Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Hazard Mater ; 479: 135727, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39244980

ABSTRACT

The widespread prevalence of microplastics (MPs) in the environment poses concerns as they are vectors of antibiotic resistance genes (ARGs). The relationships between antibiotic resistomes and MPs remain unexplored in soil which was considered as the reservoirs of MPs and ARGs. This study investigated the effects of polyvinyl chloride (PVC) MPs on soil bacterial communities and ARG abundance which soil samples sourced from 20 provinces across China. We found that PVC significantly influences soil bacterial community structure and ARG abundance. Structural equation modeling revealed that PVC alters soil characteristics, ultimately affecting soil bacterial communities, including ARG-containing bacterial hosts, and the relative abundance of ARGs. This study enhances our understanding of how MPs influence the proliferation and hosts of ARGs within diverse soil environments, offering crucial insights for future strategies in plastic management and disposal.

2.
Plants (Basel) ; 13(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39204633

ABSTRACT

Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem rust, poses a significant threat to global wheat production. Genetic resistance offers a cost-effective and sustainable solution. The durum wheat landrace PI 94701 was previously hypothesized to carry two stem rust resistance (Sr) genes, but their chromosomal locations were unknown. In this study, we mapped and characterized an all-stage Sr gene in PI 94701, temporarily designated as SrPI94701. In seedling tests, SrPI94701 was effective against all six Pgt races tested. Using a large segregating population, we mapped SrPI94701 on chromosome arm 5BL within a 0.17-cM region flanked by markers pku69124 and pku69228, corresponding to 1.04 and 2.15 Mb genomic regions in the Svevo and Chinese Spring reference genomes. Within the candidate region, eight genes exhibited differential expression between the Pgt-inoculated resistant and susceptible plants. Among them, two nucleotide-binding leucine-rich repeat (NLR) genes, TraesCS5B03G1334700 and TraesCS5B03G1335100, showed high polymorphism between the parental lines and were upregulated in Pgt-inoculated resistant plants. However, the flanking and completely linked markers developed in this study could not accurately predict the presence of SrPI94701 in a survey of 104 wheat accessions. SrPI94701 is a promising resource for enhancing stem rust resistance in wheat breeding programs.

3.
Sci Total Environ ; 951: 175561, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39153640

ABSTRACT

Anthropogenic nitrogen (N) inputs substantially influence the N cycle in agricultural ecosystems. However, the potential links among various environmental factors, nitrogen functional genes, and transformation rates under N fertilization remain poorly understood. Here, we conducted a five-year field experiment and collected 54 soil samples from three 0-4 m boreholes across different treatments: control, N-addition (nitrogen fertilizer) and NPK-addition (combined application of nitrogen, phosphorus and potassium fertilizers) treatments. Our results revealed pronounced variations in soil physiochemical parameters, metal concentrations and antibiotic levels under both N and NPK treatments. These alternations induced significant shifts in bacterial and fungal communities, altered NFG abundance and composition, and greatly enhanced rates of nitrate reduction processes. Notably, nutrients, antibiotics and bacteria exerted a more pronounced influence on NFGs and nitrate reduction under N treatment, whereas nutrients, metals, bacteria and fungi had a significant impact under NPK treatment. Furthermore, we established multidimensional correlations between nitrate reduction gene profiles and the activity rates under N and NPK treatments, contrasting with the absence of significant relationships in the control treatment. These findings shed light on the intricate relationships between microbial genetics and ecosystem functions in agricultural ecosystem, which is of significance for predicting and managing metabolic processes effectively.


Subject(s)
Agriculture , Fertilizers , Nitrogen Cycle , Nitrogen , Soil Microbiology , Soil , Nitrogen/metabolism , Soil/chemistry , Agriculture/methods , Fungi , Bacteria , Phosphorus/analysis , Ecosystem
4.
Huan Jing Ke Xue ; 45(6): 3468-3479, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897767

ABSTRACT

Antibiotics are widely used in animal husbandry, planting, and aquaculture in agricultural industries. A large amount of the parent antibiotics used are released into the environment through discharge via feces and urine, posing potential risks to human health and ecosystems. It is thus very important to understand how antibiotics in the agricultural environment threaten the ecological environment and human health. Accordingly, risk assessment of antibiotics in the environment has become the research focus in recent years. The aim of this study was to review the risk assessment methods of antibiotics. The results showed that the ecological environment risk has mainly been assessed by the risk quotient (RQ). Predicted no-impact concentrations (PNECs) are an important indicator for ecological environment risk assessment, but a definite value is still controversial. The hazard quotient (HQ) is generally used to assess health risks. At present, it is necessary to clarify the selection of antibiotic exposure pathways and toxicological thresholds. However, neither of these two methods have currently considered either mixed pollution or the risk of antibiotic metabolites. Further analysis indicated that the ecological risks of antibiotics in the water environment and feces/manure/soil environment were widespread, which had an impact on both the soil and water environment. The types of antibiotics with high risk were different for various cultivated types. The factors including test species, testing conditions, calculation methods, and soil types all affected the detection of PNECs. Human health risk caused by dietary intake of antibiotics was minimal, but it cannot be ignored given the seafood consumption in coastal areas. Moreover, quinolones have both high ecological and human health risks in the agricultural environment. Based on the amount of antibiotics in agriculture and the residual concentration or toxicity of antibiotics in the related environment, this study proposed a priority-control list of antibiotics in the agricultural environment and summarized the main problems in the current antibiotic risk assessment. It will provide helpful support for the scientific optimization of antibiotic risk assessment and the effective control of antibiotics in agricultural environments.


Subject(s)
Anti-Bacterial Agents , Environmental Monitoring , Risk Assessment , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/adverse effects , Agriculture , Crops, Agricultural/growth & development , Soil Pollutants/analysis , Environmental Pollutants/analysis
6.
Mol Brain ; 17(1): 23, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750560

ABSTRACT

This study aimed to unveil the central mechanism of moxibustion treating chronic inflammatory visceral pain (CIVP) from the angle of circRNA-miRNA-mRNA networks in the spinal cord. The rat CIVP model was established using a mixture of 5% (w/v) 2,4,6-trinitrobenzene sulfonic acid and 50% ethanol at a volume ratio of 2:1 via enema. Rats in the moxibustion group received herb-partitioned moxibustion at Tianshu (ST25, bilateral) and Qihai (CV6) points. The abdominal withdrawal reflex (AWR), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were adopted for pain behavior observation and pain sensitivity assessment. The circRNA, miRNA, and mRNA expression profiles were detected using the high-throughput sequencing technique. Relevant databases and bioinformatics analysis methods were used to screen for differentially expressed (DE) RNAs and build a circRNA-miRNA-mRNA (competing endogenous RNA) ceRNA regulatory network. The real-time quantitative PCR was employed to verify the sequencing result. CIVP rat models had a significantly higher AWR and lower TWL and MWT than normal rats. Between normal and model rats, there were 103 DE-circRNAs, 16 DE-miRNAs, and 397 DE-mRNAs in the spinal cord. Compared with the model group, the moxibustion group had a lower AWR and higher TWL and MWT; between these two groups, there were 118 DE-circRNAs, 15 DE-miRNAs, and 804 DE-mRNAs in the spinal cord. Two ceRNA networks were chosen to be verified. As a result, moxibustion's analgesic effect on visceral pain in CIVP rats may be associated with regulating the circRNA_02767/rno-miR-483-3p/Gfap network in the spinal cord and improving central sensitization.


Subject(s)
Gene Regulatory Networks , MicroRNAs , Moxibustion , RNA, Circular , RNA, Messenger , Rats, Sprague-Dawley , Spinal Cord , Visceral Pain , Animals , Moxibustion/methods , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Visceral Pain/genetics , Visceral Pain/therapy , Male , Inflammation/genetics , Inflammation/pathology , Chronic Pain/therapy , Chronic Pain/genetics , Rats , Gene Expression Regulation
7.
Theor Appl Genet ; 137(5): 113, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678511

ABSTRACT

KEY MESSAGE: The rust resistance genes Lr53 and Yr35 were introgressed into bread wheat from Aegilops longissima or Aegilops sharonensis or their S-genome containing species and mapped to the telomeric region of chromosome arm 6BS. Wheat leaf and stripe rusts are damaging fungal diseases of wheat worldwide. Breeding for resistance is a sustainable approach to control these two foliar diseases. In this study, we used SNP analysis, sequence comparisons, and cytogenetic assays to determine that the chromosomal segment carrying Lr53 and Yr35 was originated from Ae.longissima or Ae. sharonensis or their derived species. In seedling tests, Lr53 conferred strong resistance against all five Chinese Pt races tested, and Yr35 showed effectiveness against Pst race CYR34 but susceptibility to race CYR32. Using a large population (3892 recombinant gametes) derived from plants homozygous for the ph1b mutation obtained from the cross 98M71 × CSph1b, both Lr53 and Yr35 were successfully mapped to a 6.03-Mb telomeric region of chromosome arm 6BS in the Chinese Spring reference genome v1.1. Co-segregation between Lr53 and Yr35 was observed within this large mapping population. Within the candidate region, several nucleotide-binding leucine-rich repeat genes and protein kinases were identified as candidate genes. Marker pku6B3127 was completely linked to both genes and accurately predicted the absence or presence of alien segment harboring Lr53 and Yr35 in 87 tetraploid and 149 hexaploid wheat genotypes tested. We developed a line with a smaller alien segment (< 6.03 Mb) to reduce any potential linkage drag and demonstrated that it conferred resistance levels similar to those of the original donor parent 98M71. The newly developed introgression line and closely linked PCR markers will accelerate the deployment of Lr53 and Yr35 in wheat breeding programs.


Subject(s)
Aegilops , Chromosome Mapping , Disease Resistance , Genes, Plant , Puccinia , Aegilops/genetics , Aegilops/microbiology , Chromosomes, Plant/genetics , Disease Resistance/genetics , Genetic Introgression , Genetic Linkage , Genetic Markers , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Puccinia/physiology , Triticum/genetics , Triticum/microbiology
8.
J Chromatogr Sci ; 62(5): 465-470, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38213303

ABSTRACT

Although Vibrio parahaemolyticus (V. parahaemolyticus) is a pathogen frequently found in seafood, there is a possibility of its presence in other foods, such as dairy products. The main virulence factors of V. parahaemolyticus are thermostable direct hemolysins (TDHs) which are lethal toxins, so it is necessary to establish qualitative and quantitative methods for determining TDHs. HPLC-ESI-TOF was employed to establish a method for identifying TDHs. The identification and quantification ions of TDHs were confirmed by HPLC-ESI-TOF. The method was developed for detecting TDHs in milk powder using HPLC-ESI-TOF in this paper, and limits of detection (were between 0.20 and 0.40 mg/kg, limits of quantitation were between 0.5 and 1.0 mg/kg and recoveries of all TDHs were between from 78% to 94% with relative standard deviation lower than 10%. This research will provide a reference for developing methods of HPLC-MS/MS to detect TDHs in food samples, which can provide a tool for the government to monitor TDHs contamination in foods.


Subject(s)
Hemolysin Proteins , Limit of Detection , Milk , Spectrometry, Mass, Electrospray Ionization , Chromatography, High Pressure Liquid/methods , Milk/chemistry , Milk/microbiology , Animals , Spectrometry, Mass, Electrospray Ionization/methods , Hemolysin Proteins/analysis , Hemolysin Proteins/chemistry , Bacterial Toxins/analysis , Bacterial Toxins/chemistry , Reproducibility of Results , Linear Models , Tandem Mass Spectrometry/methods , Powders/chemistry , Food Contamination/analysis , Vibrio parahaemolyticus/chemistry , Vibrio parahaemolyticus/isolation & purification
9.
Schizophr Bull ; 50(1): 199-209, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37540273

ABSTRACT

BACKGROUND AND HYPOTHESIS: Low-grade neural and peripheral inflammation are among the proposed pathophysiological mechanisms of schizophrenia. White matter impairment is one of the more consistent findings in schizophrenia but the underlying mechanism remains obscure. Many cerebral white matter components are sensitive to neuroinflammatory conditions that can result in demyelination, altered oligodendrocyte differentiation, and other changes. We tested the hypothesis that altered immune-inflammatory response system (IRS) and compensatory immune-regulatory reflex system (IRS/CIRS) dynamics are associated with reduced white matter integrity in patients with schizophrenia. STUDY DESIGN: Patients with schizophrenia (SCZ, 70M/50F, age = 40.76 ±â€…13.10) and healthy controls (HCs, 38M/27F, age = 37.48 ±â€…12.31) underwent neuroimaging and plasma collection. A panel of cytokines were assessed using enzyme-linked immunosorbent assay. White matter integrity was measured by fractional anisotropy (FA) from diffusion tensor imaging using a 3-T Prisma MRI scanner. The cytokines were used to generate 3 composite scores: IRS, CIRS, and IRS/CIRS ratio. STUDY RESULTS: The IRS/CIRS ratio in SCZ was significantly higher than that in HCs (P = .009). SCZ had a significantly lower whole-brain white matter average FA (P < .001), and genu of corpus callosum (GCC) was the most affected white matter tract and its FA was significantly associated with IRS/CIRS (r = 0.29, P = .002). FA of GCC was negatively associated with negative symptom scores in SCZ (r = -0.23, P = .016). There was no mediation effect taking FA of GCC as mediator, for that IRS/CIRS was not associated with negative symptom score significantly (P = .217) in SCZ. CONCLUSIONS: Elevated IRS/CIRS might partly account for the severity of negative symptoms through targeting the integrity of GCC.


Subject(s)
Schizophrenia , White Matter , Humans , Adult , Middle Aged , White Matter/diagnostic imaging , Diffusion Tensor Imaging , Reflex , Cytokines , Anisotropy
10.
Nat Commun ; 14(1): 7354, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963867

ABSTRACT

Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.


Subject(s)
Basidiomycota , Disease Resistance , Chromosome Mapping , Disease Resistance/genetics , Alleles , Haplotypes , Amino Acid Sequence , Basidiomycota/genetics , Plant Diseases/genetics
12.
Environ Sci Pollut Res Int ; 30(50): 108694-108705, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37751004

ABSTRACT

Staphylococcal enterotoxins (SEs) secreted by Staphylococcus aureus (S. aureus) can cause foodborne disease, nausea, vomiting and diarrhea, and even death. Regulation of SE expression is related to accessory gene regulators (Agr). It is important to reveal which environmental factors influence regulation of SE expression to prevent SE food poisoning outbreak. Hence, natural environmental factors which may have an impact on SE expression were selected, such as temperature, food types, strains, and competing strains. Seven strains of S. aureus carrying different SE genes were collected from the Chinese Academy of Inspection and Quarantine (CAIQ) strain bank for study. Strains were cultured with different conditions. Temperature was 8 °C, 22 °C, and 30 °C. Food type was milk powder and nutrient broth. Competing strains were Vibrio parahaemolyticus (V. parahaemolyticus), Escherichia coli (E. coli), and Bacillus cereus (B. cereus). The expression culture solution was pretreated by centrifugation, then determined by using SDS-PAGE, and distinguished SEs apart from each other by HPLC-ESI-TOF. There are 168 samples collected from SE expression culture; the result of SDS-PAGE suggests 23 samples were positive for SEs, and the other 145 samples were negative for SEs. The result of HPLC-ESI-TOF suggests that SEs with similar molecular weight can be distinguished in terms of m/z. The most important factor contributing to regulate expression of SEs was estimated by logistic regressive analysis. The result shows that McFadden R2 is 0.213; p value is 0.000 (p < 0.05); this result illustrates that the model is valid and meaningful. Strains, food types, temperature, and competing strands can explain the 21% change in SE expression. Temperature (z = 3.029, p = 0.002 < 0.01), strains (z = - 3.132, p = 0.002 < 0.01), and food types (z = - 2.415, p = 0.016 < 0.05) have significant impact on SE expression, and the competing strains (z = 1.230, p = 0.219 > 0.05) have no impact on the SE expression. More important impact on SE expression was estimated by OR value; the result shows that strength of temperature influencing on SE expression is bigger than strains and food types in terms of values of OR, temperature (OR = 2.862), strains (OR = 0.641), and food types (OR = 0.561); consequently, temperature is a key factor for stimulating SE expression and had high expression at 30 °C. Therefore, food easily contaminated with S. aureus should be monitored intensively at early and late summer, when proper temperature for expressing SEs may result in S. aureus food poisoning prevalence.


Subject(s)
Staphylococcal Food Poisoning , Staphylococcal Infections , Humans , Enterotoxins/analysis , Staphylococcus aureus/genetics , Escherichia coli , Staphylococcal Food Poisoning/epidemiology , Food Microbiology
13.
Nat Commun ; 14(1): 6072, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770474

ABSTRACT

Leaf rust, caused by Puccinia triticina Eriksson (Pt), is one of the most severe foliar diseases of wheat. Breeding for leaf rust resistance is a practical and sustainable method to control this devastating disease. Here, we report the identification of Lr47, a broadly effective leaf rust resistance gene introgressed into wheat from Aegilops speltoides. Lr47 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that is both necessary and sufficient to confer Pt resistance, as demonstrated by loss-of-function mutations and transgenic complementation. Lr47 introgression lines with no or reduced linkage drag are generated using the Pairing homoeologous1 mutation, and a diagnostic molecular marker for Lr47 is developed. The coiled-coil domain of the Lr47 protein is unable to induce cell death, nor does it have self-protein interaction. The cloning of Lr47 expands the number of leaf rust resistance genes that can be incorporated into multigene transgenic cassettes to control this devastating disease.


Subject(s)
Aegilops , Basidiomycota , Aegilops/genetics , Plant Breeding , Triticum/genetics , Basidiomycota/genetics , Cloning, Molecular , Plant Diseases/genetics , Disease Resistance/genetics
14.
BMC Med ; 21(1): 286, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542262

ABSTRACT

BACKGROUND: Microglia are known to regulate stress and anxiety in both humans and animal models. Psychosocial stress is the most common risk factor for the development of schizophrenia. However, how microglia/brain macrophages contribute to schizophrenia is not well established. We hypothesized that effector molecules expressed in microglia/macrophages were involved in schizophrenia via regulating stress susceptibility. METHODS: We recruited a cohort of first episode schizophrenia (FES) patients (n = 51) and age- and sex-paired healthy controls (HCs) (n = 46) with evaluated stress perception. We performed blood RNA-sequencing (RNA-seq) and brain magnetic resonance imaging, and measured plasma level of colony stimulating factor 1 receptor (CSF1R). Furthermore, we studied a mouse model of chronic unpredictable stress (CUS) combined with a CSF1R inhibitor (CSF1Ri) (n = 9 ~ 10/group) on anxiety behaviours and microglial biology. RESULTS: FES patients showed higher scores of perceived stress scale (PSS, p < 0.05), lower blood CSF1R mRNA (FDR = 0.003) and protein (p < 0.05) levels, and smaller volumes of the superior frontal gyrus and parahippocampal gyrus (both FDR < 0.05) than HCs. In blood RNA-seq, CSF1R-associated differentially expressed blood genes were related to brain development. Importantly, CSF1R facilitated a negative association of the superior frontal gyrus with PSS (p < 0.01) in HCs but not FES patients. In mouse CUS+CSF1Ri model, similarly as CUS, CSF1Ri enhanced anxiety (both p < 0.001). Genes for brain angiogenesis and intensity of CD31+-blood vessels were dampened after CUS-CSF1Ri treatment. Furthermore, CSF1Ri preferentially diminished juxta-vascular microglia/macrophages and induced microglia/macrophages morphological changes (all p < 0.05). CONCLUSION: Microglial/macrophagic CSF1R regulated schizophrenia-associated stress and brain angiogenesis.


Subject(s)
Microglia , Schizophrenia , Animals , Humans , Mice , Brain/pathology , Disease Models, Animal , Macrophages/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
15.
J Environ Manage ; 344: 118683, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37531670

ABSTRACT

Antibiotic resistance genes (ARGs) can threaten the clean production of rice owing to continuous selective pressure in heavy metal-antibiotic co-contaminated paddy soils. As an important soil carbon reservoir, the role of humic substances from different types of manure in the regulation of soil ARGs remains unclear. In this study, fulvic acid (FA) and humic acid (HA) were extracted from pig manure (PM), cow dung (CD), and chicken manure (CM). The influence of their characteristics and doses on the fate of ARGs was investigated in arsenic (As)-antibiotic co-contaminated paddy soils. The release of As and degradation of antibiotics were promoted in 1% PM-FA treatment, with increases of 4.8%-5.6% and 8.3%-8.8% compared with CM-FA and CD-FA treatments, respectively. The coexistence of FA/HA, Fe, As, and antibiotics in soil pore water affected the environmental behavior of ARGs, with FA showing a more positive effect. Species including Bacillus, Geobacter, Desulfitobacterium, and Christensenellaceae_R-7_group were considered potential hosts of ARGs, and their resistance to co-contamination increased after the addition of FA. Membrane transport is a potential strategy for host bacteria of ARGs to cope with As-antibiotic complex pressure. These results demonstrate the coupling mechanisms of As, antibiotics, and ARGs regulated by different humic substances in co-contaminated paddy soils, which could support the clean production of rice in agricultural practice.


Subject(s)
Arsenic , Oryza , Swine , Animals , Soil , Anti-Bacterial Agents/pharmacology , Humic Substances , Manure , Soil Microbiology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Chickens
16.
Theor Appl Genet ; 136(5): 120, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37103626

ABSTRACT

KEY MESSAGE: The diploid wheat recessive stem rust resistance gene SrTm4 was fine-mapped to a 754-kb region on chromosome arm 2AmL and potential candidate genes were identified. Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resistance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene confers resistance to North American and Chinese Pgt races. Using a large mapping population (9522 gametes), we mapped SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in the Chinese Spring reference genome v2.1. A physical map of the SrTm4 region was constructed with 11 overlapping BACs from the resistant Triticum monococcum PI 306540. Comparison of the 754-kb physical map with the genomic sequence of Chinese Spring and a discontinuous BAC sequence of DV92 revealed a 593-kb chromosomal inversion in PI 306540. Within the candidate region, we identified an L-type lectin-domain containing receptor kinase (LLK1), which was disrupted by the proximal inversion breakpoint, as a potential candidate gene. Two diagnostic dominant markers were developed to detect the inversion breakpoints. In a survey of T. monococcum accessions, we identified 10 domesticated T. monococcum subsp. monococcum genotypes, mainly from the Balkans, carrying the inversion and showing similar mesothetic resistant infection types against Pgt races. The high-density map and tightly linked molecular markers developed in this study are useful tools to accelerate the deployment of SrTm4-mediated resistance in wheat breeding programs.


Subject(s)
Basidiomycota , Plant Breeding , Triticum/genetics , Chromosome Mapping , Genotype , Genes, Plant , Plant Diseases/genetics , Disease Resistance/genetics
17.
Front Immunol ; 14: 1089809, 2023.
Article in English | MEDLINE | ID: mdl-36776858

ABSTRACT

Oxidative stress is an important pathogenic factor in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), further impairing the entire colon. Intestinal epithelial cells (IECs) are crucial components of innate immunity and play an important role in maintaining intestinal barrier function. Recent studies have indicated that microRNA-222-3p (miR-222-3p) is increased in colon of UC and colorectal cancer (CRC) patients, and miR-222-3p is a crucial regulator of oxidative stress. However, whether miR-222-3p influences IEC oxidative stress in UC and CAC remains unknown. This study investigated the effect of miR-222-3p on the regulation of IEC oxidative stress in UC and CAC. An in vitro inflammation model was established in NCM460 colonic cells, mouse UC and CAC models were established in vivo, and IECs were isolated. The biological role and mechanism of miR-222-3p-mediated oxidative stress in UC and CAC were determined. We demonstrated that miR-222-3p expression was notably increased in dextran sulfate sodium (DSS)-induced NCM460 cells and IECs from UC and CAC mice. In vitro, these results showed that the downregulation of miR-222-3p reduced oxidative stress, caspase-3 activity, IL-1ß and TNF-α in DSS-induced NCM460 cells. We further identified BRG1 as the target gene of miR-222-3p, and downregulating miR-222-3p alleviated DSS-induced oxidative injury via promoting BRG1-mediated activation Nrf2/HO-1 signaling in NCM460 cells. The in vivo results demonstrated that inhibiting miR-222-3p in IECs significantly relieved oxidative stress and inflammation in the damaged colons of UC and CAC mice, as evidenced by decreases in ROS, MDA, IL-1ß and TNF-α levels and increases in GSH-Px levels. Our study further demonstrated that inhibiting miR-222-3p in IECs attenuated oxidative damage by targeting BRG1 to activate the Nrf2/HO-1 signaling. In summary, inhibiting miR-222-3p in IECs attenuates oxidative stress by targeting BRG1 to activate the Nrf2/HO-1 signaling, thereby reducing colonic inflammation and tumorigenesis.


Subject(s)
Colitis, Ulcerative , Colitis-Associated Neoplasms , MicroRNAs , Animals , Mice , Colitis, Ulcerative/complications , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Inflammation , MicroRNAs/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
18.
Environ Pollut ; 322: 121253, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36773688

ABSTRACT

Soil is a vital contributor to the production of nitrous oxide (N2O), a potent greenhouse gas, through the nitrogen cycle, which can be influenced by accumulated vanadium (V) in soil but it is less pronounced. This work investigated the response of soil N2O fluxes along with major nitrogen cycle products (ammonium, nitrate, and nitrite) to different vanadium contents (0, 200, 500, 800, and 1100 mg V/kg), and the underlying microbial mechanisms. N2O fluxes was significantly influenced at high V content (1100 mg V/kg) due to its corresponding high water-soluble V content. Microbial composition and their correlations with nitrogen cycle products showed that microbes in dominant phyla (Actinobacteriota and Proteobacteria) and genus (Nocardioides, Lysobacter, Sphingomonas, and Marmoricola) might be the important contributor to N2O fluxes regardless of the V content. Moreover, high V contents (800, and 1100 mg V/kg) could enrich microbes involved in nitrogen cycle, but weaken their correlations with nitrogen-related products, such as in genus Bacillus, and change microbial correlation with N2O from associated with nitrate and nitrite to ammonium. Meanwhile, functional gene predication results showed that denitrifying genes nirKS and nosZ were negatively and positively correlated with V contents, respectively. These all further suggested that the shift of possible N2O metabolic pathways induced mainly by water-soluble V might be the underlying reason for N2O fluxes. These findings promote an understanding of the potential effect of metal pollution on N2O fluxes in soil.


Subject(s)
Ammonium Compounds , Microbiota , Vanadium/toxicity , Nitrates , Nitrites , Nitrogen Cycle , Soil , Nitrous Oxide/analysis , Nitrogen/analysis , Soil Microbiology
19.
Article in English | MEDLINE | ID: mdl-36833976

ABSTRACT

Lucid waters and lush mountains are invaluable assets. Resource-saving and environmentally friendly industrial structures, production, and living modes are pursued continuously for sustainable ecological development. According to the Second National Pollution-Source Survey, agricultural non-point pollution is still the most important source of the current water pollution. In order to improve the water environment and control the pollution, the meaning and content of the eco-agricultural industrial chain was introduced. Based on this conception, the eco-agricultural industrial chain, integrating a whole circular system with different sessions of crop farming, animal breeding, agricultural product processing, and rural living, was innovatively put forward to control the agricultural non-point pollution and protect the water environment systematically for the first time in this paper. The sustainable development was realized at a large scale from the reduction and harmlessness at the source, resource utilization in the process, and ecological restoration in the end. Core techniques were innovated based on the integration of agricultural industries to achieve the high-quality and green development of agriculture. The system included ecological breeding technologies, ecological cultivation technologies, as well as rural sewage treatment and recycling technologies, in the principle of reduce, reuse, and resource. Based on this, the agricultural production changed from the traditional mode of "resources-products-wastes" to the circulation pattern of "resources-products-renewable resources-products". Thus, the final aim could be achieved to realize the material's multilevel use and energy conversion in the system. The eco-agricultural industrial chain technology was proven to be efficient to achieve both the good control of agricultural non-point pollution and an effective improvement in the water quality.


Subject(s)
Agriculture , Water Pollution , Animals , Industry , China
20.
J Hazard Mater ; 441: 129897, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36084469

ABSTRACT

The co-existence of antibiotics and heavy metals in soil with manure application poses high risk to both environment and human health, and thus effective remediation methods are in urgent need. This study investigated the synergistic effects of electrokinetic remediation (EKR) on antibiotic resistance and arsenic (As) in co-contaminated paddy soils. EKR treatments in soil amended with pig manure (EKR-PD) showed better remediation efficiency compared with that without pig manure. In detail, the content of available As and the abundance of antibiotic-resistant bacteria (ARB) decreased by 25.2 %-41.4 % and 9.5 %-21.1 % after 7-d remediation, respectively, due to a relatively higher current density for EKR-PD. The role of the electric field contributed to 33.9 % of antibiotic degradation. Antibiotic resistance genes (ARGs) with ribosomal-protection and enzymatic-deactivation types were easier to remove, with the removal ratio of 37.8 %-41.6 % in EKR-PD. Brevundimonas was the most significantly different species during remediation. Bacillus and Clostridium_ sensu_stricto_1 were potential host bacteria of ARGs in the electric field. Membrane transport might be an effective strategy for microorganisms to respond to the stress of both electric field and co-contaminated environments. This study supports the potential role of EKR in the co-contamination of heavy metals and antibiotic resistance under manure application.


Subject(s)
Arsenic , Metals, Heavy , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Genes, Bacterial , Humans , Manure/microbiology , Soil , Soil Microbiology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL