Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 304
Filter
1.
Bioresour Technol ; 406: 131006, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38889867

ABSTRACT

To overcome the long start-up period in cultivating aerobic granular sludge (AGS) under hypersaline environment, mycelial pellets (MPs) of halotolerant fungus Cladosporium tenuissimum NCSL-XY8 were inoculated to try to realize the ultra-rapid development of salt-tolerant AGS by stable transition of 'hollow' MPs into 'solid' AGS without apparent fragmentation. The granules directly met the standard of AGS after inoculating MPs (Day 0), and it basically satisfied relatively strict standards of AGS (SVI30 < 50 mL/g, D50 > 300 µm, D10 > 200 µm and SVI30/SVI5 > 0.9) under anaerobic/aerobic mode during whole cultivation processes. Microstructure of the granular cross section clarified that MPs with hollow/loose inner layer transitioned into solid/dense AGS under anaerobic/aerobic mode within 7 days, while formed skin-like floating pieces and unstable double-layer hollow granules under aerobic mode. Organics removal reached relatively stable within 13 days under anaerobic/aerobic mode, 6 days faster than aerobic mode. This study provided a strategy for ultra-rapid and stable development of AGS, which showed the shortest granulation period in various AGS-cultivation strategies.

3.
Thorac Cancer ; 15(19): 1502-1512, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38798202

ABSTRACT

BACKGROUND: Malignant mesothelioma (MM) is an exceedingly rare tumor with poor prognosis due to the limited availability of effective treatment. Immunotherapy has emerged as a novel treatment approach for MM, but less than 40% of the patients benefit from it. Thus, it is necessary to identify accurate and effective biomarkers that can predict the overall survival (OS) and immunotherapy efficacy for MM. METHODS: DNA sequencing was used to identify the genomic landscape based on the data from 86 Chinese patients. T cell receptor (TCR) sequencing was used to characterize MM TCR repertoires of 28 patients between October 2016 and April 2023. RESULTS: Patients with TP53, NF2, or CDKN2A variants at the genomic level, as well as those exhibiting lower Shannon index (<6.637), lower evenness (<0.028), or higher clonality (≥0.194) according to baseline tumor tissue TCR indexes, demonstrated poorer OS. Furthermore, patients with TP53, CDKN2A, or CDKN2B variants and those with a lower evenness (<0.030) in baseline tumor tissue showed worse immunotherapy efficacy. The present study is the first to identify five special TCR Vß-Jß rearrangements associated with MM immunotherapy efficacy. CONCLUSIONS: The present study reported the largest-scale genomic landscape and TCR repertoire of MM in Chinese patients and identified genomic and TCR biomarkers for the prognosis and immunotherapy efficacy in MM. The study results might provide new insights for prospective MM trials using specific genes, TCR indexes, and TCR clones as biomarkers and offer a reference for future antitumor drugs based on TCR-specific clones.


Subject(s)
Biomarkers, Tumor , Mesothelioma, Malignant , Humans , Mesothelioma, Malignant/genetics , Male , Female , Biomarkers, Tumor/genetics , Middle Aged , Aged , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Prognosis , Genomics/methods , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Adult , Mesothelioma/genetics , Mesothelioma/mortality , Mesothelioma/pathology , Immunotherapy/methods , T-Lymphocytes/metabolism , T-Lymphocytes/immunology
4.
Biochem Biophys Res Commun ; 721: 150130, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38761750

ABSTRACT

Apigenin (API) is a natural flavonoid compound with antioxidant, anti fibrotic, anti-inflammatory and other effects, but there is limited research on the effect of API on liver fibrosis. This study aims to explore the effect and potential mechanism of API on liver fibrosis induced by CCl4 in mice. The results indicate that API reduces oxidative stress levels, inhibits hepatic stellate cell (HSC) activation, and exerts anti liver fibrosis effects by regulating the PKM2-HIF-1α pathway. We observed that API alleviated liver tissue pathological damage and collagen deposition in CCl4 induced mouse liver fibrosis model, promoting the recovery of liver function in mice with liver fibrosis. In addition, the API inhibits the transition of Pyruvate kinase isozyme type M2 (PKM2) from dimer to tetramer formation by regulating the EGFR-MEK1/2-ERK1/2 pathway, thereby preventing dimer from entering the nucleus and blocking PKM2-HIF-1α access. This change leads to a decrease in malondialdehyde (MDA) and Catalase (CAT) levels and an increase in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) levels, as well as total antioxidant capacity (T-AOC) in the liver of liver fibrosis mice. At the same time, API downregulated the expression of α-smooth muscle actin (α-SMA), Vimentin and Desmin in the liver tissue of mice with liver fibrosis, inhibited the activation of HSC, and reduced collagen deposition. These results indicate that API can inhibit HSC activation and alleviate CCl4 induced liver fibrosis by inhibiting the PKM2-HIF-1α pathway and reducing oxidative stress, laying an important foundation for the development and clinical application of API as a novel drug for treating liver fibrosis.


Subject(s)
Apigenin , Hypoxia-Inducible Factor 1, alpha Subunit , Liver Cirrhosis , Oxidative Stress , Animals , Oxidative Stress/drug effects , Apigenin/pharmacology , Apigenin/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Mice , Male , Pyruvate Kinase/metabolism , Mice, Inbred C57BL , Carbon Tetrachloride/toxicity , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Thyroid Hormone-Binding Proteins , Liver/metabolism , Liver/drug effects , Liver/pathology , Thyroid Hormones/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , ErbB Receptors
5.
Clin Proteomics ; 21(1): 36, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764026

ABSTRACT

BACKGROUND: To comprehend the complexities of pathophysiological mechanisms and molecular events that contribute to proliferative diabetic retinopathy (PDR) and evaluate the diagnostic value of aqueous humor (AH) in monitoring the onset of PDR. METHODS: A cohort containing 16 PDR and 10 cataract patients and another validation cohort containing 8 PDR and 4 cataract patients were studied. AH was collected and subjected to proteomics analyses. Bioinformatics analysis and a machine learning-based pipeline called inference of biomolecular combinations with minimal bias were used to explore the functional relevance, hub proteins, and biomarkers. RESULTS: Deep profiling of AH proteomes revealed several insights. First, the combination of SIAE, SEMA7A, GNS, and IGKV3D-15 and the combination of ATP6AP1, SPARCL1, and SERPINA7 could serve as surrogate protein biomarkers for monitoring PDR progression. Second, ALB, FN1, ACTB, SERPINA1, C3, and VTN acted as hub proteins in the profiling of AH proteomes. SERPINA1 was the protein with the highest correlation coefficient not only for BCVA but also for the duration of diabetes. Third, "Complement and coagulation cascades" was an important pathway for PDR development. CONCLUSIONS: AH proteomics provides stable and accurate biomarkers for early warning and diagnosis of PDR. This study provides a deep understanding of the molecular mechanisms of PDR and a rich resource for optimizing PDR management.

6.
Exp Neurol ; 377: 114807, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704082

ABSTRACT

Repeated sevoflurane exposure in neonatal mice can leads to neuronal apoptosis and mitochondrial dysfunction. The mitochondria are responsible for energy production to maintain homeostasis in the central nervous system. The mitochondria-associated endoplasmic reticulum membrane (MAM) is located between the mitochondria and endoplasmic reticulum (ER), and it is critical for mitochondrial function and cell survival. MAM malfunction contributes to neurodegeneration, however, whether it is involved in sevoflurane-induced neurotoxicity remains unknown. Our study demonstrated that repeated sevoflurane exposure induced mitochondrial dysfunction and dampened the MAM structure. The upregulated ER-mitochondria tethering enhanced Ca2+ transition from the cytosol to the mitochondria. Overload of mitochondrial Ca2+ contributed to opening of the mitochondrial permeability transition pore (mPTP), which caused neuronal apoptosis. Mitofusin 2(Mfn2), a key regulator of ER-mitochondria contacts, was found to be suppressed after repeated sevoflurane exposure, while restoration of Mfn2 expression alleviated cognitive dysfunction due to repeated sevoflurane exposure in the adult mice. These evidences suggest that sevoflurane-induced MAM malfunction is vulnerable to Mfn2 suppression, and the enhanced ER-mitochondria contacts promotes mitochondrial Ca2+ overload, contributing to mPTP opening and neuronal apoptosis. This paper sheds light on a novel mechanism of sevoflurane-induced neurotoxicity. Furthermore, targeting Mfn2-mediated regulation of the MAM structure and mitochondrial function may provide a therapeutic advantage in sevoflurane-induced neurodegeneration.


Subject(s)
Endoplasmic Reticulum , GTP Phosphohydrolases , Mitochondria , Sevoflurane , Animals , Sevoflurane/toxicity , Sevoflurane/pharmacology , GTP Phosphohydrolases/metabolism , Mice , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mice, Inbred C57BL , Apoptosis/drug effects , Anesthetics, Inhalation/toxicity , Anesthetics, Inhalation/pharmacology , Male , Calcium/metabolism , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/drug effects
7.
Acta Pharm Sin B ; 14(5): 2026-2038, 2024 May.
Article in English | MEDLINE | ID: mdl-38799643

ABSTRACT

Growing evidences indicate that dysfunction of autophagy contributes to the disease pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative disorders. The GGGGCC·GGCCCC repeat RNA expansion in chromosome 9 open reading frame 72 (C9orf72) is the most genetic cause of both ALS and FTD. According to the previous studies, GGGGCC·GGCCCC repeat undergoes the unconventional repeat-associated non-ATG translation, which produces dipeptide repeat (DPR) proteins. Although there is a growing understanding that C9orf72 DPRs have a strong ability to harm neurons and induce C9orf72-linked ALS/FTD, whether these DPRs can affect autophagy remains unclear. In the present study, we find that poly-GR and poly-PR, two arginine-containing DPRs which display the most cytotoxic properties according to the previous studies, strongly inhibit starvation-induced autophagy. Moreover, our data indicate that arginine-rich DPRs enhance the interaction between BCL2 and BECN1/Beclin 1 by inhibiting BCL2 phosphorylation, therefore they can impair autophagic clearance of neurodegenerative disease-associated protein aggregates under starvation condition in cells. Importantly, our study not only highlights the role of C9orf72 DPR in autophagy dysfunction, but also provides novel insight that pharmacological intervention of autophagy using SW063058, a small molecule compound that can disrupt the interaction between BECN1 and BCL2, may reduce C9orf72 DPR-induced neurotoxicity.

8.
Front Microbiol ; 15: 1331130, 2024.
Article in English | MEDLINE | ID: mdl-38596370

ABSTRACT

The gut-brain axis is evident in modulating neuropsychiatric diseases including autism spectrum disorder (ASD). Chromosomal 16p11.2 microduplication 16p11.2dp/+ is among the most prevalent genetic copy number variations (CNV) linked with ASD. However, the implications of gut microbiota status underlying the development of ASD-like impairments induced by 16p11.2dp/+ remains unclear. To address this, we initially investigated a mouse model of 16p11.2dp/+, which exhibits social novelty deficit and repetitive behavior characteristic of ASD. Subsequently, we conducted a comparative analysis of the gut microbial community and metabolomic profiles between 16p11.2dp/+ and their wild-type counterparts using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS). Our microbiota analysis revealed structural dysbiosis in 16p11.2dp/+ mice, characterized by reduced biodiversity and alterations in species abundance, as indicated by α/ß-diversity analysis. Specifically, we observed reduced relative abundances of Faecalibaculum and Romboutsia, accompanied by an increase in Turicibacter and Prevotellaceae UCG_001 in 16p11.2dp/+ group. Metabolomic analysis identified 19 significantly altered metabolites and unveiled enriched amino acid metabolism pathways. Notably, a disruption in the predominantly histamine-centered neurotransmitter network was observed in 16p11.2dp/+ mice. Collectively, our findings delineate potential alterations and correlations among the gut microbiota and microbial neurotransmitters in 16p11.2dp/+ mice, providing new insights into the pathogenesis of and treatment for 16p11.2 CNV-associated ASD.

9.
J Psychiatr Res ; 174: 297-303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678687

ABSTRACT

BACKGROUND: Biological rhythms denote the cyclical patterns of life activities anchored to a 24-hour cycle. Research shows that depression exhibits disturbances in biological rhythms. Yet, the relationship between these biological rhythms and concomitant anxiety symptoms is insufficiently investigated in structured clinical assessments. METHODS: This multicenter study, carried out in four Chinese hospitals, comprehensively examined the relationship between anxiety and disruptions in biological rhythms among patients with depression. The study encompassed 218 patients diagnosed with depression and 205 matched healthy controls. The Chinese version of the Biological Rhythms Interview of Assessment in Neuropsychiatry was utilized to evaluate the participants' biological rhythms, focusing on four dimensions: sleep, activity, social, and diet. RESULTS: In patients with depression, there is a significant positive correlation between the severity of anxiety symptoms and the disturbances in biological rhythms. The severity of anxiety and depression, along with the quality of life, are independently associated with disruptions in biological rhythms. The mediation model reveals that anxiety symptoms mediate the relationship between depressive symptoms and biological rhythms. CONCLUSION: This research highlights the role of anxiety within the spectrum of depressive disorders and the associated disturbances in biological rhythms. Our findings shed light on potential pathways towards more targeted preventive strategies and therapeutic interventions for individuals battling depression and anxiety.


Subject(s)
Anxiety , Humans , Female , Male , Adult , Middle Aged , Anxiety/physiopathology , Depression/physiopathology , Circadian Rhythm/physiology , Depressive Disorder/physiopathology , Young Adult , Chronobiology Disorders/physiopathology
10.
BMC Neurol ; 24(1): 126, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627623

ABSTRACT

BACKGROUND: Serum CGRP has been found to increase during migraine attack. However, whether CGRP can identify MA with PFO subtypes in MA remains unknown. This study aimed to investigate the differential expression of calcitonin gene-related peptide (CGRP) between migraine (MA) patients with and without patent foramen ovale (PFO), and to evaluate the predictive value of CGRP for MA with PFO. METHODS: A total of 153 patients with MA, 51 patients with PFO and 102 patients without. Venous blood was drawn and HIT-6 score was calculated during the onset of MA, and blood routine, inflammatory indexes and serum CGRP were detected. The differences in serum markers and HIT-6 scores were compared between the two groups, and the risk factors of MA with PFO were determined by univariate and multivariate logistics regression. Furthermore, the correlation between CGRP level with right-to-left shunt (RLS) grades and headache impact test-6 (HIT-6) score in MA patients with PFO were assessed. Independent risk factors were screened out by multivariate Logistic regression analysis. We used the receiver operating characteristic (ROC) curve to analyze the diagnostic value of these risk factors in MA complicated with PFO. RESULTS: The serum CGRP level and HIT-6 scores in the MA with PFO group were significantly higher than those in the MA group (P < 0.001). Multivariate regression analysis showed that CGRP was an independent risk factor for MA with PFO (OR = 1.698, 95% CI = 1.325-2.179, P < 0.001). CGRP values ​​increased with the increase of RLS grade(Spearmen rho = 0.703, P < 0.001). Furthermore, a positive correlation between CGRP and HIT-6 scores was found (Spearmen rho = 0.227; P = 0.016). ROC curve showed that the optimal cut-off value for diagnosing MA with PFO was 79 pg/mL, the area under the curve (AUC) for predicting MA with PFO was 0.845, with 72.55% sensitivity and 78.43% specificity. CONCLUSIONS: MA patients with PFO have higher serum CGRP level. elevated CGRP concentration was associated with higher RLS grade and increased HIT-6 score. Higher serum CGRP level has certain clinical value in predicting PFO in MA patients. TRIAL REGISTRATION: This study was approved by the Ethics Committee of Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine (Ethics batch number: 20,201,215,005).


Subject(s)
Foramen Ovale, Patent , Migraine Disorders , Migraine with Aura , Humans , Biomarkers , Calcitonin Gene-Related Peptide , Foramen Ovale, Patent/complications , Migraine Disorders/complications
11.
Nature ; 627(8005): 890-897, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448592

ABSTRACT

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Subject(s)
Chromatin , DNA Replication , Epistasis, Genetic , Histones , Saccharomyces cerevisiae , Binding Sites , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Cryoelectron Microscopy , DNA Replication/genetics , DNA, Fungal/biosynthesis , DNA, Fungal/chemistry , DNA, Fungal/metabolism , DNA, Fungal/ultrastructure , Epistasis, Genetic/genetics , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Multienzyme Complexes/ultrastructure , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Protein Binding , Protein Domains , Protein Multimerization , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure
12.
BMC Med Educ ; 24(1): 290, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491487

ABSTRACT

BACKGROUND: To compare the value and efficiency of the three-dimensional (3D) heads-up surgical system and traditional microscopic (TM) system in teaching and learning vitreoretinal surgeries. METHODS: Twenty ophthalmologists and scrub nurses were recruited as teachers, and 45 junior ophthalmology residents and trainee doctors, trainee nurses, and medical students were recruited as observers. Each teacher and observer were assigned to both a 3D-assisted and TM-assisted vitreoretinal surgery and then asked to complete satisfaction questionnaires for both surgical systems at the end of each surgery. RESULTS: The 3D heads-up surgical system was rated significantly higher in most of the subscales and overall satisfaction score by both teachers and observers (P < 0.05). However, ratings for instrument adjustment were significantly higher in the TM group compared to the 3D group for junior ophthalmology residents and trainee doctors (6.1 ± 1.7 vs. 8.8 ± 1.1, P < 0.001). CONCLUSIONS: The 3D heads-up surgical system has great didactical value in the medical education of vitreoretinal surgeries, but it is important to consider the specific needs of different learners when choosing between the two systems. TRIAL REGISTRATION: Not applicable.


Subject(s)
Education, Medical , Vitreoretinal Surgery , Humans , Vitreoretinal Surgery/methods , Prospective Studies , Learning , Surveys and Questionnaires
13.
J Cell Mol Med ; 28(7): e18160, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38506067

ABSTRACT

Apolipoprotein E4 (ApoE4) is involved in the stress-response processes and is hypothesized to be a risk factor for depression by means of mitochondrial dysfunction. However, their exact roles and underlying mechanisms are largely unknown. ApoE4 transgenic mice (B6. Cg-ApoEtm1Unc Cdh18Tg( GFAP-APOE i4)1Hol /J) were subjected to stress (lipopolysaccharides, LPS) to elucidate the aetiology of ApoE4-induced depression. LPS treatment significantly aggravated depression-like behaviours, concurrent with neuroinflammation and impaired mitochondrial changes, and melatonin/Urolithin A (UA) + 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR) reversed these effects in ApoE4 mice. Concurrently, ApoE4 mice exhibited mitophagy deficits, which could be further exacerbated by LPS stimulation, as demonstrated by reduced Atg5, Beclin-1 and Parkin levels, while PINK1 levels were increased. However, these changes were reversed by melatonin treatment. Additionally, proteomic profiling suggested mitochondria-related signalling and network changes in ApoE4 mice, which may underlie the exaggerated response to LPS. Furthermore, HEK 293T cells transfected with ApoE4 showed mitochondria-associated protein and mitophagy defects, including PGC-1α, TFAM, p-AMPKα, PINK1 and LC3B impairments. Additionally, it aggravates mitochondrial impairment (particularly mitophagy), which can be attenuated by triggering autophagy. Collectively, ApoE4 dysregulation enhanced depressive behaviour upon LPS stimulation.


Subject(s)
Apolipoprotein E4 , Melatonin , Mice , Animals , Apolipoprotein E4/metabolism , Apolipoprotein E4/pharmacology , Depression , Melatonin/pharmacology , Melatonin/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Proteomics , Mitochondria/metabolism , Apolipoproteins E/metabolism , Mice, Transgenic , AMP-Activated Protein Kinases/metabolism
14.
Microbiome ; 12(1): 66, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549163

ABSTRACT

BACKGROUND: Microdeletion of the human chromosomal region 16p11.2 (16p11.2 + / - ) is a prevalent genetic factor associated with autism spectrum disorder (ASD) and other neurodevelopmental disorders. However its pathogenic mechanism remains unclear, and effective treatments for 16p11.2 + / -  syndrome are lacking. Emerging evidence suggests that the gut microbiota and its metabolites are inextricably linked to host behavior through the gut-brain axis and are therefore implicated in ASD development. Despite this, the functional roles of microbial metabolites in the context of 16p11.2 + / -  are yet to be elucidated. This study aims to investigate the therapeutic potential of indole-3-propionic acid (IPA), a gut microbiota metabolite, in addressing behavioral and neural deficits associated with 16p11.2 + / - , as well as the underlying molecular mechanisms. RESULTS: Mice with the 16p11.2 + / -  showed dysbiosis of the gut microbiota and a significant decrease in IPA levels in feces and blood circulation. Further, these mice exhibited significant social and cognitive memory impairments, along with hyperactivation of hippocampal dentate gyrus neurons and reduced inhibitory synaptic transmission in this region. However, oral administration of IPA effectively mitigated the histological and electrophysiological alterations, thereby ameliorating the social and cognitive deficits of the mice. Remarkably, IPA treatment significantly increased the phosphorylation level of ERK1, a protein encoded by the Mapk3 gene in the 16p11.2 region, without affecting the transcription and translation of the Mapk3 gene. CONCLUSIONS: Our study reveals that 16p11.2 + / -  leads to a decline in gut metabolite IPA levels; however, IPA supplementation notably reverses the behavioral and neural phenotypes of 16p11.2 + / -  mice. These findings provide new insights into the critical role of gut microbial metabolites in ASD pathogenesis and present a promising treatment strategy for social and cognitive memory deficit disorders, such as 16p11.2 microdeletion syndrome. Video Abstract.


Subject(s)
Autism Spectrum Disorder , Propionates , Humans , Mice , Animals , Synaptic Transmission , Hippocampus , Indoles
15.
Transl Androl Urol ; 13(2): 193-208, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38481865

ABSTRACT

Background: Bladder cancer (BC) is a urological tumor which can be associated with a poor prognosis. Aging is a crucial factor in cancer development, but the role and prognostic value of aging-related genes (ARGs) in BC are unclear. Methods: In this study, with reference to The Cancer Genome Atlas (TCGA) database, a 5-gene signature model was constructed for the analysis of BC prognosis, immune microenvironment, and immunotherapy response. Least absolute shrinkage and selection operator (LASSO) and univariate Cox regression analyses were applied. Results: There was significant heterogeneity in the genetic variation and expression profiles of ARGs in BC. Striking variations were revealed in survival outcomes between high- and low-risk groups by Kaplan-Meier curves. The majority of samples of cases in the high-risk group belonged to the middle and late stage of the tumor and had a higher abundance of immune infiltration and immune checkpoint expression, and better immunotherapeutic effects. Conclusions: The risk score model of ARGs achieved more satisfactory results in the prediction of prognosis, clinical characteristics, immune infiltration, tumor mutational load, and immunotherapy in BC patients with good stability and reproducibility, offering innovative approaches and orientations for the diagnosis and treatment of patients with BC in the future.

16.
Transl Cancer Res ; 13(2): 1091-1113, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38482441

ABSTRACT

Background: Cancer is a common cause of death around the world. Immunotherapy plays a significant role in cancer treatment but still has limitations. The ankyrin-3 (ANK3) gene has been shown to have a variety of biological roles and has also been shown to be closely linked to individual cancers. Methods: We systematically investigated the role of ANK3 in pan-cancer, particularly in relation to immunity. We collected data from a number of databases, including the The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN), tumor-immune system interactions (TISIDB), cBioPortal, Tumor Immune Estimation Resource (TIMER), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), BioGRID, and SangerBox databases. R (version 3.6.3) was used for the statistical analysis and data visualization. The expression of ANK3 in tumors and its effects on patient prognosis, immune infiltration, neoantigens, the microenvironment, immune checkpoints (ICs), the tumor mutation burden, microsatellite instability (MSI), methylation, mismatch repair (MMR) genes, and cancer-associated fibroblasts were investigated. A gene set enrichment analysis (GSEA) was also conducted. Results: The ANK3 gene was differentially expressed at the messenger RNA (mRNA) and protein levels in various human tumors. The prognosis of patients with different types of malignancies was correlated with the level of ANK3 expression. The immunological microenvironment was also linked to ANK3 expression, especially in colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), and liver hepatocellular carcinoma (LIHC). ANK3 was also associated with ICs, immune neoantigens, MSI, the tumor mutation load, MMR genes, and DNA methylation. Finally, we found the key pathway related to the ANK3 gene through the enrichment analysis. Conclusions: ANK3 could serve as a new biomarker specific to prognosis and immunotherapy in various cancers. Our findings could contribute to the development of novel strategies for treating malignancies.

17.
Indian J Pathol Microbiol ; 67(2): 390-395, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38394428

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is characterised by an increased number of monoclonal immunoglobulin-producing plasma cells that malignantly grow in the bone marrow. Lung cancer is one of the most common malignancies and at the advanced stage may become metastatic to the bone. Rarely, MM and lung cancer are synchronously present in the same patient. RESULTS: In this report, we describe five cases of MM synchronous with lung adenocarcinoma including λ light chain in three cases and Ï° light chain in two cases. Two patients achieved complete remission, and no progression was seen in two patients. CONCLUSION: In conclusion, synchronous MM and lung adenocarcinoma are clinically rare, and diagnosis should be made scrupulously based on morphology, immunology, cytogenetics, molecular biology and biopsy pathology.


Subject(s)
Adenocarcinoma of Lung , Multiple Myeloma , Humans , Adenocarcinoma/pathology , Adenocarcinoma/diagnosis , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/diagnosis , Biopsy , Immunoglobulin kappa-Chains/genetics , Immunoglobulin lambda-Chains/genetics , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Multiple Myeloma/pathology , Multiple Myeloma/diagnosis
18.
CNS Neurosci Ther ; 30(2): e14553, 2024 02.
Article in English | MEDLINE | ID: mdl-38334231

ABSTRACT

In recent years, sevoflurane and isoflurane are the most popular anesthetics in general anesthesia for their safe, rapid onset, and well tolerant. Nevertheless, many studies reported their neurotoxicity among pediatric and aged populations. This effect is usually manifested as cognitive impairment such as perioperative neurocognitive disorders. The wide application of sevoflurane and isoflurane during general anesthesia makes their safety a major health concern. Evidence indicates that iron dyshomeostasis and ferroptosis may establish a role in neurotoxicity of sevoflurane and isoflurane. However, the mechanisms of sevoflurane- and isoflurane-induced neuronal injury were not fully understood, which poses a barrier to the treatment of its neurotoxicity. We, therefore, reviewed the current knowledge on mechanisms of iron dyshomeostasis and ferroptosis and aimed to promote a better understanding of their roles in sevoflurane- and isoflurane-induced neurotoxicity.


Subject(s)
Anesthetics, Inhalation , Ferroptosis , Isoflurane , Methyl Ethers , Humans , Child , Aged , Isoflurane/adverse effects , Sevoflurane/adverse effects , Anesthetics, Inhalation/adverse effects , Neurocognitive Disorders , Homeostasis
19.
Cancer Cell Int ; 24(1): 78, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374122

ABSTRACT

BACKGROUND: Liver specific genes (LSGs) are crucial for hepatocyte differentiation and maintaining normal liver function. A deep understanding of LSGs and their heterogeneity in hepatocellular carcinoma (HCC) is necessary to provide clues for HCC diagnosis, prognosis, and treatment. METHODS: The bulk and single-cell RNA-seq data of HCC were downloaded from TCGA, ICGC, and GEO databases. Through unsupervised cluster analysis, LSGs-based HCC subtypes were identified in TCGA-HCC samples. The prognostic effects of the subtypes were investigated with survival analyses. With GSVA and Wilcoxon test, the LSGs score, stemness score, aging score, immune score and stromal score of the samples were estimated and compared. The HCC subtype-specific genes were identified. The subtypes and their differences were validated in ICGC-HCC samples. LASSO regression analysis was used for key gene selection and risk model construction for HCC overall survival. The model performance was estimated and validated. The key genes were validated for their heterogeneities in HCC cell lines with quantitative real-time PCR and at single-cell level. Their dysregulations were investigated at protein level. Their correlations with HCC response to anti-cancer drugs were estimated in HCC cell lines. RESULTS: We identified three LSGs-based HCC subtypes with different prognosis, tumor stemness, and aging level. The C1 subtype with low LSGs score and high immune score presented a poor survival, while the C2 subtype with high LSGs score and immune score indicated an enduring survival. Although no significant survival difference between C2 and C3 HCCs was shown, the C2 HCCs presented higher immune score and stroma score. The HCC subtypes and their differences were confirmed in ICGC-HCC dataset. A five-gene prognostic signature for HCC survival was constructed. Its good performance was shown in both the training and validation datasets. The five genes presented significant heterogeneities in different HCC cell lines and hepatocyte subclusters. Their dysregulations were confirmed at protein level. Furthermore, their significant associations with HCC sensitivities to anti-cancer drugs were shown. CONCLUSIONS: LSGs-based HCC subtype classification and the five-gene risk model might provide useful clues not only for HCC stratification and risk prediction, but also for the development of more personalized therapies for effective HCC treatment.

20.
Oncogene ; 43(17): 1233-1248, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418544

ABSTRACT

Liver-specific Ern1 knockout impairs tumor progression in mouse models of hepatocellular carcinoma (HCC). However, the mechanistic role of IRE1α in human HCC remains unclear. In this study, we show that XBP1s, the major downstream effector of IRE1α, is required for HCC cell survival both in vitro and in vivo. Mechanistically, XBP1s transactivates LEF1, a key co-factor of ß-catenin, by binding to its promoter. Moreover, XBP1s physically interacts with LEF1, forming a transcriptional complex that enhances classical Wnt signaling. Consistently, the activities of XBP1s and LEF1 are strongly correlated in human HCC and with disease prognosis. Notably, selective inhibition of XBP1 splicing using an IRE1α inhibitor significantly repressed the viability of tumor explants as well as the growth of tumor xenografts derived from patients with distinct Wnt/LEF1 activities. Finally, machine learning algorithms developed a powerful prognostic signature based on the activities of XBP1s/LEF1. In summary, our study uncovers a key mechanistic role for the IRE1α-XBP1s pathway in human HCC. Targeting this axis could provide a promising therapeutic strategy for HCC with hyperactivated Wnt/LEF1 signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...