Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.466
1.
Prenat Diagn ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840299

OBJECTIVE: To present the prenatal sonographic features and genomic spectrum of pregnancies with fetal Bardet-Biedl syndrome (BBS). METHODS: This was a retrospective study of 11 cases with BBS diagnosed by prenatal ultrasound and confirmed by genetic testing. Clinical and laboratory data were collected and reviewed for these cases, including maternal demographics, prenatal sonographic findings, molecular testing sequencing results, and pregnancy outcomes. RESULTS: All cases had unremarkable first-trimester ultrasound scans without reporting limb malformations. All had second-trimester abnormal ultrasounds: postaxial polydactyly in nine cases (9/11), renal abnormalities in seven (7/11), reduced amniotic fluid volume in two (2/11), central nervous system anomalies in two (2/11), and ascites in three (3/11). Ten fetuses presented with at least two-system anomalies, and one (Case 11) presented with only postaxial polydactyly. Variants were detected in five genes, including BBS2, ARL6/BBS3, BBS7, CEP290/BBS14 and IFT74/BBS22. Ten pregnancies were terminated in the second trimester, while one continued to term. CONCLUSION: Enlarged hyperechogenic kidneys and postaxial polydactyly are the two most common sonographic features of fetal BBS. Prenatal diagnosis of BBS can be done with ultrasound and genetic testing although the diagnosis may be made in the second trimester.

2.
Chem Biodivers ; : e202400870, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842484

24 C3'-focused hybrids of aryl/penta-1,4-dien-3-one/amine (APDA) were designed and synthesized. Of these hybrids, 2n demonstrated improved antiproliferative effects on HER2-positive breast cancer cells (SKBr3 and BT474) and triple-negative breast cancer (TNBC) cells (MDA-MB-231 and MDA-MB-468) with IC50 values ranging from 7.45 to 10.75 µM, but less toxicity to normal breast cells MCF-10A than the first generation of hybrid 1. Additionally, 2n retained its ability to inhibit HSP90 C-terminus, leading to the degradation of HSP90 client proteins HER2, EGFR, pAKT, AKT, and CDK4, without inducing a heat-shock response. Notably, 2n also demonstrated improved thermostability compared to 1 and maintained in vitro metabolic stability in simulated intestinal fluid. These findings will provide a scientific basis for developing HSP90 C-terminal inhibitors in the future.

3.
Food Chem ; 455: 139913, 2024 May 29.
Article En | MEDLINE | ID: mdl-38824731

This study investigates the effectiveness of microwave-assisted hot air drying (MAHD) on corn drying process, water migration, dielectric properties, microstructure, and quality attributes. The research compares MAHD with conventional hot air drying (HAD), employing various microwave powers (1.2-3.6 kW) and hot air temperatures (35-55 °C). The results demonstrate that MAHD significantly reduces the drying time (by 30.95-64.29%) compared to HAD. Two-term model accurately describes the drying kinetics of corn. Microwave facilitated the transformation and more uniform distribution of water within the corn, observed through LF-NMR/MRI. Additionally, MAHD was effective in preserving the color and carotenoids, while reducing fat acidity, indicating better quality retention. Microstructure analysis revealed that MAHD increases microporosity and cracks in corn, which correlates with the observed enhancement in drying efficiency. These findings underscore the potential of MAHD as a superior method for drying corn, offering benefits in terms of reduced drying time and improved quality preservation.

4.
Neurol Clin Pract ; 14(3): e200228, 2024 Jun.
Article En | MEDLINE | ID: mdl-38690148

Objectives: Heterozygous missense variants in MYBPC1 have been recently identified in 13 patients from 6 families with congenital myopathy with tremor. All the patients had mild skeletal myopathy invariably associated with a distinctive myogenic tremor and hypotonia with gradual clinical improvement. However, no phenotypic description has been reported for the neonatal respiratory impairment that patients may suffer. Methods: We report 3 new patients from 2 independent families with congenital myopathy with tremor. Results: Tremors and respiratory distress associated with stridor should raise the diagnosis of congenital myopathy with tremors linked to MYBPC1-dominant variants in children with neonatal hypotonia. Discussion: Neonatal severe respiratory impairment requiring intensive noninvasive ventilation because of stridor is described in 2 patients. Stridor was previously reported in one other case and is part of the clinical features.

5.
Nano Lett ; 24(22): 6761-6766, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38775803

Orbital angular momentum (OAM) multiplexed holograms have attracted a great deal of attention recently due to their physically unbounded set of orthogonal helical modes. However, preserving the OAM property in each pixel hinders fine sampling of the target image in principle and requires a fundamental filtering aperture array in the detector plane. Here, we demonstrate the concept of metasurface-based vectorial holography with cylindrical vector beams (CVBs), whose unlimited polarization orders and unique polarization distributions can be used to boost information storage capacity. Although CVBs are composed of OAM modes, the holographic images do not preserve the OAM modes in our design, enabling fine sampling of the target image in a quasi-continuous way like traditional computer-generated holograms. Moreover, the images can be directly observed by passing them through a polarizer without the need for a fundamental mode filter array. We anticipate that our method may pave the way for high-capacity holographic devices.

6.
Sci Total Environ ; 940: 173400, 2024 May 21.
Article En | MEDLINE | ID: mdl-38782278

The transportation sector is a significant contributor to greenhouse gas (GHG) emissions in China. However, real-world GHG emissions from in-use light-duty diesel trucks (LDDTs) are largely uncertain due to data paucity. In this study, we have conducted real driving emission (RDE) tests of real-world CO2, N2O, and CH4 emissions from 12 in-use LDDTs in China. Results reveal that China's CH4 emission rates from LDDTs are overestimated by 57.71 ± 39.15 % if using the previous ratio method of CO2:CH4. Notably, under real-world driving conditions, such as speeds exceeding 60 km/h, maximum exhaust gas temperatures are reached, potentially impacting urea decomposition catalyst temperatures and subsequently influencing N2O production, which is highly sensitive to system temperature. Moreover, uphill roads can increase CO2 emissions by 51.93 % compared to downhill roads. Despite the tightening of vehicle emission standards, CO2 and N2O emissions from the LDDTs have not decreased linearly. However, LDDTs meeting the China VI standard exhibit the lowest average CO2, N2O and CH4 emission factors (EFs) of 335.26 ± 21.72 g/km, 2.7 ± 0.69 mg/km and 3.50 ± 0.70 mg/km, respectively. At last, the uncertainties in the GHG EFs for the tested LDDTs through RDE tests were (-39 %, 82 %) in our study, while a significantly higher uncertainty (-85 %, 182 %) for GHG EFs of LDDTs were found in our study and other reported literature in China, largely due to the application of different non-native vehicle emission factor models and testing methods, as well as different vehicles of control emission standards. Our study highlights more urgent needs for direct RDE tests and the importance of considering real driving conditions, such as road grades, in special geographical regions when undertaking carbon accounting work in the transportation sector.

7.
J Agric Food Chem ; 72(19): 10995-11001, 2024 May 15.
Article En | MEDLINE | ID: mdl-38701424

The titer of the microbial fermentation products can be increased by enzyme engineering. l-Sorbosone dehydrogenase (SNDH) is a key enzyme in the production of 2-keto-l-gulonic acid (2-KLG), which is the precursor of vitamin C. Enhancing the activity of SNDH may have a positive impact on 2-KLG production. In this study, a computer-aided semirational design of SNDH was conducted. Based on the analysis of SNDH's substrate pocket and multiple sequence alignment, three modification strategies were established: (1) expanding the entrance of SNDH's substrate pocket, (2) engineering the residues within the substrate pocket, and (3) enhancing the electron transfer of SNDH. Finally, mutants S453A, L460V, and E471D were obtained, whose specific activity was increased by 20, 100, and 10%, respectively. In addition, the ability of Gluconobacter oxidans WSH-004 to synthesize 2-KLG was improved by eliminating H2O2. This study provides mutant enzymes and metabolic engineering strategies for the microbial-fermentation-based production of 2-KLG.


Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Gluconobacter/enzymology , Gluconobacter/genetics , Gluconobacter/metabolism , Sugar Acids/metabolism , Sugar Acids/chemistry , Fermentation , Protein Engineering , Metabolic Engineering , Carbohydrate Dehydrogenases/metabolism , Carbohydrate Dehydrogenases/genetics , Carbohydrate Dehydrogenases/chemistry , Kinetics
8.
Int J Biol Macromol ; 270(Pt 1): 131831, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702246

Lately, emulsions with low-fat and natural stabilizers are predominant. This study extracted the nano cellulose crystals (NCs) from Camellia Oleifera shells, and their gallic acid (GA) conjugates were synthesized by free-radical grafting. Pickering emulsions were prepared using NCs 1 %, 1.5 %, 2.5 %, and gallic acid conjugates NC-GA1, NC-GA2, and NC-GA3 as stabilizers. The obtained nano cellulose crystals exhibited 18-25 nm, -40.01 ±â€¯2.45 size, and zeta potential, respectively. The contact angle of 83.4° was exhibited by NC-GA3 conjugates. The rheological, interfacial, and microstructural properties and stability of the Pickering emulsion were explored. NC-GA3 displayed the highest absorption content of 79.12 %. Interfacial tension was drastically reduced with increasing GA concentration in NC-GA conjugates. Rheological properties suggested that the low-fat NC-GA emulsions showed a viscoelastic behavior, increased viscosity, gel-like structure, and increased antioxidant properties. Moreover, NC-GA3 displayed reduced droplet size and improved emulsion temperature and storage stability (28 days) against phase separation. POV and TBARS values were reduced with the NC-GA3 (P < 0.05). This work confirmed that grafting phenolic compounds on NCs could enhance bioactive properties, which can be used in developing low-fat functional foods. NC-GA conjugates can potentially fulfill the increasing demand for sustainable, healthy, and low-fat foods.


Antioxidants , Camellia , Cellulose , Emulsions , Gallic Acid , Rheology , Camellia/chemistry , Gallic Acid/chemistry , Cellulose/chemistry , Antioxidants/chemistry , Viscosity , Nanoparticles/chemistry , Crystallization
9.
Int J Biol Macromol ; 270(Pt 2): 132229, 2024 Jun.
Article En | MEDLINE | ID: mdl-38734337

In this study, the effect of hydrothermal treatment with different temperatures (120-180 °C) on the rheological properties of xanthan gum was evaluated. When the temperature of hydrothermal treatment was relatively low (120 °C), the rheological properties of the hydrothermally treated xanthan gum was similar to the untreated xanthan gum (pseudoplastic and solid-like/gel-like behavior). However, as the temperature of hydrothermal treatment was higher, the rheological properties of the hydrothermally treated xanthan gum changed greatly (e.g., a wider range of Newtonian plateaus in flow curves, existence of a critical frequency between the storage modulus (G') and the loss modulus (G") in the dynamic viscoelasticity measurement, variation of complex viscosity). Although the hydrothermal treatment showed little influence on the functional groups of xanthan gum, it altered the micromorphology of xanthan gum from uneven and rough lump-like to thinner and smoother flake-like. In addition, higher concentration (2 %) of hydrothermally treated xanthan gum made its viscosity close to that of the untreated xanthan gum (1 %). Besides, hydrothermal treatment also affected the effect of temperature and salt (CaCl2) adding on the rheological properties of xanthan gum. Overall, this study can provide some useful information on the rheological properties of xanthan gum after hydrothermal treatment.


Polysaccharides, Bacterial , Rheology , Temperature , Polysaccharides, Bacterial/chemistry , Viscosity , Water/chemistry
10.
Int Immunopharmacol ; 134: 112234, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38739976

Ulcerative colitis, a chronic inflammatory condition affecting the rectum and colon to varying degrees, is linked to a dysregulated immune response and the microbiota. Sodium (aS,9R)-3-hydroxy-16,17-dimethoxy-15-oxidotricyclo[12.3.1.12,6]nonadeca-1(18),2,4,6(19),14,16-hexene-9-yl sulfate hydrate (SDH) emerges as a novel diarylheptane compound aimed at treating inflammatory bowel diseases. However, the mechanisms by which SDH modulates these conditions remain largely unknown. In this study, we assessed SDH's impact on the clinical progression of dextran sodium sulfate (DSS)-induced ulcerative colitis. Our results demonstrated that SDH significantly mitigated the symptoms of DSS-induced colitis, reflected in reduced disease activity index scores, alleviation of weight loss, shortening of the colorectum, and reduction in spleen swelling. Notably, SDH decreased the proportion of Th1/Th2/Th17 cells and normalized inflammatory cytokine levels in the colon. Furthermore, SDH treatment modified the gut microbial composition in mice with colitis, notably decreasing Bacteroidetes and Proteobacteria populations while substantially increasing Firmicutes, Actinobacteria, and Patescibacteria. In conclusion, our findings suggest that SDH may protect the colon from DSS-induced colitis through the regulation of Th1/Th2/Th17 cells and gut microbiota, offering novel insights into SDH's therapeutic potential.


Colitis, Ulcerative , Dextran Sulfate , Diarylheptanoids , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Diarylheptanoids/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/immunology , Colon/pathology , Colon/microbiology , Cytokines/metabolism , Disease Models, Animal , Colitis/chemically induced , Colitis/drug therapy , Colitis/immunology , Colitis/microbiology , Male , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Th2 Cells/immunology , Th2 Cells/drug effects , Humans
11.
J Hazard Mater ; 473: 134542, 2024 May 09.
Article En | MEDLINE | ID: mdl-38776809

Extensively applied glufosinate (GLU) will trigger molecular alterations in nontarget tea plants (Camellia sinensis), which inadvertently disturbs metabolites and finally affects tea quality. The mechanistic response of tea plants to GLU remains unexplored. This study investigated GLU residue behavior, the impact on photosynthetic capacity, specialized metabolites, secondary pathways, and transcript levels in tea seedlings. Here, GLU mainly metabolized to MPP and accumulated more in mature leaves than in tender ones. GLU catastrophically affected photosynthesis, leading to leaf chlorosis, and decreased Fv/Fm and chlorophyll content. Physiological and biochemical, metabolomics, and transcriptomics analyses were integrated. Showing that GLU disrupted the photosynthetic electron transport chain, triggered ROS and antioxidant system, and inhibited photosynthetic carbon fixation. GLU targeted glutamine synthetase (GS) leading to the accumulation of ammonium and the inhibition of key umami L-theanine, causing a disorder in nitrogen metabolism, especially for amino acids synthesis. Interestingly, biosynthesis of primary flavonoids was sacrificed for defensive phenolic acids and lignin formulation, leading to possible losses in nutrition and tenderness in leaves. This study revealed the defense intricacies and potential quality deterioration of tea plants responding to GLU stress. Valuable insights into detoxification mechanisms for non-target crops post-GLU exposure were offered.

12.
Brain Sci ; 14(5)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38790405

PURPOSE: Soft robotic exoskeletons (SREs) are portable, lightweight assistive technology with therapeutic potential for improving lower limb motor function in children with cerebral palsy. To understand the effects of long-term SRE-assisted walking training on children with spastic cerebral palsy (SCP), we designed a study aiming to elucidate the effects of SRE-assisted walking training on lower limb motor function in this population. METHODS: In this randomized, single-blinded (outcome assessor) controlled trial, forty children diagnosed with SCP were randomized into the routine rehabilitation (RR) group (N = 20) and the SRE group (N = 20) for comparison. The RR group received routine rehabilitation training, and the SRE group received routine rehabilitation training combined with SRE-assisted overground walking training. Assessments (without SRE) were conducted pre- and post-intervention (8 weeks after the intervention). The primary outcome measures included the 10 m walk test (10MWT) and the 6 min walk test (6MWT). Secondary outcome measures comprised the gross motor function measure-88, pediatric balance scale modified Ashworth scale, and physiological cost index. RESULTS: Both groups showed significant improvements (p < 0.01) across all outcome measures after the 8-week intervention. Between-group comparisons using ANCOVA revealed that the SRE group demonstrated greater improvement in walking speed from the 10MWT (+6.78 m/min, 95% CI [5.74-7.83]; p < 0.001) and walking distance during the 6MWT (+34.42 m, 95% CI [28.84-39.99]; p < 0.001). The SRE group showed greater improvement in all secondary outcome measures (p < 0.001). CONCLUSIONS: The study findings suggested that the integration of SRE-assisted overground walking training with routine rehabilitation more effectively enhances lower limb motor function in children with SCP compared to routine rehabilitation alone.

13.
Nat Commun ; 15(1): 4519, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806474

Protein ubiquitination regulates a wide range of cellular processes. The degree of protein ubiquitination is determined by the delicate balance between ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase (DUB)-mediated deubiquitination. In comparison to the E3-substrate interactions, the DUB-substrate interactions (DSIs) remain insufficiently investigated. To address this challenge, we introduce a protein sequence-based ab initio method, TransDSI, which transfers proteome-scale evolutionary information to predict unknown DSIs despite inadequate training datasets. An explainable module is integrated to suggest the critical protein regions for DSIs while predicting DSIs. TransDSI outperforms multiple machine learning strategies against both cross-validation and independent test. Two predicted DUBs (USP11 and USP20) for FOXP3 are validated by "wet lab" experiments, along with two predicted substrates (AR and p53) for USP22. TransDSI provides new functional perspective on proteins by identifying regulatory DSIs, and offers clues for potential tumor drug target discovery and precision drug application.


Deubiquitinating Enzymes , Proteome , Ubiquitination , Humans , Proteome/metabolism , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/genetics , Deep Learning , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/chemistry , Substrate Specificity , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Machine Learning , Protein Binding , Amino Acid Sequence , Thiolester Hydrolases
14.
J Stomatol Oral Maxillofac Surg ; : 101921, 2024 May 23.
Article En | MEDLINE | ID: mdl-38795909

BACKGROUND: Benign odontogenic lesions (BOLs) can cause severe jaw bone defects and compromise the quality of life of patients. Extracellular vesicles (EVs) are well-established and versatile players in mediating pathophysiological events. EVs in the interstitial space (tissue-derived EVs or Ti-EVs) possess higher specificity and sensitivity in disease-related biomarker discovery. However, the role of Ti-EV-loaded proteins in mediating the development of BOLs has remained untapped. Herein, we aim to explore the contribution of Ti-EV-loaded proteins to the development of BOLs. METHODS: Samples were obtained from 3 with dental follicle, 3 with dentigerous cyst (DC), 7 with odontogenic keratocyst (OKC), and 3 patients with ameloblastoma (AM). Tissue-derived EVs were then extracted, purified, and validated using ultracentrifugation, transmission electron microscopy, and western blotting. Proteins from Ti-EVs were analyzed using LC-ESI tandem mass spectroscopy and differentially expressed proteins were screened, which was then validated by immunohistochemistry and immunofluorescence assays. RESULTS: The protein profile of Ti-EVs in each group was mapped by LC-MS analysis. The top 10 abundant proteins in BOL-derived Ti-EVs were COL6A3, COL6A1, ALB, HIST1H4A, HBB, ACTB, HIST1H2BD, ANXA2, COL6A2 and FBN1. Additionally, unique proteins in the Ti-EVs from various lesions were identified. Moreover, focal adhesion kinase (FAK) and myeloid differentiation primary response 88 (MyD88) showed higher expressions in Ti-EVs derived from OKC and AM, which were confirmed by immunohistochemistry and immunofluorescence staining. CONCLUSIONS: Ti-EVs containing FAK and MyD88 might be related to the development of OKC and AM, which can be potential therapeutic targets.

15.
Water Res ; 258: 121760, 2024 May 09.
Article En | MEDLINE | ID: mdl-38795547

The photo-Fenton process is effective for pathogen removal, and its low-cost versions can be applied in resource-poor contexts. Herein, a photo-Fenton-like system was proposed using low concentrations of iron oxides (hematite and magnetite) and persulfates (peroxymonosulfate - PMS, and peroxydisulfate - PDS), which exhibited excellent inactivation performance towards MS2 bacteriophages. In the presence of bacteria, MS2 inactivation was inhibited in H2O2 and PDS systems but promoted in PMS-involved systems. The inactivation efficacy of all the proposed systems for mixed bacteria and viruses was greater than that of the sole bacteria, showing potential practical applications. The inactivation performance of humic acid-incorporated iron oxides mediating photo-Fenton-like processes was also studied; except for the PMS-involved system, the inactivation efficacy of the H2O2- and PDS-involved systems was inhibited, but the PDS-involved system was still acceptable (< 2 h). Reactive species exploration experiments indicated that ·OH was the main radical in the H2O2 and PDS systems, whereas 1O2 played a key role in the PMS-involved system. In summary, hematite- and magnetite-mediated persulfate-assisted photo-Fenton-like systems at low concentrations can be used as alternatives to the photo-Fenton process for virus inactivation in sunny areas, providing more possibilities for point-of-use drinking water treatment in developing countries.

16.
J Colloid Interface Sci ; 671: 154-164, 2024 May 23.
Article En | MEDLINE | ID: mdl-38797141

Although various conductive hydrogels have been developed for sensing, ideal materials for meeting the safety and toughness requirements of food detection are still lacking. This study introduces Ion-SSPB, a conductive hydrogel fabricated from eco-friendly, food-grade materials such as corn starch (CS), sodium alginate (SA), polyvinyl alcohol (PVA) and bentonite (BT). It leverages a green manufacturing approach designed for application in electronic food sensors. The hydrogel is achieved through a double network strategy and salt immersion method, which endows it with tunable mechanical and rheological properties. A key innovation of Ion-SSPB is the incorporation of bentonite, which enhances its performance, including low swelling, freezing resistance, and minimal residual adhesion. The hydrogel with 4% (w/v) BT concentration (Ion-SSPB4%) is an effective medium for detecting impedance changes in mangoes, correlating with their ripening stages. The Ion-SSPB hydrogel represents a significant advancement in the field of electronic food labels, combining environmental sustainability with technical efficacy.

17.
EMBO J ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38806659

Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.

18.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2522-2531, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812148

Based on the R language data mining technology, the medication rules of traditional Chinese medicine(TCM) in the treatment of H-type hypertension were discussed, and the basis and new ideas for the treatment of H-type hypertension with TCM were provided. CNKI, Wanfang, VIP, and SinoMed were searched to collect clinical studies on the treatment of H-type hypertension with TCM. The data were screened, and Excel was used to build a database. Rstudio was used to carry out drug efficacy classification, four Qi and five flavors, meridian homing, frequency of use, correlation, association rules, and clustering analyses of drugs and explore the medication rules of TCM. 191 TCM prescriptions were obtained, and the main syndromes were phlegm-dampness accumulation syndrome, phlegm and blood stasis syndrome, and Yin deficiency and Yang hyperactivity syndrome. A total of 169 kinds of TCM were used, and the frequency was 1 875 times. Among them, the drugs whose single use frequency was more than 20 times were high-frequency medicines, 26 kinds in total. They were Gestrodiae Rhizoma, Poria, Pinelliae Rhizoma, Achyranthis Bidenthis Radix, Glycyrrhizae Radix et Rhizoma, etc. The efficacy of high-frequency medicines was mainly classified as tonic medicines, blood-activating and stasis-removing medicines, liver-relieving wind medicines, and damp-clearing medicines. The four Qi of the drug were mainly warm and flat, and the five flavors were mainly sweet and bitter. The liver meridian and spleen meridian were the main meridians. The association rule analysis obtained a total of 14 groups of commonly used drug combinations, and the correlation analysis obtained 20 drug combinations with a high correlation coefficient. A total of six drug combinations were obtained by cluster analysis. Eight groups of drug pairs were obtained by association rule analysis on H-type hypertension with phlegm-dampness accumulation syndrome. Seven drug combinations with high correlation coefficients were obtained by correlation analysis, and three drug prescriptions were obtained by cluster analysis. The pathological factors of H-type hypertension are mainly phlegm, stasis, and deficiency. The disease site is in the liver, involving the spleen, lungs, and other viscera. The commonly used drugs are Gestrodiae Rhizoma, Poria, Pinelliae Rhizoma, Achyranthis Bidenthis Radix, etc. Banxia Baizhu Tianma Decoction, Tianma Gouteng Decoction, and Buyang Huanwu Decoction are commonly used prescriptions. The medication rules shown in this study can provide certain ideas for the clinical treatment of H-type hypertension with TCM.


Data Mining , Drugs, Chinese Herbal , Hypertension , Drugs, Chinese Herbal/therapeutic use , Humans , Hypertension/drug therapy , Medicine, Chinese Traditional
19.
Plant Cell Rep ; 43(6): 155, 2024 May 30.
Article En | MEDLINE | ID: mdl-38814469

KEY MESSAGE: Remorin proteins could be positively related to salt and osmotic stress resistance in rapeseed. Remorins (REMs) play a crucial role in adaptations to adverse environments. However, their roles in abiotic stress and phytohormone responses in oil crops are still largely unknown. In this study, we identified 47 BnaREM genes in the B.napus genome. Phylogenetic relationship and synteny analysis revealed that they were categorized into 5 distinct groups and have gone through 55 segmental duplication events under purifying selection. Gene structure and conserved domains analysis demonstrated that they were highly conserved and all BnaREMs contained a conserved Remorin_C domain, with a variable N-terminal region. Promoter sequence analysis showed that BnaREM gene promoters contained various hormones and stress-related cis-acting elements. Transcriptome data from BrassicaEDB database exhibited that all BnaREMs were ubiquitously expressed in buds, stamens, inflorescences, young leaves, mature leaves, roots, stems, seeds, silique pericarps, embryos and seed coats. The qRT-PCR analysis indicated that most of them were responsive to ABA, salt and osmotic treatments. Further mutant complementary experiments revealed that the expression of BnaREM1.3-4C-1 in the Arabidopsis rem1.3 mutant restored the retarded growth phenotype and the ability to resistance to salt and osmotic stresses. Our findings provide fundamental information on the structure and evolutionary relationship of the BnaREM family genes in rapeseed, and reveal the potential function of BnaREM1.3-4C-1 in stress and hormone response.


Brassica napus , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Growth Regulators , Plant Proteins , Stress, Physiological , Brassica napus/genetics , Brassica napus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Promoter Regions, Genetic/genetics , Genome, Plant/genetics , Osmotic Pressure , Plants, Genetically Modified/genetics
20.
Adv Mater ; : e2406009, 2024 May 30.
Article En | MEDLINE | ID: mdl-38814637

Defect structure is pivotal in advancing thermoelectric performance with interstitials being widely recognized for their remarkable roles in optimizing both phonon and electron transport properties. Diverse interstitial atoms have been identified in previous works according to their distinct roles and can be classified into rattling interstitial, decoupling interstitial, interlayer interstitial, dynamic interstitial and liquid interstitial. Specifically, rattling interstitial can cause phonon resonance in cage compound to scatter phonon transport; decoupling interstitial can contribute to phonon blocking and electron transport due to their significantly different mean free paths; interlayer interstitial can facilitate out-of-layer electron transport in layered compounds; dynamic interstitial can tune temperature-dependent carrier density and optimize electrical transport properties at wide temperatures; liquid interstitial could improve the carrier mobility at homogeneous dispersion state. All of these interstitials have positive impact on thermoelectric performance by adjusting transport parameters. This perspective therefore intends to provide a thorough overview of advances in interstitial strategy and highlight their significance for optimizing thermoelectric parameters. Finally, the profound potential for extending interstitial strategy to various other thermoelectric systems is discussed and some future directions in thermoelectric material are also outlined. This article is protected by copyright. All rights reserved.

...