Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 558
Filter
1.
Turk J Gastroenterol ; 35(6): 453-464, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-39114901

ABSTRACT

The pathogenesis mechanism of acute gastric mucosal lesions (AGML) is still unclear; further exploration is urgently needed to find a new therapeutic target. This study aimed to investigate whether morphine might regulate the expression and function of transient receptor potential ankyrin 1 (TRPA1) through a cyclic adenosine monophosphate/protein kinase A (cAMP/PKA)-dependent pathway, thereby alleviating gastric mucosal lesions caused by water-immersion restraint stress (WIRS). Rats were administered with intrathecal morphine, TRPA1 antagonist (HC-030031), µ-opioid receptor antagonist, or protein kinase A inhibitor (H-89), respectively, before WIRS. After 6 hours of WIRS, microscopic lesions, hematoxylin and eosin staining, and transmission electron microscopy were applied to assess the damage of the gastric mucosa. Real-time polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay were conducted to detect the levels of TRPA1 and substance P (SP) in the dorsal root ganglia (DRG) and gastric tissues. In addition, immunofluorescence was used to explore the possible co-expression of TRPA1 and µ-opioid receptors in the DRG. The results indicated that WIRS upregulated TRPA1 and SP in gastric mucosa, and HC-030031 or H-89 could alleviate gastric mucosal lesions caused by WIRS (P < .0001). Morphine was found to suppress both WIRS-induced gastric mucosal lesions (P < .0001) and the upregulation of TRPA1 (P = .0086) and SP (P = .0013). Both TRPA1 and SP play important roles in the pathogenesis of WIRS-induced AGML. Exogenous gastroprotective strategies reduce elevated levels of TRPA1 via the cAMP/PKA-dependent pathway. Inhibition of TRPA1 upregulation in the DRG is critical for intrathecal morphine preconditioning-induced gastric protection.


Subject(s)
Ganglia, Spinal , Gastric Mucosa , Isoquinolines , Morphine , Rats, Sprague-Dawley , Restraint, Physical , TRPA1 Cation Channel , Up-Regulation , Animals , Morphine/pharmacology , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Up-Regulation/drug effects , TRPA1 Cation Channel/metabolism , Male , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Restraint, Physical/adverse effects , Rats , Isoquinolines/pharmacology , Acetanilides/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Purines/pharmacology , Stress, Psychological/complications , Immersion , Receptors, Opioid, mu/metabolism , Cyclic AMP/metabolism , Sulfonamides
2.
Biochem Pharmacol ; 229: 116473, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127151

ABSTRACT

Ubiquitin-specific peptidase 24 (USP24), a member of the deubiquitinase family, plays an important role in tumor regulation. However, the role of USP24 in Hepatocellular carcinoma(HCC)is unknown. The aim of our study was to explore the role of USP24 in HCC to seek new therapeutic targets for HCC. In this study, we found that USP24 was aberrantly upregulated in HCC tissues and predicted poor prognosis. USP24 markedly promoted HCC proliferation and progression in vitro and in vivo. Mechanistically, USP24 binds to tumor necrosis factor receptor-associated factor 2(TRAF2) and inhibits its degradation, thereby promoting the accumulation of TRAF2. Upregulation of TRAF2 activated protein kinase B/nuclear factor kappa-B (AKT/ NF-κB) signaling pathway and promoted HCC cell survival. In addition, USP24 positively correlated with programmed cell death ligand 1(PD-L1) expression in HCC, highlighting the clinical significance of USP24 activation in tumor immune evasion. Deletion of USP24 enhanced the tumor-killing ability of CD8+ T cells. Deletion of USP24 combined with anti-PD-1 antibody significantly enhanced the efficacy of HCC immunotherapy. Taken together, USP24 can be employed as a promising target to restrain tumor growth and increase the efficacy of HCC immunotherapy.

3.
Sci Rep ; 14(1): 18657, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134622

ABSTRACT

In the actual production process of oil fields, the real-time and accurate acquisition of dynamic recorder data from the pumping unit is of great significance for the diagnosis of well failures. The traditional method of obtaining the card of the dynamometer usually includes installing a load sensor on the auxiliary head of the pumping unit. However, due to the harsh environment of the oil field production site, these load sensors often suffer from damage, distortion, and aging, resulting in large measurement errors and low reliability. This paper proposes a mixed model of pumping based on motor electrical parameter data and CNN convolutional neural network, which has good consistency with actual data in terms of predictive performance. Thus, the highlights of this paper can be summed up in two points: (1) Based on the mathematical model of the AC motor, the speed of the motor and the torque output of the motor are accurately estimated. (2) The convolutional neural network is introduced to compensate for the errors caused by the defects of the pumping unit mechanism model.

4.
Sci Rep ; 14(1): 18682, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134655

ABSTRACT

Mucinous adenocarcinoma (MAC) is a distinct subtype of colorectal cancer. Previous studies have confirmed the poor prognosis of rectal or left-sided colon MAC, while the prognosis and response to chemotherapy in proximal colon MAC remains controversial. The aim of this study was to investigate the clinicopathological characteristics, prognosis, response to chemotherapy, and risk prediction factors of proximal colon MAC. Patients with proximal colon MAC and non-mucinous adenocarcinoma (NMAC) were retrospectively analyzed in this study. The analyzed variables included gender, age, smoking, drinking, chemotherapy, metastasis, pathological stage, and tumor size. Overall survival (OS) was the primary outcome. Kaplan-Meier analysis was used to assess the impact of mucinous subtype and chemotherapy on OS. We conducted univariate and multivariate Cox regression analyses to determine prognosis factors for proximal colon MAC and NMAC. A total of 284 cases of proximal colon MAC and 1384 cases of NMAC were included in the study. Compared to NMAC, proximal colon MAC was diagnosed at a younger age. The proportion of synchronous and metachronous metastasis was also higher, as well as the pathological stage and tumor size. Proximal colon MAC had a worse prognosis than NMAC, especially in stage 3. Moreover, the prognosis of proximal colon NMAC improved after chemotherapy, while MAC showed no improvement in prognosis after chemotherapy. Advanced age, N1 and N2 stage were independent prognostic factors for adverse outcomes in MAC. For proximal colon adenocarcinoma, the independent predictors of adverse outcomes included mucinous subtype, order age, N1 and N2 stages, and pathological stage 4. Proximal colon MAC had a worse prognosis compared to NMAC. Chemotherapy did not improve the prognosis of proximal colon mucinous adenocarcinoma.


Subject(s)
Adenocarcinoma, Mucinous , Colonic Neoplasms , Humans , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/mortality , Male , Female , Middle Aged , Prognosis , Aged , Colonic Neoplasms/pathology , Colonic Neoplasms/mortality , Retrospective Studies , Neoplasm Staging , Kaplan-Meier Estimate , Adult , Aged, 80 and over
5.
J Pharm Biomed Anal ; 250: 116406, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121539

ABSTRACT

This research introduces a novel approach for detecting sartan antihypertensive drug adulteration in herbal oral liquids using cotton fiber-supported liquid extraction (CF-SLE) combined with high-performance liquid chromatography-fluorescence detection (HPLC-FLD). Optimal extraction parameters were determined through systematic method development, establishing a sample solution with a pH of 3.0, using 200 mg of cotton fiber, ethyl acetate as the extraction solvent, and a solvent volume of 4 mL. These conditions demonstrated robust extraction efficiency and were further validated for precision and accuracy, with intra- and inter-day relative standard deviations consistently below 7.5 % and relative recoveries ranging from 88.5 % to 106.1 %. The method exhibited excellent linearity for sartans, with R² values greater than 0.993 across a concentration range of 10-2000 ng/mL. Detection limits were effectively established in the range of 2.6-3.1 ng/mL, indicating that the method's sensitivity is adequate for the intended screening purposes. This validated method was then applied to real sample analysis, confirming its potential for routine use in detecting illegal additives within complex herbal matrices, thereby ensuring consumer safety and supporting regulatory compliance.

6.
BMC Microbiol ; 24(1): 289, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095715

ABSTRACT

BACKGROUND: Chronic stress induces cognitive deficits. There is a well-established connection between the enteric and central nervous systems through the microbiota-gut-brain (MGB) axis. However, the effects of the gut microbiota on cognitive deficits remain unclear. The present study aimed to elucidate the microbiota composition in cognitive deficits and explore its potential in predicting chronic stress-induced cognitive deficits. METHODS: Mice were randomly divided into control and chronic restraint stress (CRS) groups. The mice subjected to CRS were further divided into cognitive deficit (CRS-CD) and non-cognitive deficit (CRS-NCD) groups using hierarchical cluster analysis of novel object recognition test results. The composition and diversity of the gut microbiota were analyzed. RESULTS: After being subjected to chronic restraint distress, the CRS-CD mice travelled shorter movement distances (p = 0.034 vs. CRS-NCD; p < 0.001 vs. control) and had a lower recognition index than the CRS-NCD (p < 0.0001 vs. CRS-NCD; p < 0.0001 vs. control) and control mice. The results revealed that 5 gut bacteria at genus levels were significantly different in the fecal samples of mice in the three groups. Further analyses demonstrated that Muricomes were not only significantly enriched in the CRS-CD group but also correlated with a decreased cognitive index. The area under the receiver operating curve of Muricomes for CRS-induced cognitive deficits was 0.96. CONCLUSIONS: Our study indicates that the composition of the gut microbiota is involved in the development of cognitive deficits induced by chronic restraint stress. Further analysis revealed that Muricomes have the potential to predict the development of chronic stress-induced cognitive deficits in mice.


Subject(s)
Cognitive Dysfunction , Feces , Gastrointestinal Microbiome , Restraint, Physical , Stress, Psychological , Animals , Mice , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Male , Stress, Psychological/microbiology , Stress, Psychological/complications , Stress, Psychological/psychology , Feces/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Mice, Inbred C57BL , Disease Models, Animal , Brain-Gut Axis/physiology
7.
J Photochem Photobiol B ; 259: 113009, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39141982

ABSTRACT

Previous studies have demonstrated the efficacy of betahistine mesylate in treating vertigo and angioneurotic headache, enhancing microcirculation, and facilitating histamine release. However, limited research has been conducted on the drug's potential in mitigating blue light-induced damage. Thus, this study utilized Drosophila as the model organism and employed the Siler model to investigate the impact of various concentrations of betahistine mesylate on the lifespan, under 3000 lx blue light irradiation. At the same time we measure food intake, spontaneous activity, and sleep duration of Drosophila. The findings of this study indicate that a high concentration of betahistine mesylate can decrease the initial mortality (b0) in male flies, mitigating the damage of blue light to Drosophila. Consequently, this delays the aging process in male Drosophila and extends their average lifespan. After betahistine mesylate ingestion, locomotor activity upon blue light exposure decreased significantly in male Drosophila. In conclusion, this study offers initial evidence supporting the investigation of the regulatory mechanisms of betahistine mesylate on lifespan and its potential anti-blue light effects.

8.
Front Neurol ; 15: 1346522, 2024.
Article in English | MEDLINE | ID: mdl-39144709

ABSTRACT

Introduction: This study aims to examine brain activity during different swallowing actions in patients with dysphagia caused by medullary infarction (MI) before and after treatment using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. Methods: Fifteen patients were enrolled in this study. Brain activation during saliva swallowing and effortful saliva swallowing was observed using BOLD imaging in the acute phase of stroke and after 4 weeks of rehabilitation training. Differences in the activation of brain regions during saliva swallowing before and after treatment, during effortful saliva swallowing before and after treatment, and between the two swallowing actions before and after treatment were compared. Results: In the acute phase of stroke, only the bilateral precentral and left lingual gyrus were partially activated during saliva swallowing, and there was no obvious activation in the insula. Effortful saliva swallowing activated more brain regions than saliva swallowing before treatment, including the bilateral supplementary motor area (SMA), postcentral gyrus, and right insular cortex. The number of brain regions activated during saliva swallowing increased after treatment, including the bilateral precentral gyrus, postcentral gyrus, insula, thalamus, and SMA. Discussion: Cortical activation increases after recovery from dysphagia, and the increased activation of the postcentral gyrus might play a functional compensatory role. Effortful saliva swallowing is a more effective rehabilitation training method for patients with dysphagia caused by MI.

9.
J Cell Mol Med ; 28(14): e18558, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39048917

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) represents a critical pathology in acute myocardial infarction (AMI), which is characterized by high mortality and morbidity. Cardiac microvascular dysfunction contributes to MIRI, potentially culminating in heart failure (HF). Pigment epithelium-derived factor (PEDF), which belongs to the non-inhibitory serpin family, exhibits several physiological effects, including anti-angiogenesis, anti-inflammatory and antioxidant properties. Our study aims to explore the impact of PEDF and its functional peptide 34-mer on both cardiac microvascular perfusion in MIRI rats and human cardiac microvascular endothelial cells (HCMECs) injury under hypoxia reoxygenation (HR). It has been shown that MIRI is accompanied by ferroptosis in HCMECs. Furthermore, we investigated the effect of PEDF and its 34-mer, particularly regarding the Nrf2/HO-1 signalling pathway. Our results demonstrated that PEDF 34-mer significantly ameliorated cardiac microvascular dysfunction following MIRI. Additionally, they exhibited a notable suppression of ferroptosis in HCMECs, and these effects were mediated through activation of Nrf2/HO-1 signalling. These findings highlight the therapeutic potential of PEDF and 34-mer in alleviating microvascular dysfunction and MIRI. By enhancing cardiac microvascular perfusion and mitigating endothelial ferroptosis, PEDF and its derivative peptide represent promising candidates for the treatment of AMI.


Subject(s)
Endothelial Cells , Eye Proteins , Ferroptosis , Myocardial Reperfusion Injury , NF-E2-Related Factor 2 , Nerve Growth Factors , Serpins , Signal Transduction , Serpins/pharmacology , Serpins/metabolism , Nerve Growth Factors/pharmacology , Nerve Growth Factors/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Ferroptosis/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Eye Proteins/metabolism , Eye Proteins/pharmacology , Signal Transduction/drug effects , Rats , Heme Oxygenase-1/metabolism , Male , Rats, Sprague-Dawley , Microvessels/drug effects , Microvessels/metabolism , Microvessels/pathology , Peptides/pharmacology
10.
Redox Biol ; 75: 103286, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39079386

ABSTRACT

Metabolic reprogramming is a hallmark of human cancer, and cancer-specific metabolism provides opportunities for cancer diagnosis, prognosis, and treatment. However, the underlying mechanisms by which metabolic pathways affect the initiation and progression of colorectal cancer (CRC) remain largely unknown. Here, we demonstrate that cysteine is highly enriched in colorectal tumors compared to adjacent non-tumor tissues, thereby promoting tumorigenesis of CRC. Synchronously importing both cysteine and cystine in colorectal cancer cells is necessary to maintain intracellular cysteine levels. Hypoxia-induced reactive oxygen species (ROS) and ER stress regulate the co-upregulation of genes encoding cystine transporters (SLC7A11, SLC3A2) and genes encoding cysteine transporters (SLC1A4, SLC1A5) through the transcription factor ATF4. Furthermore, the metabolic flux from cysteine to reduced glutathione (GSH), which is critical to support CRC growth, is increased due to overexpression of glutathione synthetase GSS in CRC. Depletion of cystine/cysteine by recombinant cyst(e)inase effectively inhibits the growth of colorectal tumors by inducing autophagy in colorectal cancer cells through mTOR-ULK signaling axis. This study demonstrates the underlying mechanisms of cysteine metabolism in tumorigenesis of CRC, and evaluates the potential of cysteine metabolism as a biomarker or a therapeutic target for CRC.

11.
Clin Transl Oncol ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066875

ABSTRACT

PURPOSE: Breast cancer (BRCA) is characterized by a unique metastatic pattern, often presenting with bone metastasis (BoM), posing significant clinical challenges. Through the study of the immune microenvironment in BRCA BoM offer perspectives for therapeutic interventions targeting this specific metastatic manifestation of BRCA. METHODS: This study employs single-cell RNA sequencing and TCGA data analysis to comprehensively compare primary tumors (PT), lymph node metastasis (LN), and BoM. RESULTS AND CONCLUSIONS: Our investigation identifies a metastatic niche in BoM marked by an increased abundance of cancer-associated fibroblasts (CAFs) and reduced immune cell presence. A distinct subtype (State 1) of BRCA BoM cells associated with adverse prognosis is identified. State 1, displaying heightened stemness traits, may represent an initiation phase for BoM in BRCA. Complex cell communications involving tumor, stromal, and immune cells are revealed. Interactions of FN1, SPP1, and MDK correlate with elevated immune cells in BoM. CD46, MDK, and PTN interactions drive myofibroblast activation and proliferation, contributing to tissue remodeling. Additionally, MDK, PTN, and FN1 interactions influence FAP+ CAF activation, impacting cell adhesion and migration in BoM. These insights deepen our understanding of the metastatic niche in breast cancer BoM.

12.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063109

ABSTRACT

Glioblastoma (GBM), a highly malignant tumour of the central nervous system, presents with a dire prognosis and low survival rates. The heterogeneous and recurrent nature of GBM renders current treatments relatively ineffective. In our study, we utilized an integrative systems biology approach to uncover the molecular mechanisms driving GBM progression and identify viable therapeutic drug targets for developing more effective GBM treatment strategies. Our integrative analysis revealed an elevated expression of CHST2 in GBM tumours, designating it as an unfavourable prognostic gene in GBM, as supported by data from two independent GBM cohorts. Further, we pinpointed WZ-4002 as a potential drug candidate to modulate CHST2 through computational drug repositioning. WZ-4002 directly targeted EGFR (ERBB1) and ERBB2, affecting their dimerization and influencing the activity of adjacent genes, including CHST2. We validated our findings by treating U-138 MG cells with WZ-4002, observing a decrease in CHST2 protein levels and a reduction in cell viability. In summary, our research suggests that the WZ-4002 drug candidate may effectively modulate CHST2 and adjacent genes, offering a promising avenue for developing efficient treatment strategies for GBM patients.


Subject(s)
Drug Repositioning , Glioblastoma , Systems Biology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , Drug Repositioning/methods , Systems Biology/methods , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , ErbB Receptors/metabolism , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Cell Survival/drug effects , Drug Discovery/methods
13.
ACS Appl Mater Interfaces ; 16(29): 37497-37512, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38980910

ABSTRACT

Traumatic brain injury poses serious physical, psychosocial, and economic threats. Although systemic administration of stem cell-derived exosomes has recently been proven to be a promising modality for traumatic brain injury treatment, they come with distinct drawbacks. Luckily, various biomaterials have been developed to assist local delivery of exosomes to improve the targeting of organs, minimize nonspecific accumulation in vital organs, and ensure the protection and release of exosomes. In this study, we developed an electrospun nanofibrous scaffold to provide sustained delivery of dual exosomes derived from mesenchymal stem cells and neural stem cells for traumatic brain injury treatment. The electrospun nanofibrous scaffold employed a functionalized layer of polydopamine on electrospun poly(ε-caprolactone) nanofibers, thereby enhancing the efficient incorporation of exosomes through a synergistic interplay of adhesive forces, hydrogen bonding, and electrostatic interactions. First, the mesenchymal stem cell-derived exosomes and the neural stem cell-derived exosomes were found to modulate microglial polarization toward M2 phenotype, play an important role in the modulation of inflammatory responses, and augment axonal outgrowth and neural repair in PC12 cells. Second, the nanofibrous scaffold loaded with dual stem cell-derived exosomes (Duo-Exo@NF) accelerated functional recovery in a murine traumatic brain injury model, as it mitigated the presence of reactive astrocytes and microglia while elevating the levels of growth associated protein-43 and doublecortin. Additionally, multiomics analysis provided mechanistic insights into how dual stem cell-derived exosomes exerted its therapeutic effects. These findings collectively suggest that our novel Duo-Exo@NF system could function as an effective treatment modality for traumatic brain injury using sustained local delivery of dual exosomes from stem cells.


Subject(s)
Brain Injuries, Traumatic , Exosomes , Mesenchymal Stem Cells , Nanofibers , Neural Stem Cells , Exosomes/metabolism , Exosomes/chemistry , Animals , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Nanofibers/chemistry , Rats , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , PC12 Cells , Mice , Tissue Scaffolds/chemistry , Polyesters/chemistry , Doublecortin Protein , Polymers/chemistry , Male , Indoles/chemistry
14.
J Am Chem Soc ; 146(28): 19303-19309, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970779

ABSTRACT

Sulfur hexafluoride (SF6) is extensively employed in the power industry. However, its emissions significantly contribute to the greenhouse effect. The direct recovery of high purity SF6 from industrial waste gases would benefit its sustainable use, yet this represents a considerable challenge. Herein, we report the enrichment of SF6 from SF6/N2 mixtures via adsorptive separation in a stable Co(II)-pyrazolate MOF BUT-53 (BUT: Beijing University of Technology), which features dynamic molecular traps. BUT-53 exhibits an excellent SF6 adsorption uptake of 2.82 mmol/g at 0.1 bar and 298 K, as well as an unprecedented SF6/N2 (10:90) selectivity of 2485. Besides, the remarkable SF6/N2 selectivity of BUT-53 enables recovery of high purity (>99.9%) SF6 from a low concentration (10%) mixture through a breakthrough experiment. The excellent SF6/N2 separation efficiency was also well maintained under humid conditions (RH = 90%) over multiple cycles. Molecular simulation, single-crystal diffraction, and adsorption kinetics studies elucidate the associated adsorption mechanism and water tolerance.

15.
Eur J Radiol ; 178: 111572, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-39002268

ABSTRACT

OBJECTIVE: Accurate nidus segmentation and quantification have long been challenging but important tasks in the clinical management of Cerebral Arteriovenous Malformation (CAVM). However, there are still dilemmas in nidus segmentation, such as difficulty defining the demarcation of the nidus, observer-dependent variation and time consumption. The aim of this study isto develop an artificial intelligence model to automatically segment the nidus on Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) images. METHODS: A total of 92patients with CAVM who underwent both TOF-MRA and DSA examinations were enrolled. Two neurosurgeonsmanually segmented the nidusonTOF-MRA images,which were regarded as theground-truth reference. AU-Net-basedAImodelwascreatedfor automatic nidus detectionand segmentationonTOF-MRA images. RESULTS: The meannidus volumes of the AI segmentationmodeland the ground truthwere 5.427 ± 4.996 and 4.824 ± 4.567 mL,respectively. The meandifference in the nidus volume between the two groups was0.603 ± 1.514 mL,which wasnot statisticallysignificant (P = 0.693). The DSC,precision and recallofthe testset were 0.754 ± 0.074, 0.713 ± 0.102 and 0.816 ± 0.098, respectively. The linear correlation coefficient of the nidus volume betweenthesetwo groupswas 0.988, p < 0.001. CONCLUSION: The performance of the AI segmentationmodel is moderate consistent with that of manual segmentation. This AI model has great potential in clinical settings, such as preoperative planning, treatment efficacy evaluation, riskstratification and follow-up.

16.
J Hazard Mater ; 476: 135166, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38991635

ABSTRACT

Minimization of cadmium (Cd) accumulation in wheat grain (Triticum aestivum L.) is an important way to prevent Cd hazards to humans. However, little is known about the mechanisms of varietal variation of Cd accumulation in wheat grain. This study explores the physiological mechanisms of Cd bioaccumulation through field and hydroponic experiments on two wheat varieties of low-Cd-accumulating variety (L-6331) and high-Cd-accumulating variety (H-6049). Field study showed that average Cd accumulative rates in spikes of H-6049 were 1.57-fold of L-6331 after flowering, ultimately grain-Cd of H-6049 was 1.70-fold of L-6331 in Cd-contaminated farmland. The hydroponic experiment further confirmed that more vegetative tissues of L-6331 were involved in the remobilization of Cd, which jointly mitigated the process of Cd loaded to grains when leaf-cutting conducted after Cd stress. Additionally, the L1 and N1 of L-6331 play an especially important role in regulating Cd remobilization, and the larger EVB areas in N1 have the morphological feature that facilitates the transfer of Cd to L1. Overall results implied that low-Cd-accumulating variety initiated more trade-offs of reproductive growth and Cd remobilizatoin under Cd-stress after flowering compared with high-Cd-accumulating variety, and provided new insights into the processes of Cd loaded into wheat grains among different varieties.


Subject(s)
Cadmium , Soil Pollutants , Triticum , Triticum/metabolism , Triticum/growth & development , Cadmium/metabolism , Soil Pollutants/metabolism , Bioaccumulation , Reproduction , Edible Grain/metabolism , Edible Grain/growth & development
17.
J Nutr Health Aging ; 28(9): 100325, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39083861

ABSTRACT

BACKGROUND: Recent research highlights the importance of muscular strength as a key factor in physical fitness, a strong indicator of overall mortality risk, and a vital target for preventing chronic diseases. This study used a proteome-wide Mendelian randomization analysis plus colocalization analysis for low hand grip strength to explore potential therapeutic targets for muscle weakness. METHODS: We conducted two two-sample Mendelian randomization analyses from four cohorts to identify and validate the causal relationship between plasma proteins and low grip strength. We also employed bidirectional Mendelian randomization analysis with Steiger filtering, Bayesian co-localization, and phenotype scanning to detect reverse causality, thereby consolidating our Mendelian randomization findings. Downstream analyses were also undertaken of identified proteins, including knockout models, enrichment analyses, and protein-protein interaction networks. Finally, we assessed the druggability of the identified proteins. RESULTS: At Bonferroni significance (P < 6.82 × 10-5), Mendelian randomization analysis revealed that three proteins were causally associated with low grip strength. Increased MGP (OR = 0.85) and HP (OR = 0.96) decreased the risk of low grip strength, whereas elevated ART4 (OR = 1.06) increased the risk of low grip strength. None of the three proteins had reverse causality with low grip strength. Bayesian co-localization suggested that MGP shared the same variant with low grip strength (coloc.abf-PPH4 = 0.826). Further downstream analyses showed that MGP, which is highly expressed in musculoskeletal system, is a potential novel target for muscle weakness. CONCLUSIONS: The proteome-wide Mendelian randomization investigation identified three proteins associated with the risk of muscle weakness. MGP, HP, and ART4 deserve further investigation as potential therapeutic targets for muscle weakness.

18.
Angew Chem Int Ed Engl ; : e202411539, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034298

ABSTRACT

Marine biofouling, which is one of the technical challenges hindering the growth of the marine economy, has been controlled using cuprous oxide (Cu2O) nanoparticles due to the exceptional antifouling properties of Cu(I) ions. However, Cu2O nanoparticles have encountered bottlenecks due to explosive releases of Cu+ ions, high toxicity at elevated doses, and long-term instability. Here, we present a novel method called Redox Concomitant Formation (RCF) for fabricating a hierarchical Cu(I) metal-organic framework polypyrrole (Cu(I)-MOF/PPy) composite. This method enables in-situ phase transition via successive redox reactions that change the chemical valence state and coordination mode of Cu(II)-MOF, resulting in a new structure of Cu(I)-MOF while creating a PPy layer surrounded by the hierarchical structure. Owing to the steady release of Cu+ ions from the Cu(I) sites and photothermal properties of PPy, Cu(I)-MOF/PPy exhibits superior and broad-spectrum resistance to marine bacteria, algae, and surface-adhered biofilms in complex biological environments, as well as long-term stability, resulting in 100% eradication efficiency under solar-driven heating. Mechanistic insights into successive structural redox reactions and formation using the RCF method are provided in detail, enabling the fabrication of novel MOFs with the desired composition and structure for a wide range of potential applications.

19.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994774

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the certain of the cell proliferation assay data shown in Fig. 4C on p. 1444 were strikingly similar to data appearing in different form in another article written by different authors at different research institutes, which had already been submitted for publication [Shi N, Shan B, Song Y, Chu H and Qian L: Circular RNA circ­PRKCI functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR­3680­3p in esophageal squamous cell carcinoma. J Cell Biochem 120: 10021­10030, 2019]. Owing to the fact that the contentious data in the above article were already under consideration for publication prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 21: 1439­1448, 2020; DOI: 10.3892/mmr.2020.10957].

20.
Neurosurg Rev ; 47(1): 303, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954153

ABSTRACT

Dural arteriovenous fistulas (DAVFs) within the falx cerebri are infrequently documented and may be linked with the falcine sinus/venous plexus. The falcine sinus/venous plexus, often regarded as a normal venous structure, can exhibit pathological characteristics, differing from the persistent fetal falcine sinus. A retrospective analysis was conducted at a single center to identify all cases of DAVFs within the falx cerebri spanning from 2002 to 2022. Demographic data, fistula features, treatment modalities, clinical outcomes, and fistula closure were collected and analyzed. Additionally, relevant literature on DAVFs in this location was reviewed. Ten cases were identified at our center, supplemented by 13 cases reported in the literature. In our cohort, patients had an average age of 49.4 ± 8.1 years, with a male predominance of 90%. Trans-arterial embolization (TAE) alone achieved immediate complete occlusion in eight cases, while conservative treatment was pursued in two cases. No treatment-related complications or fistula recurrences were observed. In the literature, seven patients underwent direct surgery, three underwent TAE, and one underwent both direct surgery and radiosurgery for complete fistula closure. No instances of fistula recurrence or treatment complications were reported. Dural arteriovenous fistulas within the falx cerebri are rare, with limited literature available. They typically present as aggressive lesions. Treatment options include direct surgery or TAE. However, due to a lack of long-term DSA follow-up, the cure and recurrence rates are unknown for endovasdcular therapy. Further investigation is warranted to elucidate the involvement of the falcine sinus/venous plexus in falx cerebri DAVFs.


Subject(s)
Central Nervous System Vascular Malformations , Dura Mater , Embolization, Therapeutic , Humans , Central Nervous System Vascular Malformations/surgery , Central Nervous System Vascular Malformations/therapy , Male , Middle Aged , Female , Adult , Embolization, Therapeutic/methods , Retrospective Studies , Treatment Outcome , Aged
SELECTION OF CITATIONS
SEARCH DETAIL