Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Food Chem ; 462: 140969, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39197245

ABSTRACT

Alcoholic beverages flavour is complex and unique with different alcohol content, and the application of flavour perception could improve the objectivity of flavour evaluation. This study utilized electroencephalogram (EEG) to assess brain reactions to alcohol percentages (5 %-53 %) and Baijiu's complex flavours. The findings demonstrate the brain's proficiency in discerning between alcohol concentrations, evidenced by increasing physiological signal strength in tandem with alcohol content. When contrasted with alcohol solutions of equivalent concentrations, Baijiu prompts a more significant activation of brain signals, underscoring EEG's capability to detect subtleties due to flavour complexity. Additionally, the study reveals notable correlations, with δ and α wave intensities escalating in response to alcohol stimulation, coupled with substantial activation in the frontal, parietal, and right temporal regions. These insights verify the efficacy of EEG in charting the brain's engagement with alcoholic flavours, setting the stage for more detailed exploration into the neural encoding of these sensory experiences.


Subject(s)
Alcoholic Beverages , Brain , Electroencephalography , Ethanol , Humans , Brain/drug effects , Brain/physiology , Brain/metabolism , Adult , Alcoholic Beverages/analysis , Male , Young Adult , Female , Ethanol/analysis , Taste , Flavoring Agents/chemistry , Taste Perception
2.
Food Chem ; 463(Pt 2): 141181, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39270491

ABSTRACT

Food processing, cooking, and consumption introduce various factors that affect food flavor, distinguishing it from its objective composition. This study focuses on liquor-accompanying food pairing, investigating the interaction between baijiu aroma compounds and peanut proteins, and the effect of ethanol on it. Peanut globulins significantly inhibited the release of baijiu aroma compounds through hydrogen bonding (2.63-3.23 Å), hydrophobic interactions, and covalent reactions (-2.85 to -5.64 kcal/mol), resulting in flavor modification. In the presence of ethanol, peanut globulins adopt a more compact and aggregated structure, reducing their affinity for binding aroma compounds. Surprisingly, this structural change promotes a salting-out effect, significantly promoting the release of aldehydes, phenols, and aromatic compounds, enhancing the grassy, floral, and sweet aroma of baijiu. This finding improves the understanding of alcohol pairing and proposes a novel strategy for enhancing the overall flavor profile of baijiu by modifying accompanying food choices.

3.
J Agric Food Chem ; 72(30): 16955-16965, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39013108

ABSTRACT

The research focused on the distinctive empty cup aroma, with the aim of identifying the key aroma compounds and the formation mechanism of empty cup aroma in soy sauce aroma type baijiu (SSB). The lasting times of SSB is significantly longer than that of other types of baijiu, with an average duration of 28 days. Key compounds such as 2,3-dimethyl-5-ethylpyrazine, phenylethyl alcohol, p-cresol, sotolon, benzeneacetic acid were identified in empty cup aroma due to their highest flavor dilution factor. Molecular dynamics (MD) simulation was performed to study the mechanism of empty cup aroma on the liquid-gas interface and solid-gas interface. The results revealed the existence of hydrogen bonding and van der Waals forces between sotolon and lactic acid, a representative nonvolatile compound, which are speculated to be an important reason for the empty cup aroma.


Subject(s)
Flavoring Agents , Odorants , Soy Foods , Taste , Volatile Organic Compounds , Soy Foods/analysis , Odorants/analysis , Flavoring Agents/chemistry , Humans , Volatile Organic Compounds/chemistry , Gas Chromatography-Mass Spectrometry , Molecular Dynamics Simulation , Male , Adult
4.
Food Chem X ; 23: 101542, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38974198

ABSTRACT

Sensory analysis is an interdisciplinary field that combines multiple disciplines to analyze food qualitatively and quantitatively. At present, this analysis method has been widely used in product development, quality control, marketing, flavor analysis, safety supervision and inspection of alcoholic beverages. Due to the changing needs of analysis, new and more optimized methods are still emerging. Thereinto, intelligent and biometric technologies with growing attention have also been applied to sensory analysis. This work summarized the sensory analysis methods from three aspects, including traditional artificial sensory analysis, intelligent sensory technology, and innovative technologies. Meanwhile, the application sensory analysis in alcoholic beverages and its industrial production was scientifically emphasized. Moreover, the future tendency of sensory analysis in the alcoholic beverage industry is also highlights.

5.
Food Res Int ; 191: 114733, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059966

ABSTRACT

This study investigated the interactions between 2-furylmethanethiol, benzenemethanethiol, and 18 skeletal aroma-active compounds as well as four aroma notes in sesame-flavor baijiu based on the Feller Additive Model, the Odor Activity Value (OAV) Approach, and the Sigma-Tau (σ-τ) plots. In addition, a predictive model for the interactions between 2-furylmethanethiol and esters was developed, and the determinants of the interaction results in complex systems were explored. The results reveal that both thioalcohols interacted with the skeletal aroma-active compounds in a similar trend, where 2-furylmethanethiol tends to enhance the release of fruit and acid aroma. Moreover, the intensity of the thiols and their intensity ratio to the notes were the determinants of the interaction results in the multivariate blended system, with the lower the concentration of the thiols, the closer the ratio was to 1, and the more likely that additive interactions would take place. Predictive modeling showed that 2-furylmethanethiols were more likely to have additive or synergistic effects with esters when the olfactory thresholds of the esters were between 75.86 and 199.53 µg/L. Conversely, masking effects were more likely.


Subject(s)
Odorants , Sesamum , Sulfhydryl Compounds , Odorants/analysis , Sulfhydryl Compounds/analysis , Sesamum/chemistry , Flavoring Agents/analysis , Esters/analysis , Humans , Volatile Organic Compounds/analysis , Smell , Furans/analysis
6.
Food Chem ; 460(Pt 1): 140461, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39047481

ABSTRACT

This study endeavors to examine the levels of risk factors in alcoholic beverages and propose mitigation strategies. GC-MS analysis was utilized to assess risk factors in various distilled-spirits. The content of such risk factors in spirits ranked as follows: vodka ≈ gin < baijiu < whiskey < brandy, and all were adhering to the Chinese national standard. Additionally, a method was refined to alleviate these risks, employing various reagents for activated carbon modification and evaluating their adsorption efficiency for risk factors reduction. Oxalic acid-modified activated carbon exhibited promising adsorption rates for risk factors with acceptable flavor compounds loss, rendering it a prospective solution for health hazard reduction. Characterization via SEM and nitrogen-adsorption-desorption was conducted on the optimal material, complemented by sensory experiments to optimize its application. This study offers valuable insights into the content of risk factors in alcoholic beverages, aiding in improving quality and safety of alcoholic beverages.


Subject(s)
Acetaldehyde , Alcoholic Beverages , Gas Chromatography-Mass Spectrometry , Methanol , Adsorption , Alcoholic Beverages/analysis , Acetaldehyde/analysis , Acetaldehyde/chemistry , Methanol/chemistry , Methanol/analysis , Charcoal/chemistry , Alcohols/chemistry , Alcohols/analysis , Risk Factors , Humans , Taste
7.
Int J Biol Macromol ; 275(Pt 1): 133993, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084967

ABSTRACT

Jiuzao is the main solid by-products of Baijiu industry, which contain a high amount of underutilized cellulose and proteins. In recent years, cellulose nanofibers mixed with proteins to prepare biodegradable bio-based film materials have received widespread attention. In this study, we propose a novel method to simultaneously extract kafirin and cellulose from strong-flavor type of Jiuzao, and modify cellulose to prepare cellulose nanofibers by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxide) oxidation-pressure homogenization technique, and finally mix kafirin with cellulose nanofibers to prepare a new biodegradable bio-based composite film. Based on the analysis of one-way and response surface experiments, the highest purity of cellulose was 82.04 %. During cellulose oxidation, when NaClO was added at 25 mmol/g, cellulose nanofibers have a particle size of 80-120 nm, a crystallinity of 65.8°. Finally, kafirin and cellulose nanofibers were mixed to prepare films. The results showed that when cellulose nanofibers were added at 1 %, the film surface was smooth, the light transmittance was 60.8 %, and the tensile strength was 9.17 MPa at maximum, which was 104 % higher than pure protein film. The contact angle was 34.3°. This paper provides new ideas and theoretical basis for preparing biodegradable bio-based composite film materials, and improves the added value of Jiuzao.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry , Tensile Strength
8.
Opt Express ; 32(9): 16156-16163, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859251

ABSTRACT

In this paper, we explore the distribution of the orbital angular momentum (OAM) in the coaxial vortex superposition states based on the independent propagation principle of light in this interference process. We find that in this case, some specific singular points exist in the spatial intensity distribution. The first type of singular point is located at the center point of the spatial intensity distribution. The second type of specific singular point is at the critical location of the overlapping area in angular direction. By analogy with the angular momentum superposition of two axially rotating homogeneous disks with different radius in rigid body, We present a suggestion: the center point is located at the overlapping area of all the superposed components. Therefore, the topological charge value in the center point should be doubled by the actual number of superposition field components. The singular point at the critical location of the overlapping area in angular direction should also be co-owned by the superposition components outside the position of the ring (including the corresponding component of the ring). The total OAM is exactly equal to the sum of those two types contained in the superposition states, which is equal to the input OAM of the superposition state components. The conservation of the OAM in the coaxial interference process is demonstrated.

9.
J Agric Food Chem ; 72(26): 14851-14864, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38841998

ABSTRACT

Liquor-pairing food is a common dietary combination. Baijiu and peanuts are unquestionably a classic pairing in China. But no one has explained why. Its alteration in baijiu flavor was studied using multiple sensory evaluation, as well as nontargeted proton-transfer reaction mass spectrometry coupled with GC × GC-MS. Multiple statistical analyses were used to discover the changes in the retronasal aroma and its contribution to baijiu flavor. It showed that the consumption of peanuts enhances the burst intensity of ester aroma (0.814-1.00) and Jiao aroma (0.889-0.963) but decreases the aftertaste of baijiu (p < 0.05). Meanwhile, it increases the release intensity and advances the burst time of baijiu retronasal aroma (p < 0.05), suppressing its aftertaste through the retention effect of the food matrix, the changes in oral processing, and cross-modal interactions. Hydrophobicity, polarity, and chemical characteristics are key factors of the uneven impact of accompanying food to aroma compounds. Esters, especially ethyl caprylate (2103 ± 927 to 51.9 ± 4.05) is most impacted by peanuts and contributes most to baijiu flavor changes. Pyrazines from peanut enhance the Qu-aroma, grain aroma, and Chen aroma in baijiu flavor. Therefore, we revealed the chemical nature of baijiu-peanut combination and help to optimize baijiu consumption experience.


Subject(s)
Arachis , Gas Chromatography-Mass Spectrometry , Odorants , Taste , Humans , Arachis/chemistry , Odorants/analysis , Adult , Female , Male , Young Adult , China , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry , Alcoholic Beverages/analysis , Smell , Middle Aged
10.
Food Chem ; 452: 139604, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749139

ABSTRACT

This study aims to repurpose waste grain from the Baijiu brewing process into activated carbon for mitigating risk factors in alcoholic beverages, enhancing quality and ensuring safety. For attaining the most effective activated carbon, tailored carbon synthesis conditions were identified for diverse alcoholic beverages, optimising strategies. For beverages with low flavour compound content, optimal conditions include 900 °C calcination, 16-hour activation and a 1:2 activation ratio. In contrast, for those with abundant flavour compounds, 800 °C calcination, 16-hour activation and a 1:1 activation ratio are recommended. Post-synthesis analyses, employing nitrogen physisorption-desorption isotherms, FT-IR and SEM, validated a significant BET surface area of 244.871 m2/g for the KOH-activated carbon. Critical to adsorption efficiency, calcination temperature showcased noteworthy micro-porosity (0.8-1 nm), selectively adsorbing higher alcohols (C3-C6) and acetaldehyde while minimising acid and ester adsorption. Sensory evaluations refined optimal parameters, ensuring efficient spent grain management and heightened beverage safety without compromising aroma.


Subject(s)
Alcoholic Beverages , Charcoal , Hydroxides , Potassium Compounds , Alcoholic Beverages/analysis , Charcoal/chemistry , Humans , Hydroxides/chemistry , Potassium Compounds/chemistry , Adsorption , Taste , Waste Products/analysis , Flavoring Agents/chemistry , Edible Grain/chemistry , Odorants/analysis , Risk Factors , Male , Female , Adult , Young Adult , Middle Aged
11.
Foods ; 13(8)2024 04 22.
Article in English | MEDLINE | ID: mdl-38672955

ABSTRACT

The structure and function of phenoyl oligosaccharides in baijiu distillers' grains (BDGs) have not been identified and investigated yet. This study aimed to elucidate the major phenolic oligosaccharides present in BDGs, optimize their extraction process via a central composite design, and assess their anti-inflammatory properties utilizing the LPS-induced RAW264.7 inflammation model. The main results are as follows: feruloylated oligosaccharides (FOs) were identified as the main phenoyl oligosaccharides in BDGs with a structure of ferulic acid esterified on arabinooligosaccharide xylose. Then, the preparation process of FOs was optimized using the following conditions: pH 5, temperature 55 °C, time 12 h, xylanase addition amount 7 g/L, BDG concentration 120 g/L. Furthermore, the acquired FOs demonstrated notable scavenging activity against DPPH and ABTS free radicals, with Trolox equivalent values of 366.8 ± 10.38 and 0.35 ± 0.01 mM Trolox/mg sample, respectively. However, their efficacy was comparatively lower than that of ferulic acid. Finally, the obtained FOs could effectively inhibit the LPS-induced secretion of TNF-α, IL-6, and IL-1ß and promote the secretion of IL-10 in RAW264.7 cells. Based on the above results, FOs from BDGs were determined to have certain antioxidant and anti-inflammatory activities.

12.
RSC Adv ; 14(14): 9472-9481, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516163

ABSTRACT

Quercetin (QCT) has a variety of pharmacological effects, such as antioxidant, antibacterial, anticancer, anticardiovascular and antiaging effects. However, its poor water solubility, stability and bioavailability limit its applications. The special structure of cyclodextrins and their derivatives with a hydrophobic inner cavity and hydrophilic outer wall can load a variety of hydrophobic drugs of a suitable size and shape, thereby improving the stability and solubility of these molecules. In this study, an inclusion complex of quercetin and sulfobutylether-ß-cyclodextrin was prepared. It was characterized via FT-IR, UV, 1H NMR, XRD, DSC, and SEM analysis, which revealed the successful formation of the inclusion complex. In vitro biological activity estimations were carried out and the results indicated that the inclusion complex displayed higher antioxidative and antibacterial properties compared with free QCT. In addition, the mechanisms of inclusion were explored using 1H NMR analysis and docking calculations, thus providing a theoretical basis for obtaining an inclusion complex.

13.
J Fungi (Basel) ; 10(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38392771

ABSTRACT

Lichens are some of the most unique fungi and are naturally encountered as symbiotic biological organisms that usually consist of fungal partners (mycobionts) and photosynthetic organisms (green algae and cyanobacteria). Due to their distinctive growth environments, including hot deserts, rocky coasts, Arctic tundra, toxic slag piles, etc., they produce a variety of biologically meaningful and structurally novel secondary metabolites to resist external environmental stresses. The endofungi that live in and coevolve with lichens can also generate abundant secondary metabolites with novel structures, diverse skeletons, and intriguing bioactivities due to their mutualistic symbiosis with hosts, and they have been considered as strategically significant medicinal microresources for the discovery of pharmaceutical lead compounds in the medicinal industry. They are also of great importance in the fundamental research field of natural product chemistry. In this work, we conducted a comprehensive review and systematic evaluation of the secondary metabolites of endolichenic fungi regarding their origin, distribution, structural characteristics, and biological activity, as well as recent advances in their medicinal applications, by summarizing research achievements since 2015. Moreover, the current research status and future research trends regarding their chemical components are discussed and predicted. A systematic review covering the fundamental chemical research advances and pharmaceutical potential of the secondary metabolites from endolichenic fungi is urgently required to facilitate our better understanding, and this review could also serve as a critical reference to provide valuable insights for the future research and promotion of natural products from endolichenic fungi.

14.
J Agric Food Chem ; 72(10): 5403-5415, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38386648

ABSTRACT

Sotolone, a chiral compound, plays an important role in the food industry. Herein, (R)-/(S)-sotolone were separated to determine their odor characteristics and thresholds in air (R-form: smoky, burned, herb, and green aroma, 0.0514 µg/m3; S-form: sweet, milk, acid, and nutty aroma, 0.0048 µg/m3). OR8D1 responses to (R)-/(S)-sotolone were detected in a HEK293 cell-based luminescence assay. (S)-Sotolone was a more potent agonist than (R)-sotolone (EC50 values of 84.98 ± 1.05 and 167.20 ± 0.25 µmol/L, respectively). Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analyses confirmed that the combination of (S)-sotolone and OR8D1 was more stable than that of (R)-sotolone. Odorant docking, multiple sequence alignments, site-directed mutagenesis, and functional studies with recombinant odorant receptors (ORs) in a cell-based luminescence assay identified 11 amino-acid residues that influence the enantioselectivity of OR8D1 toward sotolone significantly and that N2065.46 was indispensable to the activation of OR8D1 by (S)-sotolone.


Subject(s)
Receptors, Odorant , Humans , Receptors, Odorant/chemistry , HEK293 Cells , Furans , Smell , Odorants/analysis
15.
Compr Rev Food Sci Food Saf ; 23(1): e13278, 2024 01.
Article in English | MEDLINE | ID: mdl-38284610

ABSTRACT

Separation process is one of the key processes in the production of fruit spirits, including the traditional distillation method and the new pervaporation membrane method. The separation process significantly determines the constituents and proportions of compounds in the fruit spirit, which has a significant impact on the spirit quality and consumer acceptance. Therefore, it is important and complex to reveal the changing rules of chemical substances and the principles behind them during the separation process of fruit spirits. This review summarized the traditional separation methods commonly used in fruit spirits, covering the types, principles, and corresponding equipment of distillation methods, focused on the enrichment or removal of aroma compounds and harmful factors in fruit spirits by distillation methods, and tried to explain the mechanism behind it. It also proposed a new separation technology for the production of fruit spirits, pervaporation membrane technology, summarized its working principle, operation, working parameters, and application in the production of fruit spirits, and outlined the impact of the separation method on the production of fruit spirits based on existing research, focusing on the separation of flavor compounds, sensory qualities, and hazard factors in fruit spirits, along with a preliminary comparison with distillation. Finally, according to the current researches of the separation methods and the development requirement of the separation process of fruit spirits, the prospect of corresponding research is put forward, in order to propose new ideas and development directions for the research in this field.


Subject(s)
Distillation , Fruit , Fruit/chemistry , Distillation/methods
16.
Food Chem ; 443: 138487, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38271898

ABSTRACT

The distinctive flavor profile of soy sauce flavor baijiu (SAB) is shaped by its unique aroma compounds. The characteristic aroma compounds in Langjiu soy sauce flavor baijiu (LSAB) were explored based on molecular sensory science. A total of 66 aroma active compounds were identified by gas chromatography-olfactometry (GC-O) combined with aroma extract dilution analysis (AEDA), and 6 important unknown sulfur compounds were identified using the aroma active compounds reverse verification method (ACRVW). A total of 39 key aroma compounds were determined to have odor activity values (OAVs) ≥ 1. The aroma contribution of aroma components was verified by aroma recombination and aroma omission experiments. 15 characteristic aroma compounds were identified in LSAB. Meanwhile, a simple and easy-to-understand sensory expression language was described to fully understand the style characteristics of LSAB. Overall, the present paper offers insights into research uncovering the key "sauce flavor" of soy sauce flavor baijiu.


Subject(s)
Soy Foods , Volatile Organic Compounds , Odorants/analysis , Soy Foods/analysis , Olfactometry/methods , Chromatography, Gas , Volatile Organic Compounds/analysis
17.
Front Med (Lausanne) ; 10: 1256176, 2023.
Article in English | MEDLINE | ID: mdl-38076257

ABSTRACT

Neuroendocrine tumors (NETs) are a heterogeneous group of tumors originating from peptide-producing neurons and neuroendocrine cells. The liver is the most common site of metastasis for NETs, while primary hepatic neuroendocrine tumors (PHNETs) are exceedingly rare. While somatostatin receptor scintigraphy (SRS) has demonstrated superior efficacy compared to [18F]FDG PET imaging in the diagnosis of neuroendocrine tumors, [18F]AlF-NOTA-Octreotide ([18F]AlF-OC) PET/CT also exhibits specific advantages over SRS. This article presents a case study of a patient with a liver mass who underwent sequential [18F]FDG and [18F]AlF-OC PET/CT scans, ruling out hepatocellular carcinoma and confirming the diagnosis of PHNETs. Subsequently, the patient underwent surgical treatment. From another perspective, [18F]AlF-OC exhibits distinct advantages. The postoperative pathology revealed a PHNETs, which further emphasizes its clinical rarity.

18.
Opt Express ; 31(25): 42036-42045, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087586

ABSTRACT

The optical spin-orbit Hall effect manifests the separation of the spin angular momentum (SAM) and the orbital angular momentum (OAM), yet it can be obtained for the radially polarized light and well controlled by the initial phase of the polarization state which leads to the twist of its distribution. In this paper, we introduce the polarization helicity to characterize the effect of the initial phase of the polarization states in the optical spin-orbit Hall effect. We find the polarization helicity of the radial polarization state can be modulated by changing its initial phase, and the polarization helicity of the high-order polarization state always is zero. We show that the separation magnitude of the SAM and the OAM reach the maximum value when the initial phase of the radial polarization state equals π/4 (or -π/4). The sign of the SAM and the OAM are determined by the polarization helicity of incident light and the anisotropy of uniaxial crystal, and its evolution follows a sinusoidal function. Furthermore, the polarization state of the incident radially polarized light will evolve into the left-handed (or right-handed) elliptical polarization state as the change of the polarization helicity of incident light. Our studies further deepen the understanding of the spin-orbit coupling of the vector beams, and provide a potential technique for modulating the polarization state of the light in uniaxial crystal.

19.
Foods ; 12(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38137210

ABSTRACT

A novel polysaccharide, HSP80-2, with an average molecular weight of 13.8 kDa, was successfully isolated by the gradient ethanol precipitation (GEP) method from Huangshui (HS), the by-product of Chinese Baijiu. It was mainly composed of arabinose, xylose, and glucose with a molar ratio of 4.0:3.1:2.4, which was completely different from the previous reported HS polysaccharides (HSPs). Morphological observations indicated that HSP80-2 exhibited a smooth but uneven fragmented structure. Moreover, HSP80-2 exerted prebiotic activity evaluated by in vitro fermentation. Specifically, HSP80-2 was utilized by gut microbiota, and significantly regulated the composition and abundance of beneficial microbiota such as Phascolarctobacterium, Parabacteroides, and Bacteroides. Notably, KEGG pathway enrichment analysis illustrated that HSP80-2 enriched the pathways of amino sugar and nucleotide sugar metabolism (Ko00520), galactose metabolism (ko00052), and the citrate cycle (TCA cycle) (ko00020). Meanwhile, the contents of short-chain fatty acids (SCFAs) mainly including acetic acid, propionic acid, and butyric acid in the HSP80-2 group were remarkably increased, which was closely associated with the growth of Lachnoclostridium and Parabacteroides. These results showed that HSP80-2 might be used as a potential functional factor to promote human gut health, which further extended the high value utilization of HS.

SELECTION OF CITATIONS
SEARCH DETAIL