Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Bioorg Chem ; 150: 107593, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38971093

ABSTRACT

Nitric oxide (NO) and reactive oxygen species (ROS) embody excellent potential in cancer therapy. However, as a small molecule, their targeted delivery and precise, controllable release are urgently needed to achieve accurate cancer therapy. In this paper, a novel US-responsive bifunctional molecule (SD) and hyaluronic acid-modified MnO2 nanocarrier was developed, and a US-responsive NO and ROS controlled released nanoplatform was constructed. US can trigger SD to release ROS and NO simultaneously at the tumor site. Thus, SD served as acoustic sensitizer for sonodynamic therapy and NO donor for gas therapy. In the tumor microenvironment, the MnO2 nanocarrier can effectively deplete the highly expressed GSH, and the released Mn2+ can make H2O2 to produce .OH by Fenton-like reaction, which exhibited a strong chemodynamic effect. The high concentration of ROS and NO in cancer cell can induce cancer cell apoptosis ultimately. In addition, toxic ONOO-, which was generated by the reaction of NO and ROS, can effectively cause mitochondrial dysfunction, which induced the apoptosis of tumor cells. The 131I was labeled on the nanoplatform, which exhibited internal radiation therapy for tumor therapy. In -vitro and -vivo experiments showed that the nanoplatform has enhanced biocompatibility, and efficient anti-tumor potential, and it achieves synergistic sonodynamic/NO/chemodynamic/radionuclide therapy for cancer.

2.
Neuroscience ; 551: 237-245, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838979

ABSTRACT

The ventrolateral prefrontal cortex (VLPFC) and dorsolateral prefrontal cortex (DLPFC) have been found to play important roles in negative emotion processing. However, the specific time window of their involvement remains unknown. This study addressed this issue in three experiments using single-pulse transcranial magnetic stimulation (TMS). We found that TMS applied over the VLPFC at 400 ms after negative emotional exposure significantly enhanced negative feelings compared to the vertex condition. Furthermore, TMS applied over the DLPFC at both 0 ms and 600 ms after negative emotional exposure also resulted in deteriorated negative feelings. These findings provide potential evidence for the VLPFC-dependent semantic processing (∼400 ms) and the DLPFC-dependent attentional and cognitive control (∼0/600 ms) in negative emotion processing. The asynchronous involvement of these frontal cortices not only deepens our understanding of the neural mechanisms underlying negative emotion processing but also provides valuable temporal parameters for neurostimulation therapy targeting patients with mood disorders.

3.
Nanoscale ; 16(25): 11849-11862, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38836376

ABSTRACT

Atherosclerosis, as a chronic cardiovascular disease driven by inflammation, can lead to arterial stenosis and thrombosis, which seriously threatens human life and health. Achieving the timely monitoring of atherosclerosis is an important measure to reduce acute cardiovascular diseases. Compared with other imaging platforms, fluorescence imaging technology has the characteristics of excellent sensitivity, high spatiotemporal resolution and real-time imaging, which is very suitable for direct visualization of molecular processes and abnormalities of atherosclerosis. Recently, researchers have strived to design a variety of fluorescent probes, from single-mode fluorescent probes to fluorescent-combined dual/multimode probes, to enrich the imaging and detection of atherosclerosis. Therefore, this review aims to provide an overview of currently investigated fluorescent probes in the context of atherosclerosis, summarize relevant published studies showing applications of different types of fluorescent probes in the early-stage and other stages to detect atherosclerosis, give effective biological targets and discuss the latest progress and some limitations. Finally, some insights are provided for the development of a new generation of more accurate and efficient fluorescent probes.


Subject(s)
Atherosclerosis , Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Atherosclerosis/diagnostic imaging , Animals , Optical Imaging/methods
4.
Hematology ; 29(1): 2360339, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38828919

ABSTRACT

BACKGROUND: Hemolytic disease of the newborn (HDN) is a common condition that can have a severe impact on the health of newborns due to the hemolytic reactions it triggers. Although numerous studies have focused on understanding the pathogenesis of HDN, there are still many unanswered questions. METHODS: In this retrospective study, serum samples were collected from 15 healthy newborns and 8 infants diagnosed with hemolytic disease. The relationship between different metabolites and various IgG subtypes in Healthy, HDN and BLI groups was studied by biochemical technique and enzyme-linked immunosorbent assay (ELISA). Metabolomics analysis was conducted to identify the differential metabolites associated with HDN. Subsequently, Pearson's correlation analysis was used to determine the relation of these differential metabolites with IgG isoforms. The relationship between the metabolites and IgG subtypes was observed after treatment. RESULTS: The study results revealed that infants with hemolytic disease exhibited abnormal elevations in TBA, IgG1, IgG2a, IgG2b, IgG3, and IgG4 levels when compared to healthy newborns. Additionally, differences in metabolite contents were also observed. N, N-DIMETHYLARGININE showed negative correlations with TBA, IgG1, IgG2a, IgG2b, IgG3, and IgG4, while 2-HYDROXYBUTYRATE, AMINOISOBUTANOATE, Inosine, and ALLYL ISOTHIOCYANATE exhibited positive correlations with TBA, IgG1, IgG2a, IgG2b, IgG3, and IgG4. Through metabolomics-based research, we have discovered associations between differential metabolites and different IgG isoforms during the onset of HDN. CONCLUSION: These findings suggest that changes in metabolite and IgG isoform levels are linked to HDN. Understanding the involvement of IgG isoforms and metabolites can provide valuable guidance for the diagnosis and treatment of HDN.


Subject(s)
Immunoglobulin G , Metabolomics , Protein Isoforms , Humans , Immunoglobulin G/blood , Infant, Newborn , Metabolomics/methods , Female , Male , Retrospective Studies , Erythroblastosis, Fetal/blood , Erythroblastosis, Fetal/metabolism , Erythroblastosis, Fetal/diagnosis
5.
Article in English | MEDLINE | ID: mdl-38841964

ABSTRACT

Port wine stain (PWS) is a congenital vascular malformation that commonly occurs on the face and neck. Currently, the main treatments for port wine stain are pulsed dye laser (PDL) and photodynamic therapy (PDT). However, the efficacy evaluation of PWS mostly relies on the subjective judgement of clinicians, and it is difficult to accurately respond to many small changes after treatment. Therefore, some non-invasive and efficient efficacy assessment methods are also needed. With the continuous development of technology, there are currently many visualisation instruments to evaluate PWS, including dermoscopy, VISIA-CR™ system, reflectance confocal microscopy (RCM), high-frequency ultrasound (HFUS), optical coherence tomography (OCT), Photoacoustic imaging (PAI), laser speckle imaging (LSI) and laser Doppler imaging (LDI). Among them, there are simple and low-cost technologies such as dermoscopy and the VISIA-CR™ system, but they may not be able to observe the deeper structures of PWS. At this time, combining techniques such as HFUS and OCT to increase penetration depth is crucial to evaluate PWS. In the future, the combination of these different technologies could help overcome the limitations of a single technology. This article provides a systematic overview of non-invasive methods for evaluating treatment efficacy in port wine stains and summarises their advantages and disadvantages.

6.
J Periodontol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937859

ABSTRACT

BACKGROUND: Diabetes is one of the major inflammatory comorbidities of periodontitis via 2-way interactions. Cystathionine γ-lyase (CTH) is a pivotal endogenous enzyme synthesizing hydrogen sulfide (H2S), and CTH/H2S is crucially implicated in modulating inflammation in various diseases. This study aimed to explore the potential role of CTH in experimental periodontitis under a hyperglycemic condition. METHODS: CTH-silenced and normal human periodontal ligament cells (hPDLCs) were cultured in a high glucose and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) condition. The effects of CTH on hPDLCs were assessed by Cell Counting Kit 8 (CCK8), real-time quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The model of experimental periodontitis under hyperglycemia was established on both Cth-/- and wild-type (WT) mice, and the extent of periodontal destruction was assessed by micro-CT, histology, RNA-Seq, Western blot, tartrate-resistant acid phosphatase (TRAP) staining and immunostaining. RESULTS: CTH mRNA expression increased in hPDLCs in response to increasing concentration of P.g-LPS stimulation in a high glucose medium. With reference to WT mice, Cth-/- mice with experimental periodontitis under hyperglycemia exhibited reduced bone loss, decreased leukocyte infiltration and hindered osteoclast formation, along with reduced expression of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in periodontal tissue. RNA-seq-enriched altered NF-κB pathway signaling in healthy murine gingiva with experimental periodontitis mice under hyperglycemia. Accordingly, phosphorylation of p65 (P-p65) was alleviated in CTH-silenced hPDLCs, leading to decreased expression of IL6 and TNF. CTH knockdown inhibited activation of nuclear factor kappa-B (NF-κB) pathway and decreased production of proinflammatory cytokines under high glucose and P.g-LPS treatment. CONCLUSION: The present findings suggest the potential of CTH as a therapeutic target for tackling periodontitis in diabetic patients.

8.
Nucl Med Biol ; 134-135: 108915, 2024.
Article in English | MEDLINE | ID: mdl-38723361

ABSTRACT

BACKGROUND: The polyamine transporter system (PTS), which renders it a promising target for tumor therapy and imaging applications, facilitates the transmembrane transport of polyamines. We reported a novel derivative of spermine labeled with gallium-68 ([68Ga]Ga-NOTA-Spermine) for the imaging of the PTS in mouse models of tumor. RESULTS: The radiochemical yield of [68Ga]Ga-NOTA-Spermine was determined to be 64-69 %, demonstrating exceptional stability and radiochemical purity (>98 %). Cellular uptake experiments revealed that A549 cells exhibited peak uptake of [68Ga]Ga-NOTA-Spermine at 90 min (15.4 % ± 0.68 %). Biodistribution analysis demonstrated significant accumulation of [68Ga]Ga-NOTA-Spermine in kidneys and liver, while exhibiting low uptake levels in muscle, brain, and bones. Furthermore, Micro-PET/CT scans conducted on A549 tumor-bearing mouse models indicated substantial uptake of [68Ga]Ga-NOTA-Spermine, with maximum tumor/muscle (T/M) ratios reaching 3.71. CONCLUSION: These results suggest that [68Ga]Ga-NOTA-Spermine holds potential as a PET imaging agent for tumors with high levels of PTS.


Subject(s)
Gallium Radioisotopes , Spermine , Animals , Gallium Radioisotopes/chemistry , Mice , Spermine/analogs & derivatives , Spermine/chemistry , Spermine/chemical synthesis , Spermine/pharmacokinetics , Humans , Tissue Distribution , Isotope Labeling , Chemistry Techniques, Synthetic , Positron-Emission Tomography/methods , Positron Emission Tomography Computed Tomography/methods , A549 Cells , Radiochemistry , Biological Transport , Heterocyclic Compounds, 1-Ring
9.
Pharmacol Res ; 204: 107221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768669

ABSTRACT

Based on the concept of "Evolutionary Traps", targeting survival essential genes obtained during tumor drug resistance can effectively eliminate resistant cells. While, it still faces limitations. In this study, lapatinib-resistant cells were used to test the concept of "Evolutionary Traps" and no suitable target stand out because of the identified genes without accessible drug. However, a membrane protein PDPN, which is low or non-expressed in normal tissues, is identified as highly expressed in lapatinib-resistant tumor cells. PDPN CAR-T cells were developed and showed high cytotoxicity against lapatinib-resistant tumor cells in vitro and in vivo, suggesting that CAR-T may be a feasible route for overcoming drug resistance of tumor based on "Evolutionary Trap". To test whether this concept is cell line or drug dependent, we analyzed 21 drug-resistant tumor cell expression profiles reveal that JAG1, GPC3, and L1CAM, which are suitable targets for CAR-T treatment, are significantly upregulated in various drug-resistant tumor cells. Our findings shed light on the feasibility of utilizing CAR-T therapy to treat drug-resistant tumors and broaden the concept of the "Evolutionary Trap".


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Immunotherapy, Adoptive , Humans , Animals , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Immunotherapy, Adoptive/methods , Lapatinib/pharmacology , Lapatinib/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/therapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Mice, Nude , Mice, Inbred BALB C , Mice , Female
10.
Heliyon ; 10(8): e29382, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38660246

ABSTRACT

CRISPR-based screens have discovered novel functional genes involving in diverse tumor biology and elucidated the mechanisms of the cancer pathological states. Recently, with its randomness and unbiasedness, CRISPR screens have been used to discover effector genes with previously unknown roles for AML. Those novel targets are related to AML survival resembled cellular pathways mediating epigenetics, synthetic lethality, transcriptional regulation, mitochondrial and energy metabolism. Other genes that are crucial for pharmaceutical targeting and drug resistance have also been identified. With the rapid development of novel strategies, such as barcodes and multiplexed mosaic CRISPR perturbation, more potential therapeutic targets and mechanism in AML will be discovered. In this review, we present an overview of recent progresses in the development of CRISPR-based screens for the mechanism and target identification in AML and discuss the challenges and possible solutions in this rapidly growing field.

11.
Biomed Eng Online ; 23(1): 41, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594729

ABSTRACT

BACKGROUND: The timely identification and management of ovarian cancer are critical determinants of patient prognosis. In this study, we developed and validated a deep learning radiomics nomogram (DLR_Nomogram) based on ultrasound (US) imaging to accurately predict the malignant risk of ovarian tumours and compared the diagnostic performance of the DLR_Nomogram to that of the ovarian-adnexal reporting and data system (O-RADS). METHODS: This study encompasses two research tasks. Patients were randomly divided into training and testing sets in an 8:2 ratio for both tasks. In task 1, we assessed the malignancy risk of 849 patients with ovarian tumours. In task 2, we evaluated the malignancy risk of 391 patients with O-RADS 4 and O-RADS 5 ovarian neoplasms. Three models were developed and validated to predict the risk of malignancy in ovarian tumours. The predicted outcomes of the models for each sample were merged to form a new feature set that was utilised as an input for the logistic regression (LR) model for constructing a combined model, visualised as the DLR_Nomogram. Then, the diagnostic performance of these models was evaluated by the receiver operating characteristic curve (ROC). RESULTS: The DLR_Nomogram demonstrated superior predictive performance in predicting the malignant risk of ovarian tumours, as evidenced by area under the ROC curve (AUC) values of 0.985 and 0.928 for the training and testing sets of task 1, respectively. The AUC value of its testing set was lower than that of the O-RADS; however, the difference was not statistically significant. The DLR_Nomogram exhibited the highest AUC values of 0.955 and 0.869 in the training and testing sets of task 2, respectively. The DLR_Nomogram showed satisfactory fitting performance for both tasks in Hosmer-Lemeshow testing. Decision curve analysis demonstrated that the DLR_Nomogram yielded greater net clinical benefits for predicting malignant ovarian tumours within a specific range of threshold values. CONCLUSIONS: The US-based DLR_Nomogram has shown the capability to accurately predict the malignant risk of ovarian tumours, exhibiting a predictive efficacy comparable to that of O-RADS.


Subject(s)
Deep Learning , Ovarian Neoplasms , Humans , Female , Nomograms , Radiomics , Ovarian Neoplasms/diagnostic imaging , Ultrasonography , Retrospective Studies
12.
Article in English | MEDLINE | ID: mdl-38592427

ABSTRACT

The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on-off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.

13.
Mol Imaging Biol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641708

ABSTRACT

BACKGROUND: Previous studies have initially reported accompanying elevated 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) inflammatory activity in the remote area and its prognostic value after acute myocardial infarction (AMI). Non-invasive characterization of the accompanying inflammation in the remote myocardium may be of potency in guiding future targeted theranostics. [68Ga]Ga-Pentixafor targeting chemokine receptor 4 (CXCR4) on the surface of inflammatory cells is currently one of the promising inflammatory imaging agents. In this study, we sought to focus on the longitudinal evolution of [68Ga]Ga-Pentixafor activities in the remote myocardium following AMI and its association with cardiac function. METHODS: Twelve AMI rats and six Sham rats serially underwent [68Ga]Ga-Pentixafor imaging at pre-operation, and 5, 7, 14 days post-operation. Maximum and mean standard uptake value (SUV) and target-to-background ratio (TBR) were assessed to indicate the uptake intensity. Gated [18F]F-FDG imaging and immunofluorescent staining were performed to obtain cardiac function and responses of pro-inflammatory and reparative macrophages, respectively. RESULTS: The uptake of [68Ga]Ga-Pentixafor in the infarcted myocardium peaked at day 5 (all P = 0.003), retained at day 7 (all P = 0.011), and recovered at day 14 after AMI (P > 0.05), paralleling with the rise-fall pro-inflammatory M1 macrophages (P < 0.05). Correlated with the peak activity in the infarct territory, [68Ga]Ga-Pentixafor uptake in the remote myocardium on day 5 early after AMI significantly increased (AMI vs. Sham: SUVmean, SUVmax, and TBRmean: all P < 0.05), and strongly correlated with contemporaneous EDV and/or ESV (SUVmean and TBRmean: both P < 0.05). The transitory remote activity recovered as of day 7 post-AMI (AMI vs. Sham: P > 0.05). CONCLUSIONS: Corresponding with the peaked [68Ga]Ga-Pentixafor activity in the infarcted myocardium, the activity in the remote region elevated accordingly and led to contemporaneous left ventricular remodelling early after AMI. Further studies are warranted to clarify its clinical application potential.

14.
BioData Min ; 17(1): 12, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644481

ABSTRACT

BACKGROUND: Recent researches have found a strong correlation between the triglyceride-glucose (TyG) index or the atherogenic index of plasma (AIP) and cardiovascular disease (CVD) risk. However, there is a lack of research on non-invasive and rapid prediction of cardiovascular risk. We aimed to develop and validate a machine-learning model for predicting cardiovascular risk based on variables encompassing clinical questionnaires and oculomics. METHODS: We collected data from the Korean National Health and Nutrition Examination Survey (KNHANES). The training dataset (80% from the year 2008 to 2011 KNHANES) was used for machine learning model development, with internal validation using the remaining 20%. An external validation dataset from the year 2012 assessed the model's predictive capacity for TyG-index or AIP in new cases. We included 32122 participants in the final dataset. Machine learning models used 25 algorithms were trained on oculomics measurements and clinical questionnaires to predict the range of TyG-index and AIP. The area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and F1 score were used to evaluate the performance of our machine learning models. RESULTS: Based on large-scale cohort studies, we determined TyG-index cut-off points at 8.0, 8.75 (upper one-third values), 8.93 (upper one-fourth values), and AIP cut-offs at 0.318, 0.34. Values surpassing these thresholds indicated elevated cardiovascular risk. The best-performing algorithm revealed TyG-index cut-offs at 8.0, 8.75, and 8.93 with internal validation AUCs of 0.812, 0.873, and 0.911, respectively. External validation AUCs were 0.809, 0.863, and 0.901. For AIP at 0.34, internal and external validation achieved similar AUCs of 0.849 and 0.842. Slightly lower performance was seen for the 0.318 cut-off, with AUCs of 0.844 and 0.836. Significant gender-based variations were noted for TyG-index at 8 (male AUC=0.832, female AUC=0.790) and 8.75 (male AUC=0.874, female AUC=0.862) and AIP at 0.318 (male AUC=0.853, female AUC=0.825) and 0.34 (male AUC=0.858, female AUC=0.831). Gender similarity in AUC (male AUC=0.907 versus female AUC=0.906) was observed only when the TyG-index cut-off point equals 8.93. CONCLUSION: We have established a simple and effective non-invasive machine learning model that has good clinical value for predicting cardiovascular risk in the general population.

15.
Mol Imaging Biol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664355

ABSTRACT

AIM: Atherosclerosis remains the pathological basis of myocardial infarction and ischemic stroke. Early and accurate identification of plauqes is crucial to improve clinical outcomes of atherosclerosis patients. Our study aims to evaluate the potential value of fibroblast activation protein inhibitor (FAPI)-04 PET/CT in identifying plaques via a preclinical rabbit model of atherosclerosis. METHODS: New Zealand white rabbits were fed high-fat diet (HFD), and randomly divided into the model group injured by the balloon, and the sham group only with incisions. Ultrasound was performed to detect plaques, and FAPI-avid was determined through Al18F-NOTA-FAPI-04 PET/CT. Mean standardized uptake values (SUVmean) in lesions were compared, and biodistribution of Al18F-NOTA-FAPI-04 and target-to-background ratios (TBRs) were calculated. Histological staining was performed to display arterial plaques, and autoradiography (ARG) was employed to measure the in vitro intensity of Al18F-NOTA-FAPI-04. At last, the correlation among FAP levels, plaque area, SUVmean values and fibrous cap thickness was assessed. RESULTS: The rabbit carotid and abdominal atherosclerosis model was established. Al18F-NOTA-FAPI-04 showed a higher uptake in carotid plaques (SUVmean 1.32 ± 0.11) and abdominal plaques (SUVmean 0.73 ± 0.13) compared to corresponding controls (SUVmean 1.07 ± 0.06; 0.46 ± 0.03) (P < 0.05). Biodistribution analysis of Al18F-NOTA-FAPI-04 revealed that the bigger plaques were delineated with higher TBRs. Pathological staining showed the formation of arterial plaques, and ARG staining exhibited a higher intensity of Al18F-NOTA-FAPI-04 in the bigger plaques. Lastly, plaque area was found to be positively correlated to FAP expression and SUVmean, while FAP expression was negatively correlated to fibrous cap thickness of plaques. CONCLUSIONS: We successfully achieve molecular imaging of fibroblast activation in atherosclerotic lesions of rabbits, suggesting Al18F-NOTA-FAPI-04 PET/CT may be a potentially valuable tool to identify plaques.

16.
Neuroimage ; 292: 120620, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38641257

ABSTRACT

Social pain, a multifaceted emotional response triggered by interpersonal rejection or criticism, profoundly impacts mental well-being and social interactions. While prior research has implicated the right ventrolateral prefrontal cortex (rVLPFC) in mitigating social pain, the precise neural mechanisms and downstream effects on subsequent social attitudes remain elusive. This study employed transcranial magnetic stimulation (TMS) integrated with fMRI recordings during a social pain task to elucidate these aspects. Eighty participants underwent either active TMS targeting the rVLPFC (n = 41) or control stimulation at the vertex (n = 39). Our results revealed that TMS-induced rVLPFC facilitation significantly reduced self-reported social pain, confirming the causal role of the rVLPFC in social pain relief. Functional connectivity analyses demonstrated enhanced interactions between the rVLPFC and the dorsolateral prefrontal cortex, emphasizing the collaborative engagement of prefrontal regions in emotion regulation. Significantly, we observed that negative social feedback led to negative social attitudes, whereas rVLPFC activation countered this detrimental effect, showcasing the potential of the rVLPFC as a protective buffer against adverse social interactions. Moreover, our study uncovered the impact role of the hippocampus in subsequent social attitudes, a relationship particularly pronounced during excitatory TMS over the rVLPFC. These findings offer promising avenues for improving mental health within the intricate dynamics of social interactions. By advancing our comprehension of the neural mechanisms underlying social pain relief, this research introduces novel intervention strategies for individuals grappling with social distress. Empowering individuals to modulate rVLPFC activation may facilitate reshaping social attitudes and successful reintegration into communal life.


Subject(s)
Magnetic Resonance Imaging , Prefrontal Cortex , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Male , Female , Young Adult , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Adult , Attitude , Social Interaction , Pain/physiopathology , Pain/psychology , Brain Mapping/methods , Dorsolateral Prefrontal Cortex/physiology , Dorsolateral Prefrontal Cortex/diagnostic imaging
17.
Curr Opin Biotechnol ; 87: 103137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677219

ABSTRACT

Plant natural products (PNPs) play important roles in plant physiology and have been applied across diverse fields of human society. Understanding their biosynthetic pathways informs plant evolution and meanwhile enables sustainable production through metabolic engineering. However, the discovery of PNP biosynthetic pathways remains challenging due to the diversity of enzymes involved and limitations in traditional gene mining approaches. In this review, we will summarize state-of-the-art strategies and recent examples for predicting and characterizing PNP biosynthetic pathways, respectively, with multiomics-guided tools and heterologous host systems and share our perspectives on the systematic pipelines integrating these various bioinformatic and biochemical approaches.


Subject(s)
Biological Products , Biosynthetic Pathways , Metabolic Engineering , Plants , Biological Products/metabolism , Plants/metabolism , Plants/genetics , Metabolic Engineering/methods , Computational Biology/methods
18.
J Affect Disord ; 356: 414-423, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38640975

ABSTRACT

BACKGROUND: Amotivation is a typical feature in major depressive disorder (MDD), which produces reduced willingness to exert effort. The dorsolateral prefrontal cortex (DLPFC) is a crucial structure in goal-directed actions and therefore is a potential target in modulating effortful motivation. However, it remains unclear whether the intervention is effective for patients with MDD. METHODS: We employed transcranial magnetic stimulation (TMS), computational modelling and event-related potentials (ERPs) to reveal the causal relationship between the left DLPFC and motivation for effortful rewards in MDD. Fifty patients underwent both active and sham TMS sessions, each followed by performing an Effort-Expenditure for Rewards Task, during which participants chose and implemented between low-effort/low-reward and high-effort/high-reward options. RESULTS: The patients showed increased willingness to exert effort for rewards during the DLPFC facilitated session, compared with the sham session. They also had a trend in larger P3 amplitude for motivated attention toward chosen options, larger CNV during preparing for effort exertion, and larger SPN during anticipating a high reward. Besides, while behavior indexes for effortful choices were negatively related to depression severity in the sham session, this correlation was weakened in the active stimulation session. CONCLUSIONS: These findings provide behavioral, computational, and neural evidence for the left DLPFC on effortful motivation for rewards. Facilitated DLPFC improves motor preparation and value anticipation after making decisions especially for highly effortful rewards in MDD. Facilitated DLPFC also has a potential function in enhancing motivated attention during cost-benefit trade-off. This neuromodulation effect provides a potential treatment for improving motivation in clinics.


Subject(s)
Depressive Disorder, Major , Dorsolateral Prefrontal Cortex , Motivation , Reward , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Motivation/physiology , Male , Female , Adult , Middle Aged , Dorsolateral Prefrontal Cortex/physiology , Evoked Potentials/physiology , Electroencephalography , Attention/physiology
19.
Article in English | MEDLINE | ID: mdl-38629192

ABSTRACT

Nanocrystals refer to materials with at least one dimension smaller than 100 nm, composing of atoms arranged in single crystals or polycrystals. Nanocrystals have significant research value as they offer unique advantages over conventional pharmaceutical formulations, such as high bioavailability, enhanced targeting selectivity and controlled release ability and are therefore suitable for the delivery of a wide range of drugs such as insoluble drugs, antitumor drugs and genetic drugs with broad application prospects. In recent years, research on nanocrystals has been progressively refined and new products have been launched or entered the clinical phase of studies. However, issues such as safety and stability still stand that need to be addressed for further development of nanocrystal formulations, and significant gaps do exist in research in various fields in this pharmaceutical arena. This paper presents a systematic overview of the advanced development of nanocrystals, ranging from the preparation approaches of nanocrystals with which the bioavailability of poorly water-soluble drugs is improved, critical properties of nanocrystals and associated characterization techniques, the recent development of nanocrystals with different administration routes, the advantages and associated limitations of nanocrystal formulations, the mechanisms of physical instability, and the enhanced dissolution performance, to the future perspectives, with a final view to shed more light on the future development of nanocrystals as a means of optimizing the bioavailability of drug candidates. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Antineoplastic Agents , Nanoparticles , Biological Availability , Nanoparticles/chemistry , Pharmaceutical Preparations/chemistry , Solubility
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583815

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy is regarded as a potent immunotherapy and has made significant success in hematologic malignancies by eliciting antigen-specific immune responses. However, response rates of CAR-T cell therapy against solid tumors with immunosuppressive microenvironments remain limited. Co-engineering strategies are advancing methods to overcome immunosuppressive barriers and enhance antitumor responses. Here, we engineered an IL-2 mutein co-engineered CAR-T for the improvement of CAR-T cells against solid tumors and the efficient inhibition of solid tumors. We equipped the CAR-T cells with co-expressing both tumor antigen-targeted CAR and a mutated human interleukin-2 (IL-2m), conferring enhanced CAR-T cells fitness in vitro, reshaped immune-excluded TME, enhanced CAR-T infiltration in solid tumors, and improved tumor control without significant systemic toxicity. Overall, this subject demonstrates the universal CAR-T cells armed strategy for the development and optimization of CAR-T cells against solid tumors.


Subject(s)
Immunotherapy, Adoptive , Interleukin-2 , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Interleukin-2/genetics , Interleukin-2/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Animals , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Cell Line, Tumor , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...