Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 41(10): 2023-2035, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35918456

ABSTRACT

KEY MESSAGE: This study demonstrated high expression and accumulation of human α-lactalbumin in transgenic maize, and significant improvement of lysine content in maize endosperm. As a high-yield crop, lack of lysine in endosperm storage protein is a major defect of maize (Zea mays L.). Specifically expression of foreign proteins is a potential way to improve lysine content in maize endosperm. Human α-lactalbumin is such a protein with high lysine content and high nutritional value. In this study, the codon-optimized human lactalbumin alpha (LALBA) gene was driven by maize endosperm-specific 27 kD γ-zein promoter, and transformed into maize. Five independent transgenic lines were obtained, and LALBA was highly expressed in endosperm in all these lines. Protein assay indicated that human α-lactalbumin was highly accumulated in maize endosperm. Immuno-localization assay indicated that human α-lactalbumin was mainly deposited into the protein body (PB). Protein interaction assay showed that human α-lactalbumin interacted with 16 kD γ-zein, which might lead to its deposition to the PBs. Amino acid analysis of two independent transgenic lines showed significant increase of lysine contents in transgenic endosperm, with 47.26% and 45.15% increase to their non-transgenic seeds, respectively. We obtained transgenic maize with endosperm-specific accumulation of human α-lactalbumin at high level and increased the lysine content in maize endosperm. This study demonstrated an effective way to improve the nutritional value of maize seeds.


Subject(s)
Endosperm , Zein , Amino Acids/metabolism , Codon , Endosperm/genetics , Endosperm/metabolism , Humans , Lactalbumin/genetics , Lactalbumin/metabolism , Lysine/metabolism , Plants, Genetically Modified/genetics , Seeds/metabolism , Transcription Factors/genetics , Zea mays/genetics , Zea mays/metabolism , Zein/analysis , Zein/genetics , Zein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...