization chain reaction (HCR) with G-rich tail tags is taken as the proof-of-concept demonstration. G-rich tail tags are commonly used to form G-quadruplex signal probes on the side chain of HCR duplex concatemers. When such G-tailed HCR concatemers translocate the nanopore, abnormal, much higher nanopore signals over normal duplexes can be observed. Combined with atomic force microscopy, we reveal the G-rich tail may easily induce the "intermolecular interaction" between HCR concatemers to form "branched assembly structure (BAS)". To the best of our knowledge, this is the first evidence for the formation BAS of the G tailed HCR concatemers in a homogeneous solution. Systematic nanopore measurements further suggest the formation of these BASs is closely related to the types of salt ions, the amount of G, the concentration of substrate hairpins, the reaction time, and so forth. Under optimized conditions, these BASs can be grown to just the right size without being too large to block the pores, while producing a current 14 times that of conventional double-stranded chains. Here, these very abnormal large current blockages have, in turn, been taken as an anti-interference signal indicator for small targets in order to defend the high noises resulting from co-existing big species (e.g., enzymes or other long double-stranded DNA).


Subject(s)
Biosensing Techniques , Nanopores , Nucleic Acids , DNA/chemistry , Nucleic Acid Hybridization/methods , Biosensing Techniques/methods
9.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8324-8341, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37015370

ABSTRACT

Recently, fusing the LiDAR point cloud and camera image to improve the performance and robustness of 3D object detection has received more and more attention, as these two modalities naturally possess strong complementarity. In this paper, we propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion (CB-Fusion) module and a Multi-Modal Consistency (MC) loss. More concretely, the proposed CB-Fusion module enhances point features with plentiful semantic information absorbed from the image features in a cascade bi-directional interaction fusion manner, leading to more powerful and discriminative feature representations. The MC loss explicitly guarantees the consistency between predicted scores from two modalities to obtain more comprehensive and reliable confidence scores. The experimental results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods. Besides, we emphasize a critical but easily overlooked problem, which is to explore the performance and robustness of a 3D detector in a sparser scene. Extensive experiments present that EPNet++ outperforms the existing SOTA methods with remarkable margins in highly sparse point cloud cases, which might be an available direction to reduce the expensive cost of LiDAR sensors.

10.
Anal Bioanal Chem ; 415(12): 2173-2183, 2023 May.
Article in English | MEDLINE | ID: mdl-36928726

ABSTRACT

Nucleic acid testing technology has made considerable progress in the last few years. However, there are still many challenges in the clinical application of multiple nucleic acid assays, such as how to ensure accurate results, increase speed and decrease cost. Herein, a three-way junction structure has been introduced to specifically translate analytes of loop-mediated isothermal amplification to a catalytic hairpin assembly. For different analyses, a well-optimized nucleic acid circuit can be directly applied to detection, through only one-component replacement, which only not avoids duplicate sequence design but also saves detection cost. Thanks to this design, multiple and logical analysis can be easily realized in a single reaction with ultra-high sensitivity and selectivity. In this paper, Mycoplasma pneumoniae and Streptococcus pneumoniae can be clearly distinguished from the clinical mixed sample with negative control or one analyte in one tube single fluorescence channel. The fair experimental results of actual clinical samples provide a strong support for the possibility of clinical application of this methodology.


Subject(s)
Nucleic Acids , Nucleic Acid Amplification Techniques/methods , Mycoplasma pneumoniae/genetics
11.
Chemistry ; 29(20): e202203540, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36622164

ABSTRACT

Particular interest has been focused on modulation of solid-state charge transport (CT) in DNA. Nevertheless, it remains challenging to do so in a sensitive and predictive manner due to the lack of a definite relationship between DNA base pair stacking and DNA CT. The challenges can be mainly attributed to the ill-defined systems, which may lead to ambiguous and even contradictory conclusions. Here, we use DNA hairpins to construct the well-defined self-assembled monolayers. We reveal nearly positive-linear correlations between DNA conformation and CT in the DNA hairpins regulated with metal ion chelation and DNA sequence. The correlations have been confirmed by the solid-state current-voltage characteristics and circular dichroism in solution. The enhanced CT via metal ion chelated DNA hairpins is mainly from the improved DNA energy coupling to electrodes, not the almost unchanged energy barrier when Hg ion-induced DNA conformational switches toward the canonical B-form.


Subject(s)
DNA , Base Pairing , Nucleic Acid Conformation , Base Sequence , Circular Dichroism
12.
Small ; 19(4): e2206283, 2023 01.
Article in English | MEDLINE | ID: mdl-36436946

ABSTRACT

While the solid-state nanopore shows increasing potential during sensitive and label-free single molecular analysis, target concentration and signal amplification method is in urgent need. In this article, a solution via designing a model nucleic acid circuit reaction that can produce "Y" shape-structure three-way DNA oligomers with controllable size and polymerization degree is proposed. Such a so-called lego-like three-way catalytic hairpin assembly (LK-3W-CHA) can provide both concentration amplification (via CHA circuit) and programmable size control (via lego-like building mode) to enhance spatiotemporal resolution in single molecular sensing of solid-state nanopore. Oligomers containing 1-4 DNA three-way junctions (Y monomers, Y1-Y4) are designed in proof-of-concept experiments and applications. When the oligomers are applied to direct translocation measurements, Y2-Y4 can significantly increase the signal resolution and stability than that of Y1. Meanwhile, Y1 to Y4 can be used as the tags on the long DNA carrier to provide very legible secondary signals for specific identification, multiple assays, and information storage. Compared with other possible tags, Y1-Y4 provides higher signal density and amplitude, and quasi-linear "inner reference" for each other, which may provide more systematic, reliable, and controllable experimental results.


Subject(s)
Biosensing Techniques , DNA , DNA/chemistry , Signal Transduction , DNA Replication , Biosensing Techniques/methods , Limit of Detection
13.
Angew Chem Int Ed Engl ; 61(40): e202209496, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35938902

ABSTRACT

Sensitive, rapid and low-cost nucleic acid detection is critical for controlling infectious pathogens. Here, we develop a ready-to-use and multimodal detection based on a rebuilding-free, ultrasensitive and selective strategy named dual hairpin ligation-induced isothermal amplification pro (DHLApro). Taking influenza A, influenza B, MERS-CoV, SARS-CoV-2 as model targets, we demonstrate DHLApro provides ≈zM level ultra-sensitivity, being equaling to 0.45 copy/µL in original sample. By simply changing the recognition module, a set of DHLApro components can be applied to a new target without performance loss. Moreover, DHLApro innovatively allows flexible logic/multiplex assay using one set of primer, for example, the "N pathogens-in-1" OR gate screening and accurate multi-channel multiplex assay. Compared with traditional methods, the cost of this logic/multiplex assay has been largely reduced and the cross-interference between the multiple primer sets is also avoided.


Subject(s)
COVID-19 , Influenza, Human , Nucleic Acids , COVID-19/diagnosis , Genotype , Humans , Influenza, Human/diagnosis , Logic , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
14.
Heliyon ; 8(8): e10214, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36042743

ABSTRACT

Background: For patients who treated with tacrolimus after kidney transplant, therapeutic drug monitoring is essential to improve their prognosis. However, previous detection methods have limitations, such as the overestimation and unacceptable bias in the immunoassays. Precision medicine has been challenged. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is recognized as the gold standard due to its accuracy and specificity, but lack of throughput and complex process limits its clinical application. Therefore, an accurate, simple and high throughput method for tacrolimus monitoring is needed for clinical practice. Methods: A modified LC-MS/MS method was introduced and validated. Whole blood samples were prepared by a one-step protein precipitation method. Chromatographic separation was achieved using a Phenomenex Kinetex 2.6 µm XB-C18 2.1 × 50 mm column with a total run time of 3.5 min to avoid matrix effect. An electrospray ionization source (ESI) was used in positive ion multiple reaction monitoring (MRM) mode for mass spectrometric detection. In order to protect the mass spectrometer, only part of the sample after LC separation was allowed to enter the mass spectrum, through a two HPLC systems coupled one mass spectrometry design. In this way, the instrument throughput is also improved and realizing the detection of 2 samples within 3.5 min and carried out a shorter analyzing time for each sample of 1.75 min. Additionally, we calculated tacrolimus-intrapatient variant (Tac-IPV) based on this modified method and assessed the prognostic value of Tac-IPV in Chinese kidney transplant patients. Results: The LC-MS/MS was modified by streamlining the procedure and increasing the throughput. The method proved to be accurate and reproducible with all performance parameters suitably meeting the clinical requirements over a calibration ranged from 0.37 to 42.90 ng/mL. Parameters such as linearity, limit of quantification (LoQ) and dilution integrity were validated with a clinical reportable range from 0.37 to 343.20 ng/mL, which was particularly useful for high drug concentrations patients (rare but very serious). Both cross-contamination and matrix effects were negligible. Clinical data of 83 patients showed that Tac-IPV was associated with poor kidney transplant outcome in Chinese (Hazard Ratio (HR) = 3.96, 4.75; 95% Cl: 1.10-14.21, 1.23-18.36; P < 0.05). Conclusions: This modified LC-MS/MS method possessed high throughput and simple sample preparation, allowing it to meet daily clinical needs. At the same time, Tac-IPV based on this modified LC-MS/MS had excellent prognostic value in kidney transplantation. These advantages have great significance for the individualized treatment of Chinese kidney transplant patients and broad application of Tac-IPV.

15.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35849101

ABSTRACT

The rapid development of spatial transcriptomics allows the measurement of RNA abundance at a high spatial resolution, making it possible to simultaneously profile gene expression, spatial locations of cells or spots, and the corresponding hematoxylin and eosin-stained histology images. It turns promising to predict gene expression from histology images that are relatively easy and cheap to obtain. For this purpose, several methods are devised, but they have not fully captured the internal relations of the 2D vision features or spatial dependency between spots. Here, we developed Hist2ST, a deep learning-based model to predict RNA-seq expression from histology images. Around each sequenced spot, the corresponding histology image is cropped into an image patch and fed into a convolutional module to extract 2D vision features. Meanwhile, the spatial relations with the whole image and neighbored patches are captured through Transformer and graph neural network modules, respectively. These learned features are then used to predict the gene expression by following the zero-inflated negative binomial distribution. To alleviate the impact by the small spatial transcriptomics data, a self-distillation mechanism is employed for efficient learning of the model. By comprehensive tests on cancer and normal datasets, Hist2ST was shown to outperform existing methods in terms of both gene expression prediction and spatial region identification. Further pathway analyses indicated that our model could reserve biological information. Thus, Hist2ST enables generating spatial transcriptomics data from histology images for elucidating molecular signatures of tissues.


Subject(s)
Image Processing, Computer-Assisted , Transcriptome , Eosine Yellowish-(YS) , Hematoxylin , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , RNA
16.
Biosens Bioelectron ; 212: 114402, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35653851

ABSTRACT

Abnormal concentration of ATP is related to many diseases such as Parkinson's disease, hypoglycaemia, inflammation and cancer. However, most of the reported strategies exhibit moderate sensitivity with ∼nM level detection limit and few of them can distinguish ATP from its analogues, such as GTP, CTP, UTP and adenosine. Herein, we report an ultra-sensitive and selective ATP detection strategy that combines dual hairpin ligation-induced isothermal amplification (DHLA) with ATP-dependent enzymatic reaction. A good linear relationship between Cq value and ATP concentration in the range from 16 fM to 160 nM is acquired. Meanwhile, the strategy can distinguish ATP from its analogues with high selectivity. Furthermore, our proposed strategy has been successfully utilized to detect ATP from colon cell line and cell culture media with great potential applications in cell metabolism and cancer diagnosis.


Subject(s)
Biosensing Techniques , Neoplasms , Adenosine Triphosphate/metabolism , Humans , Limit of Detection , Neoplasms/diagnosis , Neoplasms/genetics , Nucleic Acid Amplification Techniques
17.
RSC Adv ; 12(17): 10374-10378, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35425009

ABSTRACT

We report a universal and signal-on HCR based detection platform via innovatively coupling the CRISPR-Cas12a system with HCR. By using this CRISPR-HCR pathway, we can detect different targets by only changing the crRNA. The CRISPR-HCR platform coupling with an upstream amplifier can achieve a practical sensitivity as low as ∼aM of ASFV gene in serum.

18.
Angew Chem Int Ed Engl ; 61(12): e202115907, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35064613

ABSTRACT

Desirable biosensing assays need to be sensitive, specific, cost-effective, instrument-free, and versatile. Herein we report a new strategy termed CLIPON (CRISPR and Large DNA assembly Induced Pregnancy strips for signal-ON detection) that can deliver these traits. CLIPON integrates a commercial pregnancy test strip (PTS) with four biological elements: the human chorionic gonadotropin (hCG), CRISPR-Cas12a, crRNA and cauliflower-like large-sized DNA assemblies (CLD). CLIPON uses the Cas12a/crRNA complex both to recognize a target of interest and to release CLD-bound hCG so that target presence can translate into a colorimetric signal on the PTS. We demonstrate the versatility of CLIPON through sensitive and specific detection of HPV genomic DNA, SARS-CoV-2 genomic RNA and adenosine. We also engineer a cell phone app and a hand-held microchip to achieve signal quantification. CLIPON represents an attractive option for biosensing and point-of-care diagnostics.


Subject(s)
CRISPR-Cas Systems , Point-of-Care Testing , Pregnancy Tests , DNA/analysis , Female , Humans , Lab-On-A-Chip Devices , Pregnancy , RNA, Viral/analysis , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity , Viruses/isolation & purification
19.
Anal Chem ; 93(35): 11956-11964, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34424659

ABSTRACT

Coronavirus diseases such as the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose serious threats. Portable and accurate nucleic acid detection is still an urgent need to achieve on-site virus screening and timely infection control. Herein, we have developed an on-site, semiautomatic detection system, aiming at simultaneously overcoming the shortcomings suffered by various commercially available assays, such as low accuracy, poor portability, instrument dependency, and labor intensity. Ultrasensitive isothermal amplification [i.e., reverse transcription loop-mediated isothermal amplification (RT-LAMP)] was applied to generate intensified SARS-CoV-2 RNA signals, which were then transduced to portable commercial pregnancy test strips (PTSs) via ultraspecific human chorionic gonadotropin (hCG)-conjugated toehold-mediated strand exchange (TMSE) probes (hCG-P). The entire detection was integrated into a four-channel, palm-size microfluidic device, named the microfluidic point-of-care (POC) diagnosis system based on the PTS (MPSP) detection system. It provides rapid, cost-effective, and sensitive detection, of which the lowest concentration of detection was 0.5 copy/µL of SARS-CoV-2 RNA, regardless of the presence of other similar viruses, even highly similar severe acute respiratory syndrome coronavirus (SARS-CoV). The successful detection of the authentic samples from different resources evaluated the practical application. The commercial PTS provides a colorimetric visible signal, which is instrument- and optimization-free. Therefore, this MPSP system can be immediately used for SARS-CoV-2 emergency detection, and it is worthy of further optimization to achieve full automation and detection for other infectious diseases.


Subject(s)
COVID-19 , Pregnancy Tests , Female , Humans , Lab-On-A-Chip Devices , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Point-of-Care Systems , Pregnancy , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
20.
Chem Commun (Camb) ; 57(46): 5714-5717, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33982719

ABSTRACT

We report a novel RNA sensing platform by combining the RNA:DNA hybridization, duplex-specific nuclease (DSN) amplification, and personal glucose meter (PGM) readout. The so-called DSN-PGM sensing platform is sensitive, specific and general to both microRNA and long virus RNA. The detection procedure is simple and instrument-free, thus holding particular potential in the development of portable and point-of-care measurements.


Subject(s)
Blood Glucose Self-Monitoring , MicroRNAs/genetics , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL