Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Environ Int ; 188: 108762, 2024 Jun.
Article En | MEDLINE | ID: mdl-38776652

BACKGROUND: While many investigations examined the association between environmental covariates and COVID-19 incidence, none have examined their relationship with superspreading, a characteristic describing very few individuals disproportionally infecting a large number of people. METHODS: Contact tracing data of all the laboratory-confirmed COVID-19 cases in Hong Kong from February 16, 2020 to April 30, 2021 were used to form the infection clusters for estimating the time-varying dispersion parameter (kt), a measure of superspreading potential. Generalized additive models with identity link function were used to examine the association between negative-log kt (larger means higher superspreading potential) and the environmental covariates, adjusted with mobility metrics that account for the effect of social distancing measures. RESULTS: A total of 6,645 clusters covering 11,717 cases were reported over the study period. After centering at the median temperature, a lower ambient temperature at 10th percentile (18.2 °C) was significantly associated with a lower estimate of negative-log kt (adjusted expected change: -0.239 [95 % CI: -0.431 to -0.048]). While a U-shaped relationship between relative humidity and negative-log kt was observed, an inverted U-shaped relationship with actual vapour pressure was found. A higher total rainfall was significantly associated with lower estimates of negative-log kt. CONCLUSIONS: This study demonstrated a link between meteorological factors and the superspreading potential of COVID-19. We speculated that cold weather and rainy days reduced the social activities of individuals minimizing the interaction with others and the risk of spreading the diseases in high-risk facilities or large clusters, while the extremities of relative humidity may favor the stability and survival of the SARS-CoV-2 virus.


COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/transmission , Humans , Hong Kong/epidemiology , Contact Tracing , Humidity , Meteorological Concepts , Weather , Temperature , Female , Male , Adult , Middle Aged
2.
Lancet Infect Dis ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38710190

BACKGROUND: Studies have established the short-term efficacy of nirmatrelvir-ritonavir in managing COVID-19, yet its effect on post-COVID-19 condition, especially in patients admitted to hospital, remains understudied. This study aimed to examine the effect of nirmatrelvir-ritonavir on post-COVID-19 condition among patients admitted to hospital in Hong Kong. METHODS: This retrospective cohort study used real-world, territory-wide inpatient records, vaccination records, and confirmed COVID-19 case data from the Hong Kong Hospital Authority and Department of Health, The Government of the Hong Kong Special Administrative Region. Patients aged 18 years and older who tested positive for SARS-CoV-2 between March 11, 2022, and Oct 10, 2023, and who were admitted to hospital with COVID-19 were included. The treatment group included patients prescribed nirmatrelvir-ritonavir within 5 days of symptom onset, excluding those prescribed molnupiravir within 21 days, and the control group had no exposure to either nirmatrelvir-ritonavir or molnupiravir. The outcomes were post-acute inpatient death and 13 sequelae (congestive heart failure, atrial fibrillation, coronary artery disease, deep vein thrombosis, chronic pulmonary disease, acute respiratory distress syndrome, interstitial lung disease, seizure, anxiety, post-traumatic stress disorder, end-stage renal disease, acute kidney injury, and pancreatitis). These outcomes were evaluated starting at 21 days after the positive RT-PCR date in each respective cohort constructed for the outcome. Standardised mortality ratio weights were applied to balance covariates, and Cox proportional hazards regression was used to investigate the relationship between nirmatrelvir-ritonavir and outcomes. FINDINGS: 136 973 patients were screened for inclusion, among whom 50 055 were eligible and included in the analysis (24 873 [49·7%] were female and 25 182 [50·3%] were male). 15 242 patients were prescribed nirmatrelvir-ritonavir during acute COVID-19 and 23 756 patients were included in the control group; 11 057 patients did not meet our definition for the exposed and unexposed groups. Patients were followed up for a median of 393 days (IQR 317-489). In the nirmatrelvir-ritonavir group compared with the control group, there was a significantly lower hazard of post-acute inpatient death (hazard ratio 0·62 [95% CI 0·57-0·68]; p<0·0001), congestive heart failure (0·70 [0·58-0·85]; p=0·0002), atrial fibrillation (0·63 [0·52-0·76]; p<0·0001), coronary artery disease (0·71 [0·59-0·85]; p=0·0002), chronic pulmonary disease (0·68 [0·54-0·86]; p=0·0011), acute respiratory distress syndrome (0·71 [0·58-0·86]; p=0·0007), interstitial lung disease (0·17 [0·04-0·75]; p=0·020), and end-stage renal disease (0·37 [0·18-0·74]; p=0·0049). There was no evidence indicating difference between the groups in deep vein thrombosis, seizure, anxiety, post-traumatic stress disorder, acute kidney injury, and pancreatitis. INTERPRETATION: This study showed extended benefits of nirmatrelvir-ritonavir for reducing the risk of post-acute inpatient death as well as cardiovascular and respiratory complications among patients admitted to hospital with COVID-19. Further research is essential to uncover the underlying mechanisms responsible for these observed negative associations and to devise effective strategies for preventing the onset of post-acute sequelae. FUNDING: Health and Medical Research Fund, Research Grants Council theme-based research schemes, and Research Grants Council Collaborative Research Fund.

3.
PLoS Negl Trop Dis ; 18(4): e0012158, 2024 Apr.
Article En | MEDLINE | ID: mdl-38683870

Vector-borne infectious disease such as dengue fever (DF) has spread rapidly due to more suitable living environments. Considering the limited studies investigating the disease spread under climate change in South and Southeast Asia, this study aimed to project the DF transmission potential in 30 locations across four South and Southeast Asian countries. In this study, weekly DF incidence data, daily mean temperature, and rainfall data in 30 locations in Singapore, Sri Lanka, Malaysia, and Thailand from 2012 to 2020 were collected. The effects of temperature and rainfall on the time-varying reproduction number (Rt) of DF transmission were examined using generalized additive models. Projections of location-specific Rt from 2030s to 2090s were determined using projected temperature and rainfall under three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585), and the peak DF transmissibility and epidemic duration in the future were estimated. According to the results, the projected changes in the peak Rt and epidemic duration varied across locations, and the most significant change was observed under middle-to-high greenhouse gas emission scenarios. Under SSP585, the country-specific peak Rt was projected to decrease from 1.63 (95% confidence interval: 1.39-1.91), 2.60 (1.89-3.57), and 1.41 (1.22-1.64) in 2030s to 1.22 (0.98-1.51), 2.09 (1.26-3.47), and 1.37 (0.83-2.27) in 2090s in Singapore, Thailand, and Malaysia, respectively. Yet, the peak Rt in Sri Lanka changed slightly from 2030s to 2090s under SSP585. The epidemic duration in Singapore and Malaysia was projected to decline under SSP585. In conclusion, the change of peak DF transmission potential and disease outbreak duration would vary across locations, particularly under middle-to-high greenhouse gas emission scenarios. Interventions should be considered to slow down global warming as well as the potential increase in DF transmissibility in some locations of South and Southeast Asia.


Climate Change , Dengue , Dengue/transmission , Dengue/epidemiology , Humans , Asia, Southeastern/epidemiology , Temperature , Sri Lanka/epidemiology , Rain , Singapore/epidemiology , Thailand/epidemiology , Incidence , Malaysia/epidemiology , Aedes/virology , Aedes/physiology , Aedes/growth & development , Animals , Southeast Asian People
4.
Biotechnol Biofuels Bioprod ; 17(1): 22, 2024 Feb 11.
Article En | MEDLINE | ID: mdl-38342915

BACKGROUND: The CRISPR/Cas9 technology is being employed as a convenient tool for genetic engineering of the industrially important filamentous fungus Trichoderma reesei. However, multiplex gene editing is still constrained by the sgRNA processing capability, hindering strain improvement of T. reesei for the production of lignocellulose-degrading enzymes and recombinant proteins. RESULTS: Here, a CRISPR/Cas9 system based on a multiple sgRNA processing platform was established for genome editing in T. reesei. The platform contains the arrayed tRNA-sgRNA architecture directed by a 5S rRNA promoter to generate multiple sgRNAs from a single transcript by the endogenous tRNA processing system. With this system, two sgRNAs targeting cre1 (encoding the carbon catabolite repressor 1) were designed and the precise deletion of cre1 was obtained, demonstrating the efficiency of sgRNAs processing in the tRNA-sgRNA architecture. Moreover, overexpression of xyr1-A824V (encoding a key activator for cellulase/xylanase expression) at the ace1 (encoding a repressor for cellulase/xylanase expression) locus was achieved by designing two sgRNAs targeting ace1 in the system, resulting in the significantly enhanced production of cellulase (up to 1- and 18-fold on the Avicel and glucose, respectively) and xylanase (up to 11- and 41-fold on the Avicel and glucose, respectively). Furthermore, heterologous expression of the glucose oxidase gene from Aspergillus niger ATCC 9029 at the cbh1 locus with the simultaneous deletion of cbh1 and cbh2 (two cellobiohydrolase coding genes) by designing four sgRNAs targeting cbh1 and cbh2 in the system was acquired, and the glucose oxidase produced by T. reesei reached 43.77 U/mL. Besides, it was found the ER-associated protein degradation (ERAD) level was decreased in the glucose oxidase-producing strain, which was likely due to the reduction of secretion pressure by deletion of the major endogenous cellulase-encoding genes. CONCLUSIONS: The tRNA-gRNA array-based CRISPR-Cas9 editing system was successfully developed in T. reesei. This system would accelerate engineering of T. reesei for high-level production of enzymes including lignocellulose-degrading enzymes and other recombinant enzymes. Furthermore, it would expand the CRISPR toolbox for fungal genome editing and synthetic biology.

5.
J Glob Health ; 13: 04122, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37824178

Background: Studies have highlighted the impacts of temperature variability (TV) on mortality from respiratory diseases and cardiovascular diseases, with inconsistent results specifically in subtropical urban areas than temperate ones. We aimed to fully determine TV-associated health risks over a spectrum of diseases and various subgroups in a subtropical setting. Methods: Using inpatient data from all public hospitals in Hong Kong from 1999 to 2019, we examined the TV-hospitalisation associations by causes, ages, and seasons by fitting a quasi-Poisson regression. We presented the results as estimated percentage changes of hospitalisations per interquartile range (IQR) of TV. Results: TVs in exposure days from 0-5 days (TV0-5) to 0-7 days (TV0-7) had detrimental effects on hospitalisation risks in Hong Kong. The overall population was significantly affected over TV0-5 to TV0-7 in endocrine, nutritional and metabolic (from 0.53% to 0.58%), respiratory system (from 0.38% to 0.53%), and circulatory systems diseases (from 0.47% to 0.56%). While we found no association with seasonal disparities, we did observe notable disparities by age, highlighting older adults' vulnerability to TVs. For example, people aged ≥65 years experienced the highest change of 0.88% (95% CI = 0.34%, 1.41%) in hospitalizations for injury and poisoning per IQR increase in TV0-4. Conclusions: Our population-based study highlighted that TV-related health burden, usually regarded as minimal compared to other environmental factors, should receive more attention and be addressed in future relevant health policies, especially for vulnerable populations during the cold seasons.


Cardiovascular Diseases , Respiration Disorders , Respiratory Tract Diseases , Humans , Aged , Hong Kong/epidemiology , Temperature , Hospitalization , Respiratory Tract Diseases/epidemiology , Seasons
6.
J Clin Virol ; 166: 105547, 2023 09.
Article En | MEDLINE | ID: mdl-37453162

BACKGROUND: In 2022, SARS-CoV-2 Omicron variants circulated globally, generating concerns about increased transmissibility and immune escape. Hong Kong, having an infection-naive population with a moderate 2-dose vaccine coverage (63% by the end of 2021), experienced a COVID-19 epidemic largely seeded by Omicron BA.2 variants that led to the greatest outbreak in the region to date. Little remains known about the protection of commonly-administered vaccines against transmission of Omicron BA.2 variants. METHODS: In this retrospective cohort study, we identified 17 535 laboratory-confirmed COVID-19 cases using contact tracing information during the Omicron-predominant period between January and June 2022 in Hong Kong. Demographic characteristics, time from positive test result to case reporting, isolation, or hospital admission, as well as contact tracing history and contact setting were extracted. Transmission pairs were reconstructed through suspected epidemiological links according to contact tracing history, and the number of secondary cases was determined for each index case as a measurement for risk of transmission. The effectiveness of mRNA vaccine (BNT162b2) and inactivated vaccine (Sinovac) against transmission of BA.2 variants was estimated using zero-inflated negative binomial regression models. RESULTS: Vaccine effectiveness against transmission for patients who received the 2-dose BNT162b2 vaccine was estimated at 56.2% (95% CI: 14.5, 77.6), 30.6% (95% CI: 13.0, 44.6), and 21.3% (95% CI: 2.9, 36.2) on 15 - 90, 91 - 180, and 181 - 270 days after vaccination, respectively, showing a significant decrease over time. For 3-dose vaccines, vaccine effectiveness estimates were 41.0% (95% CI: 11.3, 60.7) and 41.9% (95% CI: 6.1, 64.0) on 15 - 180 days after booster doses of Sinovac and BNT162b2, respectively. Although significant vaccine effectiveness was detected in household settings, no evidence of such protective association was detected in non-household settings for either Sinovac or BNT162b2. CONCLUSION: Moderate and significant protection against Omicron BA.2 variants' transmission was found for 2 and 3 doses of Sinovac or BNT162b2 vaccines. Although protection by 2-dose BNT162b2 may evidently wane with time, protection could be restored by the booster dose. Here, we highlight the importance of continuously evaluating vaccine effectiveness against transmission for emerging SARS-CoV-2 variants.


COVID-19 , Vaccines , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , BNT162 Vaccine , Hong Kong/epidemiology , Retrospective Studies
7.
Infect Dis Model ; 8(3): 645-655, 2023 Sep.
Article En | MEDLINE | ID: mdl-37440763

The potential for dengue fever epidemic due to climate change remains uncertain in tropical areas. This study aims to assess the impact of climate change on dengue fever transmission in four South and Southeast Asian settings. We collected weekly data of dengue fever incidence, daily mean temperature and rainfall from 2012 to 2020 in Singapore, Colombo, Selangor, and Chiang Mai. Projections for temperature and rainfall were drawn for three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585) scenarios. Using a disease transmission model, we projected the dengue fever epidemics until 2090s and determined the changes in annual peak incidence, peak time, epidemic size, and outbreak duration. A total of 684,639 dengue fever cases were reported in the four locations between 2012 and 2020. The projected change in dengue fever transmission would be most significant under the SSP585 scenario. In comparison to the 2030s, the peak incidence would rise by 1.29 times in Singapore, 2.25 times in Colombo, 1.36 times in Selangor, and >10 times in Chiang Mai in the 2090s under SSP585. Additionally, the peak time was projected to be earlier in Singapore, Colombo, and Selangor, but be later in Chiang Mai under the SSP585 scenario. Even in a milder emission scenario of SSP126, the epidemic size was projected to increase by 5.94%, 10.81%, 12.95%, and 69.60% from the 2030s-2090s in Singapore, Colombo, Selangor, and Chiang Mai, respectively. The outbreak durations in the four settings were projected to be prolonged over this century under SSP126 and SSP245, while a slight decrease is expected in 2090s under SSP585. The results indicate that climate change is expected to increase the risk of dengue fever transmission in tropical areas of South and Southeast Asia. Limiting greenhouse gas emissions could be crucial in reducing the transmission of dengue fever in the future.

8.
Lancet Reg Health West Pac ; 34: 100716, 2023 May.
Article En | MEDLINE | ID: mdl-37256206

Background: Few studies have used real-world data to evaluate the impact of antidepressant use on the risk of developing severe outcomes after SARS-CoV-2 Omicron infection. Methods: This is a retrospective cohort study using propensity-score matching to examine the relationship between antidepressant use and COVID-19 severity. Inpatient and medication records of all adult COVID-19 patients in Hong Kong during the Omicron-predominated period were obtained. Severe clinical outcomes including intensive care unit admission and inpatient death after the first positive results of reverse transcription polymerase chain reaction as well as a composite outcome of both were studied. Cox proportional hazard models were applied to estimate the crude and adjusted hazard ratios (HR). Findings: Of 60,903 hospitalised COVID-19 patients admitted, 40,459 were included for matching, among which 3821 (9.4%) were prescribed antidepressants. The rates of intensive care unit admission, inpatient death, and the composite event were 3.9%, 25.5%, and 28.3% respectively in the unexposed group, 1.3%, 20.0%, and 21.1% respectively in the exposed group, with adjusted HR equal to 0.332 (95% CI, 0.245-0.449), 0.868 (95% CI, 0.800-0.942), and 0.786 (95% CI, 0.727-0.850) respectively. The result was generally consistent when stratified by selective serotonin reuptake inhibitors (SSRIs) and non-SSRIs. Antidepressants with functional inhibition of acid sphingomyelinase activity, specifically fluoxetine, were also negatively associated with the outcomes. The effect of antidepressants was more apparent in female and fully vaccinated COVID-19 patients. Interpretation: Antidepressant use was associated with a lower risk of severe COVID-19. The findings support the continuation of antidepressants in patients with COVID-19, and provide evidence for the treatment potential of antidepressants for severe COVID-19. Funding: This research was supported by Health and Medical Research Fund [grant numbers COVID190105, COVID19F03, INF-CUHK-1], Collaborative Research Fund of University Grants Committee [grant numbers C4139-20G], National Natural Science Foundation of China (NSFC) [71974165], and Group Research Scheme from The Chinese University of Hong Kong.

9.
J Glob Health ; 13: 06017, 2023 Apr 28.
Article En | MEDLINE | ID: mdl-37114968

Background: While coronavirus 2019 (COVID-19) deaths were generally underestimated in many countries, Hong Kong may show a different trend of excess mortality due to stringent measures, especially for deaths related to respiratory diseases. Nevertheless, the Omicron outbreak in Hong Kong evolved into a territory-wide transmission, similar to other settings such as Singapore, South Korea, and recently, mainland China. We hypothesized that the excess mortality would differ substantially before and after the Omicron outbreak. Methods: We conducted a time-series analysis of daily deaths stratified by age, reported causes, and epidemic wave. We determined the excess mortality from the difference between observed and expected mortality from 23 January 2020 to 1 June 2022 by fitting mortality data from 2013 to 2019. Results: During the early phase of the pandemic, the estimated excess mortality was -19.92 (95% confidence interval (CI) = -29.09, -10.75) and -115.57 (95% CI = -161.34, -69.79) per 100 000 population overall and for the elderly, respectively. However, the overall excess mortality rate was 234.08 (95% CI = 224.66, 243.50) per 100 000 population overall and as high as 928.09 (95% CI = 885.14, 971.04) per 100 000 population for the elderly during the Omicron epidemic. We generally observed negative excess mortality rates of non-COVID-19 respiratory diseases before and after the Omicron outbreak. In contrast, increases in excess mortality were generally reported in non-respiratory diseases after the Omicron outbreak. Conclusions: Our results highlighted the averted mortality before 2022 among the elderly and patients with non-COVID-19 respiratory diseases, due to indirect benefits from stringent non-pharmaceutical interventions. The high excess mortality during the Omicron epidemic demonstrated a significant impact from the surge of COVID-19 infections in a SARS-CoV-2 infection-naive population, particularly evident in the elderly group.


COVID-19 , Respiration Disorders , Humans , Aged , COVID-19/epidemiology , Hong Kong/epidemiology , SARS-CoV-2 , Disease Outbreaks , Pandemics , Respiration Disorders/epidemiology
10.
JMIR Public Health Surveill ; 9: e44251, 2023 03 07.
Article En | MEDLINE | ID: mdl-36811849

BACKGROUND: While many studies evaluated the reliability of digital mobility metrics as a proxy of SARS-CoV-2 transmission potential, none examined the relationship between dining-out behavior and the superspreading potential of COVID-19. OBJECTIVE: We employed the mobility proxy of dining out in eateries to examine this association in Hong Kong with COVID-19 outbreaks highly characterized by superspreading events. METHODS: We retrieved the illness onset date and contact-tracing history of all laboratory-confirmed cases of COVID-19 from February 16, 2020, to April 30, 2021. We estimated the time-varying reproduction number (Rt) and dispersion parameter (k), a measure of superspreading potential, and related them to the mobility proxy of dining out in eateries. We compared the relative contribution to the superspreading potential with other common proxies derived by Google LLC and Apple Inc. RESULTS: A total of 6391 clusters involving 8375 cases were used in the estimation. A high correlation between dining-out mobility and superspreading potential was observed. Compared to other mobility proxies derived by Google and Apple, the mobility of dining-out behavior explained the highest variability of k (ΔR-sq=9.7%, 95% credible interval: 5.7% to 13.2%) and Rt (ΔR-sq=15.7%, 95% credible interval: 13.6% to 17.7%). CONCLUSIONS: We demonstrated that there was a strong link between dining-out behaviors and the superspreading potential of COVID-19. The methodological innovation suggests a further development using digital mobility proxies of dining-out patterns to generate early warnings of superspreading events.


COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Reproducibility of Results , Disease Outbreaks , Contact Tracing
11.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article En | MEDLINE | ID: mdl-36690343

The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi. ONE-SENTENCE SUMMARY: The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.


Cellulase , Trichoderma , Trametes/genetics , Laccase/genetics , Laccase/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulase/genetics , Cellulase/metabolism , Endoplasmic Reticulum-Associated Degradation , Trichoderma/genetics , Trichoderma/metabolism
12.
J Fungi (Basel) ; 9(1)2023 Jan 04.
Article En | MEDLINE | ID: mdl-36675895

Trichoderma reesei is a powerful fungal cell factory for the production of cellulolytic enzymes due to its outstanding protein secretion capacity. Endoplasmic reticulum-associated degradation (ERAD) plays an integral role in protein secretion that responds to secretion pressure and removes misfolded proteins. However, the role of ERAD in fungal growth and endogenous protein secretion, particularly cellulase secretion, remains poorly understood in T. reesei. Here, we investigated the ability of T. reesei to grow under different stresses and to secrete cellulases by disrupting three major genes (hrd1, hrd3 and der1) involved in the critical parts of the ERAD pathway. Under the ER stress induced by high concentrations of DTT, knockout of hrd1, hrd3 and der1 resulted in severely impaired growth, and the mutants Δhrd1 and Δhrd3 exhibited high sensitivity to the cell wall-disturbing agents, CFW and CR. In addition, the absence of either hrd3 or der1 led to the decreased heat tolerance of this fungus. These mutants showed significant differences in the secretion of cellulases compared to the parental strain QM9414. During fermentation, the secretion of endoglucanase in the mutants was essentially consistent with that of the parental strain, while cellobiohydrolase and ß-glucosidase were declined. It was further discovered that the transcription levels of the endoglucanase-encoding genes (eg1 and eg2) and the cellobiohydrolase-encoding gene (cbh1) were not remarkedly changed. However, the ß-glucosidase-encoding gene (bgl1) was significantly downregulated in the ERAD-deficient mutants, which was presumably due to the activation of a proposed feedback mechanism, repression under secretion stress (RESS). Taken together, our results indicate that a defective ERAD pathway negatively affects fungal growth and cellulase secretion, which provides a novel insight into the cellulase secretion mechanism in T. reesei.

13.
Environ Int ; 169: 107518, 2022 11.
Article En | MEDLINE | ID: mdl-36155913

The rapid spread of dengue fever (DF) infection has posed severe threats to global health. Environmental factors, such as weather conditions, are believed to regulate DF spread. While previous research reported inconsistent change of DF risk with varying weather conditions, few of them evaluated the impact of extreme weather conditions on DF infection risk. This study aims to examine the short-term associations between extreme temperatures, extreme rainfall, and DF infection risk in South and Southeast Asia. A total of 35 locations in Singapore, Malaysia, Sri Lanka, and Thailand were included, and weekly DF data, as well as the daily meteorological data from 2012 to 2020 were collected. A two-stage meta-analysis was used to estimate the overall effect of extreme weather conditions on the DF infection risk. Location-specific associations were obtained by the distributed lag nonlinear models. The DF infection risk appeared to increase within 1-3 weeks after extremely high temperature (e.g. lag week 2: RR = 1.074, 95 % CI: 1.022-1.129, p = 0.005). Compared with no rainfall, extreme rainfall was associated with a declined DF risk (RR = 0.748, 95 % CI: 0.620-0.903, p = 0.003), and most of the impact was across 0-3 weeks lag. In addition, the DF risk was found to be associated with more intensive extreme weathers (e.g. seven extreme rainfall days per week: RR = 0.338, 95 % CI: 0.120-0.947, p = 0.039). This study provides more evidence in support of the impact of extreme weather conditions on DF infection and suggests better preparation of DF control measures according to climate change.


Dengue , Extreme Weather , Dengue/epidemiology , Humans , Nonlinear Dynamics , Thailand/epidemiology , Weather
...