Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Plant Physiol Biochem ; 214: 108918, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986238

ABSTRACT

Lodging largely affects yield, quality and mechanical harvesting of maize. Stalk strength is one of the major factors that affect maize lodging. Although plant cell wall components including lignin and cellulose were known to be associated with stalk strength and lodging resistance, spatial accumulation of specific lignin monomers and cellulose in different tissues and their association with stalk strength in maize was not clearly understood. In this study, we found that both G and S lignin monomers accumulate highest in root, stem rind and leaf vein. Consistently, most lignin biosynthetic genes were expressed higher in root and stem than in other tissues. However, cellulose appears to be lowest in root. There are only mild changes of G lignin and cellulose in different internodes. Instead, we noticed a dramatic decrease of S-lignin accumulation and lignin biosynthetic gene expression in 2nd to 4th internodes wherein stem breakage usually occurs, thereby revealing a few candidate lignin biosynthetic genes associated with stalk strength. Moreover, stalk strength is positively correlated with G, S lignin, and cellulose, but negatively correlated with S/G ratio based on data of maize lines with high or low stalk strength. Loss-of-function of a caffeic acid o-methyltransferase (COMT), which is involved in S lignin biosynthesis, in the maize bm3 mutant, leads to lower stalk strength. Our data collectively suggest that stalk strength is determined by tissue-specific accumulation of lignin monomers and cellulose, and manipulation of the cell wall components by genetic engineering is vital to improve maize stalk strength and lodging resistance.

2.
J Mech Behav Biomed Mater ; 157: 106611, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38852243

ABSTRACT

Dynamic soft tissue characterisation is an important element in robotic minimally invasive surgery. This paper presents a novel method by combining neural network with recursive least square (RLS) estimation for dynamic soft tissue characterisation based on the nonlinear Hunt-Crossley (HC) model. It develops a radial basis function neural network (RBFNN) to compensate for the error caused by natural logarithmic factorisation (NLF) of the HC model for dynamic RLS estimation of soft tissue properties. The RBFNN weights are estimated according to the maximum likelihood principle to evaluate the probability distribution of the neural network modelling residual. Further, by using the linearisation error modelled by RBFNN to compensate for the linearised HC model, an RBFNN-based RLS algorithm is developed for dynamic soft tissue characterisation. Simulation and experimental results demonstrate that the proposed method can effectively model the natural logarithmic linearisation error, leading to improved accuracy for RLS estimation of the HC model parameters.

3.
Nat Commun ; 15(1): 2028, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459051

ABSTRACT

Copine proteins are highly conserved and ubiquitously found in eukaryotes, and their indispensable roles in different species were proposed. However, their exact function remains unclear. The phytohormone brassinosteroids (BRs) play vital roles in plant growth, development and environmental responses. A key event in effective BR signaling is the formation of functional BRI1-SERK receptor complex and subsequent transphosphorylation upon ligand binding. Here, we demonstrate that BONZAI (BON) proteins, which are plasma membrane-associated copine proteins, are critical components of BR signaling in both the monocot maize and the dicot Arabidopsis. Biochemical and molecular analyses reveal that BON proteins directly interact with SERK kinases, thereby ensuring effective BRI1-SERK interaction and transphosphorylation. This study advances the knowledge on BR signaling and provides an important target for optimizing valuable agronomic traits, it also opens a way to study steroid hormone signaling and copine proteins of eukaryotes in a broader perspective.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Carrier Proteins , Arabidopsis/metabolism , Brassinosteroids/metabolism , Zea mays/genetics , Zea mays/metabolism , Protein Kinases/metabolism , Arabidopsis Proteins/metabolism , Membrane Proteins/metabolism
4.
Small Methods ; : e2301419, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315088

ABSTRACT

The development of the proton exchange membrane water electrolyzer (PEMWE) is still limited by the prohibitive cost and scarcity of iridium (Ir)-based oxygen evolution reaction (OER) catalyst. This work presents a novel catalyst synthesized by precursor-atomization and rapid joule-heating method, successfully doping iridium atoms into polyvalent tungsten blends (W0 , W5+ , W6+ ) based on titanium substrate. The vacancy engineering of unsaturated tungsten oxide (W5+ , W6+ ) reconstructs the electronic structure of the catalyst surface, which resulting in the low-valence state iridium species, avoiding excessive oxidation of iridium and accelerating the catalytic kinetics. Meanwhile, metallic tungsten (W0 ) improves the conductivity of catalyst and guarantees the stable existence of oxygen vacancy. The TiIrWOx possesses excellent performance in acidic OER catalysis, requiring overpotential of only 181 mV to drive 10.0 mA cm-2 , and exhibiting a high mass activity of 753 A gIr -1 at an overpotential of 300 mV. The membrane electrode assembly (MEA) with TiIrWOx as anode electrocatalyst can reduce the Ir consumption amount by >60% compared to commercial IrO2 , and it can operated over 120 h at a current density of 1.0 A cm-2 .

5.
Biochem Genet ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38245886

ABSTRACT

MYC has been identified to profoundly influence a wide range of pathologic processes in cancers. However, the prognostic value of MYC-related genes in pancreatic adenocarcinoma (PAAD) remains unclarified. Gene expression data and clinical information of PAAD patients were obtained from The Cancer Genome Atlas (TCGA) database (training set). Validation sets included GSE57495, GSE62452, and ICGC-PACA databases. LASSO regression analysis was used to develop a risk signature for survival prediction. Single-cell sequencing data from GSE154778 and CRA001160 datasets were analyzed. Functional studies were conducted using siRNA targeting RHOF and ITGB6 in PANC-1 cells. High MYC expression was found to be significantly associated with a poor prognosis in patients with PAAD. Additionally, we identified seven genes (ADGRG6, LINC00941, RHOF, SERPINB5, INSYN2B, ITGB6, and DEPDC1) that exhibited a strong correlation with both MYC expression and patient survival. They were then utilized to establish a risk model (MYCsig), which showed robust predictive ability. Furthermore, MYCsig demonstrated a positive correlation with the expression of HLA genes and immune checkpoints, as well as the chemotherapy response of PAAD. RHOF and ITGB6, expressed mainly in malignant cells, were identified as key oncogenes regulating chemosensitivity through EMT. Downregulation of RHOF and ITGB6 reduced cell proliferation and invasion in PANC-1 cells. The developed MYCsig demonstrates its potential in enhancing the management of patients with PAAD by facilitating risk assessment and predicting response to adjuvant chemotherapy. Additionally, our study identifies RHOF and ITGB6 as novel oncogenes linked to EMT and chemoresistance in PAAD.

6.
J Agric Food Chem ; 72(9): 4726-4736, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38294408

ABSTRACT

Milk-derived extracellular vesicles can improve intestinal health and have antiosteoporosis potential. In this paper, we explored the effects of bovine raw milk-derived extracellular vesicles (mEVs) on ovariectomized (OVX) osteoporotic mice from the perspective of the gut-bone axis. mEVs could inhibit osteoclast differentiation and improve microarchitecture. The level of osteoporotic biomarkers in OVX mice was restored after the mEVs intervened. Compared with OVX mice, mEVs could enhance intestinal permeability, reduce endotoxin levels, and improve the expression of TNF-α, IL-17, and IL-10. 16S rDNA sequencing indicated that mEVs altered the composition of gut microbiota, specifically for Bacteroides associated with short-chain fatty acids (SCFAs). In-depth analysis of SCFAs demonstrated that mEVs could restore acetic acid, propionic acid, valeric acid, and isovaleric acid levels in OVX mice. Correlation analysis revealed that changed gut microbiota and SCFAs were significantly associated with gut inflammation and osteoporotic biomarkers. This study demonstrated that mEVs could inhibit osteoclast differentiation and improve osteoporosis by reshaping the gut microbiota, increasing SCFAs, and decreasing the level of pro-inflammatory cytokines and osteoclast differentiation-related factors in OVX mice. These findings provide evidence for the use of mEVs as a food supplement for osteoporosis.


Subject(s)
Extracellular Vesicles , Gastrointestinal Microbiome , Osteoporosis , Animals , Cattle , Mice , Milk , Osteogenesis , Osteoporosis/genetics , Biomarkers
7.
Theor Appl Genet ; 137(1): 7, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093101

ABSTRACT

KEY MESSAGE: A novel light-dependent dominant lesion mimic mutant with enhanced multiple disease resistance was physiologically, biochemically, and genetically characterized; the causal gene was fine mapped to a 909 kb interval containing 38 genes. Identification of genes that confer multiple disease resistance (MDR) is crucial for the improvement of maize disease resistance. However, very limited genes are identified as MDR genes in maize. In this study, we characterized a dominant disease lesion mimics 8 (Les8) mutant that had chlorotic lesions on the leaves and showed enhanced resistance to both curvularia leaf spot and southern leaf blight. Major agronomic traits were not obviously altered, while decreased chlorophyll content was observed in the mutant, and the genetic effect of the Les8 mutation was stable in different genetic backgrounds. By BSR-seq analysis and map-based cloning, the LES8 gene was mapped into a 909 kb region containing 38 candidate genes on chromosome 9 wherein no lesion mimic or disease-resistance genes were previously reported. Using transcriptomics analysis, we found that genes involved in defense responses and secondary metabolite biosynthesis were enriched in the significantly up-regulated genes, while genes involved in photosynthesis and carbohydrate-related pathways were enriched in the significantly down-regulated genes in Les8. In addition, there was an overaccumulation of jasmonic acid and lignin but not salicylic acid in Les8. Taken together, this study revealed candidate genes and potential mechanism underlying Les8-conferred MDR in maize.


Subject(s)
Curvularia , Zea mays , Chromosome Mapping , Curvularia/genetics , Zea mays/genetics , Disease Resistance/genetics , Genes, Plant , Plant Leaves/genetics , Plant Diseases/genetics
8.
Nutrients ; 15(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38004116

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic and recurrent disease. It has been observed that the incidence and prevalence of IBD are increasing, which consequently raises the risk of developing colon cancer. Recently, the regulation of the intestinal barrier by probiotics has become an effective treatment for colitis. Akkermansia muciniphila-derived extracellular vesicles (Akk EVs) are nano-vesicles that contain multiple bioactive macromolecules with the potential to modulate the intestinal barrier. In this study, we used ultrafiltration in conjunction with high-speed centrifugation to extract Akk EVs. A lipopolysaccharide (LPS)-induced RAW264.7 cell model was established to assess the anti-inflammatory effects of Akk EVs. It was found that Akk EVs were able to be absorbed by RAW264.7 cells and significantly reduce the expression of nitric oxide (NO), TNF-α, and IL-1ß (p < 0.05). We explored the preventative effects on colitis and the regulating effects on the intestinal barrier using a mouse colitis model caused by dextran sulfate sodium (DSS). The findings demonstrated that Akk EVs effectively prevented colitis symptoms and reduced colonic tissue injury. Additionally, Akk EVs significantly enhanced the effectiveness of the intestinal barrier by elevating the expression of MUC2 (0.53 ± 0.07), improving mucus integrity, and reducing intestinal permeability (p < 0.05). Moreover, Akk EVs increased the proportion of the beneficial bacteria Firmicutes (33.01 ± 0.09%) and downregulated the proportion of the harmful bacteria Proteobacteria (0.32 ± 0.27%). These findings suggest that Akk EVs possess the ability to regulate immune responses, protect intestinal barriers, and modulate the gut microbiota. The research presents a potential intervention approach for Akk EVs to prevent colitis.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Mice , Colitis/chemically induced , Colitis/prevention & control , Intestines , Colon , Disease Models, Animal , Mice, Inbred C57BL , Dextran Sulfate
9.
Nat Commun ; 14(1): 2526, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37130859

ABSTRACT

Anisotropy is a manifestation of lowered symmetry in material systems that have profound fundamental and technological implications. For van der Waals magnets, the two-dimensional (2D) nature greatly enhances the effect of in-plane anisotropy. However, electrical manipulation of such anisotropy as well as demonstration of possible applications remains elusive. In particular, in-situ electrical modulation of anisotropy in spin transport, vital for spintronics applications, has yet to be achieved. Here, we realized giant electrically tunable anisotropy in the transport of second harmonic thermal magnons (SHM) in van der Waals anti-ferromagnetic insulator CrPS4 with the application of modest gate current. Theoretical modeling found that 2D anisotropic spin Seebeck effect is the key to the electrical tunability. Making use of such large and tunable anisotropy, we demonstrated multi-bit read-only memories (ROMs) where information is inscribed by the anisotropy of magnon transport in CrPS4. Our result unveils the potential of anisotropic van der Waals magnons for information storage and processing.

10.
Biochem Biophys Res Commun ; 668: 62-69, 2023 08 06.
Article in English | MEDLINE | ID: mdl-37244036

ABSTRACT

This study aims to examine the impacts of Scutellaria strigillosa Hemsl. (SSH) on the proliferation, apoptosis of human hepatoma cell HepG2 and screen the bioactive components. We found that SSH extract inhibited HepG2 proliferation, arrested cell division prior to S phase. Additionally, SSH extract exposure induced apoptosis, and increased the proportions of late apoptotic cells. Specifically, we focus on the inhibitory effect of SSH extract on aspartate ß-hydroxylase, a key therapeutic target of hepatocellular carcinoma closely related with the proliferation and apoptosis of HepG2. We found SSH extract with notable inhibitory activity against aspartate ß-hydroxylase, elucidated the main bioactive constituents by HPLC-Q-TOF/MS and Molecular docking analysis. In conclusion, these results provided the antiproliferative and proapoptotic effects of SSH on HepG2 cell, elucidated the main bioactive constituents based on aspartate ß-hydroxylase inhibition. These data revealed the potential value of SSH and its bioactive components for the prevention and treatment of liver cancer for the first time.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Scutellaria , Humans , Hep G2 Cells , Aspartic Acid , Scutellaria/chemistry , Molecular Docking Simulation , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cell Proliferation , Apoptosis , Mixed Function Oxygenases , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122825, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37207569

ABSTRACT

Energy transfer between Bi3+ and Eu3+ has undergone substantial research but Bi3+ and Eu3+ co-doped luminescent materials with high energy transfer efficiency for temperature sensing are rarely investigated until now. Herein, Eu3+ and Bi3+ co-doped KBSi2O6 phosphors were successfully synthesized by solid-state reaction method. The phase purity structure as well as the element distribution were carefully investigated through X-ray diffraction structural refinement and energy dispersive spectrometer analysis. The characteristic luminescence property and luminescence kinetics of KBSi2O6: Bi3+, Eu3+ were investigated. By the large spectra overlap between the emission spectrum of Bi3+ and excitation spectrum of Eu3+, the energy transfer from Bi3+ to Eu3+ can be inferred. The corresponding decrease of the emission intensity and decay time of Bi3+ in KBSi2O6: Bi3+, Eu3+ provided direct evidence for the effective energy transfer from Bi3+ to Eu3+. The interaction and energy transfer mechanism between Bi3+ and Eu3+ ions were also studied. By increasing the Eu3+ concentration in KBSi2O6: Bi3+, Eu3+, the color-tunable emission from blue to red can be realized. KBSi2O6: Bi3+, Eu3+ shows hypersensitive thermal quenching behavior and the maximum absolute sensitivity (Sa) and relative sensitivity (Sr) are determined to be 1.87 %K-1 and 2.895 %K-1, respectively. All of the above results imply that KBSi2O6: Bi3+, Eu3+ phosphor can be a color-tunable phosphor for optical temperature sensing.

12.
World J Surg Oncol ; 21(1): 34, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737779

ABSTRACT

BACKGROUND: The preoperative diagnosis of cytologically indeterminate thyroid nodules (ITNs) is very challenging. In this study, we aim to provide an integrated risk assessment for thyroid nodules with indeterminate cytology to guide surgical decision-making, which includes results of blood tests, molecular tests, and repeat fine-needle aspiration biopsy (FNAB). METHODS: The study retrospectively included 265 ITNs between June 2019 and April 2022. According to our integrated risk assessment process that starts with blood testing, followed by supplementary DNA mutation detection on the first FNAB, and finally repeat FNAB, we divided the ITNs into high-risk and low-risk groups. Performance was evaluated with sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under the receiver operating characteristic curve (AUC), and the consistency between the risk evaluation and histological results. RESULTS: Of the 265 ITNs, 87 were included in the risk assessment process. The risk assessment had a sensitivity of 84.1%, specificity of 83.3%, PPV of 95.1%, NPV of 57.7%, and AUC of 0.837. The nodules with consistent results between the risk groups and histological outcomes, which included malignant cases in the high-risk group and benign cases in the low-risk group, accounted for 83.9% of all risk-assessed nodules. CONCLUSIONS: These data suggest that the integrated risk assessment might provide proper information for surgical decision-making in patients with ITNs.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/diagnosis , Thyroid Nodule/genetics , Thyroid Nodule/surgery , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/surgery , Retrospective Studies , Biopsy, Fine-Needle , Risk Assessment
13.
Nutrients ; 15(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771453

ABSTRACT

Osteoarthritis (OA) is the most common joint disease primarily characterized by cartilage degeneration. Milk-derived extracellular vesicles (mEVs) were reported to inhibit catabolic and inflammatory processes in the cartilage of OA patients. However, the current therapies target the advanced symptoms of OA, and it is significant to develop a novel strategy to inhibit the processes driving OA pathology. In this study, we investigated the therapeutic potential of mEVs in alleviating OA in vivo. The results revealed that mEVs ameliorated cartilage degeneration by increasing hyaline cartilage thickness, decreasing histological Osteoarthritis Research Society International (OARSI) scores, enhancing matrix synthesis, and reducing the expression of cartilage destructive enzymes in the destabilization of medial meniscus (DMM) mice. In addition, the disturbed gut microbiota in DMM mice was partially improved upon treatment with mEVs. It was observed that the pro-inflammatory bacteria (Proteobacteria) were reduced and the potential beneficial bacteria (Firmicutes, Ruminococcaceae, Akkermansiaceae) were increased. mEVs could alleviate the progression of OA by restoring matrix homeostasis and reshaping the gut microbiota. These findings suggested that mEVs might be a potential therapeutic dietary supplement for the treatment of OA.


Subject(s)
Cartilage, Articular , Extracellular Vesicles , Gastrointestinal Microbiome , Osteoarthritis , Mice , Animals , Menisci, Tibial/metabolism , Menisci, Tibial/pathology , Chondrocytes/metabolism , Milk/metabolism , Mice, Inbred C57BL , Osteoarthritis/drug therapy , Extracellular Vesicles/metabolism , Administration, Oral , Cartilage, Articular/pathology , Disease Models, Animal
14.
New Phytol ; 236(2): 525-537, 2022 10.
Article in English | MEDLINE | ID: mdl-35811428

ABSTRACT

Both sugar and the hormone gibberellin (GA) are essential for anther-enclosed pollen development and thus for plant productivity in flowering plants. Arabidopsis (Arabidopsis thaliana) AtSWEET13 and AtSWEET14, which are expressed in anthers and associated with seed yield, transport both sucrose and GA. However, it is still unclear which substrate transported by them directly affects anther development and seed yield. Histochemical staining, cross-sectioning and microscopy imaging techniques were used to investigate and interpret the phenotypes of the atsweet13;14 double mutant during anther development. Genetic complementation of atsweet13;14 using AtSWEET9, which transports sucrose but not GA, and the GA transporter AtNPF3.1, respectively, was conducted to test the substrate preference relevant to the biological process. The loss of both AtSWEET13 and AtSWEET14 resulted in reduced pollen viability and therefore decreased pollen germination. AtSWEET9 fully rescued the defects in pollen viability and germination of atsweet13;14, whereas AtNPF3.1 failed to do so, indicating that AtSWEET13/14-mediated sucrose rather than GA is essential for pollen fertility. AtSWEET13 and AtSWEET14 function mainly at the anther wall during late anther development stages, and they probably are responsible for sucrose efflux into locules to support pollen development to maturation, which is vital for subsequent pollen viability and germination.


Subject(s)
Arabidopsis , Gibberellins , Arabidopsis/genetics , Flowers , Gene Expression Regulation, Plant , Hormones , Pollen/genetics , Sucrose
15.
Adv Sci (Weinh) ; 9(25): e2202387, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35798320

ABSTRACT

Seawater electrolysis is an attractive technique for mass production of high-purity hydrogen considering the abundance of seawater. Nevertheless, due to the complexity of seawater environment, efficient anode catalyst, that should be, cost effective, highly active for oxygen evolution reaction (OER) but negligible for Cl2 /ClO- formation, and robust toward chlorine corrosion, is urgently demanded for large-scale application. Although catalysis typically appears at surface, while the bulk properties and morphology structure also have a significant impact on the performance, thus requiring a systematic optimization. Herein, a multiscale engineering approach toward the development of cost-effective and robust OER electrocatalyst for operation in seawater is reported. Specifically, the engineering of hollow-sphere structure can facilitate the removal of gas product, while atom-level synergy between Co and Fe can promote Co sites transforming to active phase, and in situ transformation of sulfate ions layer protects catalysts from corrosion. As a result, the as-developed hollow-sphere structured CoFeSx electrocatalyst can stably operate at a high current density of 100 mA cm-2 in the alkaline simulated seawater (pH = 13) for 700 h and in a neutral seawater for 20 h without attenuation. It provides a new strategy for the development of electrocatalysts with a broader application potential.

16.
Front Plant Sci ; 13: 898307, 2022.
Article in English | MEDLINE | ID: mdl-35832215

ABSTRACT

Plant surfaces are covered with cuticle wax and are the first barrier between a plant and environmental stresses. Eceriferum (CER) is an important gene family involved in wax biosynthesis and stress resistance. In this study, for the first time, 34 CER genes were identified in the passion fruit (Passiflora edulis) genome, and PeCER proteins varied in physicochemical properties. A phylogenetic tree was constructed and divided into seven clades to identify the evolutionary relationship with other plant species. Gene structure analyses revealed that conserved motifs ranged from 1 to 24, and that exons ranged from 1 to 29. The cis-element analysis provides insight into possible roles of PeCER genes in plant growth, development and stress responses. The syntenic analysis revealed that segmental (six gene pairs) and tandem (six gene pairs) gene duplication played an important role in the expansion of PeCER genes and underwent a strong purifying selection. In addition, 12 putative ped-miRNAs were identified to be targeting 16 PeCER genes, and PeCER6 was the most targeted by four miRNAs including ped-miR157a-5p, ped-miR164b-5p, ped-miR319b, and ped-miR319l. Potential transcription factors (TFs) such as ERF, AP2, MYB, and bZIP were predicted and visualized in a TF regulatory network interacting with PeCER genes. GO and KEGG annotation analysis revealed that PeCER genes were highly related to fatty acid, cutin, and wax biosynthesis, plant-pathogen interactions, and stress response pathways. The hypothesis that most PeCER proteins were predicted to localize to the plasma membrane was validated by transient expression assays of PeCER32 protein in onion epidermal cells. qRT-PCR expression results showed that most of the PeCER genes including PeCER1, PeCER11, PeCER15, PeCER17, and PeCER32 were upregulated under drought and Fusarium kyushuense stress conditions compared to controls. These findings provide a foundation for further studies on functions of PeCER genes to further facilitate the genetic modification of passion fruit wax biosynthesis and stress resistance.

17.
Plant Cell Physiol ; 63(8): 1156-1167, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35771678

ABSTRACT

Epialleles, the heritable epigenetic variants that are not caused by changes in DNA sequences, can broaden genetic and phenotypic diversity and benefit to crop breeding, but very few epialleles related to agricultural traits have been identified in maize. Here, we cloned a small kernel mutant, smk-wl10, from maize, which encoded a tubulin-folding cofactor B (ZmTFCB) protein. Expression of the ZmTFCB gene decreased in the smk-wl10 mutant, which arrested embryo, endosperm and basal endosperm transfer layer developments. Overexpression of ZmTFCB could complement the defective phenotype of smk-wl10. No nucleotide sequence variation in ZmTFCB could be found between smk-wl10 and wild type (WT). Instead, we detected hypermethylation of nucleotide CHG (where H is A, C or T nucleotide) sequence contexts and increased level of histone H3K9me2 methylation in the upstream sequence of ZmTFCB in smk-wl10 compared with WT, which might respond to the attenuating transcription of ZmTFCB. In addition, yeast two-hybrid and bimolecular fluorescence complementation assays identified a strong interaction between ZmTFCB and its homolog ZmTFCE. Thus, our work identifies a novel epiallele of the maize ZmTFCB gene, which might represent a common phenomenon in the epigenetic regulation of important traits such as kernel development in maize.


Subject(s)
Tubulin , Zea mays , Epigenesis, Genetic , Gene Expression Regulation, Plant , Mutation/genetics , Plant Breeding , Tubulin/genetics , Tubulin/metabolism , Zea mays/metabolism
18.
Nanotechnology ; 33(34)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35576893

ABSTRACT

Synthesis of NiHCCo precursors via simple co-precipitation and nickel-cobalt tetraselenide composites grown on nitrogen-doped reduced graphene oxide (NiCoSe4/N-rGO) were fabricated using solvothermal method. The introduction of N-rGO used as a template effectively prevented agglomeration of NiCoSe4nanoparticles and provided more active sites, which greatly increased the electrochemical and electrical conductivity for NiCoSe4/N-rGO. NiCoSe4/N-rGO-20 presents a remarkably elevated specific capacity of 120 mA h g-1under current density of 1 A g-1. NiCoSe4/N-rGO-20 demonstrates an excellent cycle life and achieves a remarkable 83% retention rate over 3000 cycles with 10 A g-1. NiCoSe4/N-rGO-20//N-rGO asymmetric supercapacitor was constructed based on the NiCoSe4/N-rGO-20 as an anode, N-rGO as cathode by using 2 mol l-1KOH as an electrolyte. NiCoSe4/N-rGO-20//N-rGO ASC demonstrates an ultra-big energy density of 14 Wh kg-1and good circulation stability in the power density of 902 W kg-1. It is doubled in comparison to the NiCoSe4/N-rGO-20//rGO asymmetric supercapacitor (7 Wh kg-1). The NiCoSe4/N-rGO-20//N-rGO ASC capacity retention is still up to 93% over 5000 cycles (5 A g-1). The results reveal that this device would be a prospective cathode material of supercapacitors in actual applications.

19.
Materials (Basel) ; 15(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35591396

ABSTRACT

The combination of superelastic shape memory alloy fibers and ECC materials can form a new SMA fiber reinforced ECC composite material (SMAF-ECC) with good self-centering performance. In order to study the self-centering performance of the new composite material, 6 groups of pre-notch beam specimens were made for three-point bending cyclic loading tests, and the failure phenomenon, hysteresis curve, self-centering effect and influencing factors of the specimens were analyzed. The research results show that when the SMA fibers are effectively anchored in the ECC matrix, the SMA fibers can exert the superelastic properties to provide the ECC beams with recoverying force, and realize the crack self-closure and deflection self-recovery function for the beams, with the minimum residual crack width and deflection is only 0.9 mm and 1.3 mm respectively. Increasing fiber content can cause a small increase in the self-centering ability of the beams. However, only when the fiber diameter is appropriate, better self-centering effect can be achieved, but the difference caused by fiber diameter in the test was only 5%. SMA Fiber end forms have significant influence on self-centering performance. The knotted end beam can get a more than 70% self-centering ratio, while the straight end beams and bended end beams have no self-centering ability. The research results provide important reference for the research and application of this new self-centering materials and their structures.

20.
J Exp Bot ; 73(12): 3991-4007, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35303096

ABSTRACT

Multiple disease resistance (MDR) in maize has attracted increasing attention. However, the interplay between cell death and metabolite changes and their contributions to MDR remains elusive in maize. In this study, we identified a mutant named as lesion mimic 30 (les30) that showed 'suicidal' lesion formation in the absence of disease and had enhanced resistance to the fungal pathogen Curvularia lunata. Using map-based cloning, we identified the causal gene encoding pheophorbide a oxidase (PAO), which is known to be involved in chlorophyll degradation and MDR, and is encoded by LETHAL LEAF SPOT1 (LLS1). LLS1 was found to be induced by both biotic and abiotic stresses. Transcriptomics analysis showed that genes involved in defense responses and secondary metabolite biosynthesis were mildly activated in leaves of the les30 mutant without lesions, whilst they were strongly activated in leaves with lesions. In addition, in les30 leaves with lesions, there was overaccumulation of defense-associated phytohormones including jasmonic acid and salicylic acid, and of phytoalexins including phenylpropanoids, lignin, and flavonoids, suggesting that their biosynthesis was activated in a lesion-dependent manner. Taken together, our study implies the existence of an interactive amplification loop of interrupted chlorophyll degradation, cell death, expression of defense-related genes, and metabolite changes that results in suicidal lesion formation and MDR, and this has the potential to be exploited by genetic manipulation to improve maize disease resistance.


Subject(s)
Disease Resistance , Zea mays , Alleles , Cell Death/physiology , Chlorophyll/metabolism , Disease Resistance/genetics , Humans , Oxylipins/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...