Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 451
Filter
1.
Curr Eye Res ; : 1-8, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373217

ABSTRACT

PURPOSE: The protein concentrations of apoptosis inducing factor (AIF), macrophage migration inhibitory factor (MIF), interleukin-1ß (IL-1ß), poly ADP ribose polymerase-1 (PARP-1), poly (ADP-ribose) (PAR), α-synuclein (α-SYN), monocyte chemotactic protein­1 (MCP-1) and tumor necrosis factor-α (TNF-α) in the vitreous of eyes with rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) were observed and analyzed. METHODS: A total of 57 patients' samples were included. 30 patients with RRD were set as the control group, 27 patients with RRDCD were set as the experimental group (16 patients with preoperative glucocorticosteroid (GC+) and 11 patients without preoperative glucocorticosteroid (GC-)). The levels of AIF, MIF, IL-1ß, PARP-1, PAR, α-SYN, MCP-1 and TNF-α in vitreous of patients in the control and experimental groups were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: The concentration of AIF in the vitreous was higher in the RRD group (9.96 ± 2.78 ng/ml) than in the RRDCD (GC+) group (7.65 ± 2.13 ng/ml, p = 0.006),the RRDCD (GC+) group was lower than the RRDCD (GC-) group (10.28 ± 2.81 ng/ml) (p = 0.013). The concentration of MIF in vitreous fluid was lower in the RRDCD (GC+) group (61.21 ± 17.56 ng/ml) than in the RRDCD (GC-) group (74.30 ± 9.66 ng/ml, p = 0.039). In the experimental group, the protein concentration of MCP-1 in the RRDCD (GC+) group was higher in the preoperative PVR grading C (284.93 ± 54.96 ng/ml) grade than in the D grade (225.94 ± 24.05 ng/ml) (p = 0.050); The protein concentration of MIF was lower in the RRDCD (GC+) group of patients with an ocular axis of <26 mm (56.19 ± 6.99 ng/ml) than in those with an ocular axis of ≥26 mm (76.26 ± 26.60 ng/ml, p = 0.043). CONCLUSION: Low expression of Parthanatos-related proteins is present in the vitreous of patients with RRDCD (GC+), and preoperative treatment with glucocorticoids may reduce the expression of Parthanatos-related proteins.

2.
IEEE Trans Med Imaging ; PP2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39378253

ABSTRACT

This paper presents a label-free gland segmentation, GlandSAM, which achieves comparable performance with supervised methods while no label is required during its training or inference phase. We observe that the Segment Anything model produces sub-optimal results on gland dataset: It either over-segments a gland into many fractions or under-segments the gland regions by confusing many of them with the background, due to the complex morphology of glands and lack of sufficient labels. To address this challenge, our GlandSAM innovatively injects two clues about gland morphology into SAM to guide the segmentation process: (1) Heterogeneity within glands and (2) Similarity with the background. Initially, we leverage the clues to decompose the intricate glands by selectively extracting a proposal for each gland sub-region of heterogeneous appearances. Then, we inject the morphology clues into SAM in a fine-tuning manner with a novel morphology-aware semantic grouping module that explicitly groups the high-level semantics of gland sub-regions. In this way, our GlandSAM could capture comprehensive knowledge about gland morphology, and produce well-delineated and complete segmentation results. Extensive experiments conducted on the GlaS dataset and the CRAG dataset reveal that GlandSAM outperforms state-of-the-art label-free methods by a significant margin. Notably, our GlandSAM even surpasses several fully-supervised methods that require pixel-wise labels for training, which highlights the remarkable performance and potential of GlandSAM in the realm of gland segmentation.

3.
Front Psychol ; 15: 1465841, 2024.
Article in English | MEDLINE | ID: mdl-39220393

ABSTRACT

[This corrects the article DOI: 10.3389/fpsyg.2023.1139373.].

4.
Med Image Anal ; 98: 103311, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39217674

ABSTRACT

Optical Coherence Tomography Angiography (OCTA) is a crucial tool in the clinical screening of retinal diseases, allowing for accurate 3D imaging of blood vessels through non-invasive scanning. However, the hardware-based approach for acquiring OCTA images presents challenges due to the need for specialized sensors and expensive devices. In this paper, we introduce a novel method called TransPro, which can translate the readily available 3D Optical Coherence Tomography (OCT) images into 3D OCTA images without requiring any additional hardware modifications. Our TransPro method is primarily driven by two novel ideas that have been overlooked by prior work. The first idea is derived from a critical observation that the OCTA projection map is generated by averaging pixel values from its corresponding B-scans along the Z-axis. Hence, we introduce a hybrid architecture incorporating a 3D adversarial generative network and a novel Heuristic Contextual Guidance (HCG) module, which effectively maintains the consistency of the generated OCTA images between 3D volumes and projection maps. The second idea is to improve the vessel quality in the translated OCTA projection maps. As a result, we propose a novel Vessel Promoted Guidance (VPG) module to enhance the attention of network on retinal vessels. Experimental results on two datasets demonstrate that our TransPro outperforms state-of-the-art approaches, with relative improvements around 11.4% in MAE, 2.7% in PSNR, 2% in SSIM, 40% in VDE, and 9.1% in VDC compared to the baseline method. The code is available at: https://github.com/ustlsh/TransPro.


Subject(s)
Imaging, Three-Dimensional , Retinal Vessels , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Retinal Vessels/diagnostic imaging , Imaging, Three-Dimensional/methods , Heuristics , Retinal Diseases/diagnostic imaging , Algorithms , Angiography/methods
5.
Biomaterials ; 314: 122843, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39321686

ABSTRACT

Inflammatory bowel disease (IBD) has become a serious and challenging health problem globally without curative medical treatments. Mounting evidence suggests that intestinal macrophages and their phenotypes are key players in the pathogenesis of IBD. Modulating the phenotypes and functions of intestinal macrophages through targeted interventions could be a promising approach to manage detrimental gut inflammation in IBD. In this study, we rationally design and fabricate a novel class of V-type peptide-decorated nanoparticles, VP-NP, with potent anti-inflammatory activity. Such a design allows two functional motifs FFD in a single peptide molecule to enhance the bioactivity of the nanoparticles. As expected, VP-NP exhibits a strong inhibitory activity on endosomal Toll-like receptor (TLR) signaling. Surprisingly, VP-NP can inhibit M1 polarization while facilitating M2 polarization in mouse bone marrow-derived macrophages through regulating the key transcription factors NF-κB, STAT1 and PPAR-γ. Mechanistically, VP-NP is internalized by macrophages in the endosomes, where it blocks endosomal acidification to inhibit endosomal TLR signaling; the transcriptomic analysis reveals that VP-NP potently down-regulates many genes in TLR, NF-κB, JAK-STAT, and cytokine/chemokine signaling pathways associated with inflammatory responses. In a colitis mouse model, the intraperitoneally administered VP-NP effectively alleviates the disease activities by decreasing colon inflammation and injuries, pro-inflammatory cytokine production, and myeloid cell infiltration in the gut. Furthermore, VP-NP primarily targets intestinal macrophages and alters their phenotypes from inflammatory M1-type toward the anti-inflammatory M2-type. This study provides a new nanotherapeutic strategy to specifically regulate macrophage activation and phenotypes through a dual mechanism to control gut inflammation, which may augment current clinical treatments for IBD.

6.
Int J Biol Macromol ; : 136105, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343264

ABSTRACT

Intrinsic environmental and stability limitations of hydrogels have inhibited their practical applications as a flexible wearable device due to water evaporation or freezing in complex environments such as low temperatures and arid environments. In this work, a multifunctional gelatin based ionic conductive eutectogel with double network structure is designed via ternary deep eutectic solvent (DES) (acrylic acid (AA), choline chloride (ChCl) and ethylene glycol (EG)). In this system, the introduction of ethylene glycol (EG) can be used to dissolve gelatin. The resulting DESG eutectogel exhibited excellent adhesion, mechanical robustness, anti-freeze, anti-drying, and self-healing. Interestingly, the DESG gels showed high humidity sensitivity in a wide humidity detection range (11 %-83 %), which can be assembled as a self-powdered humidity sensor to monitor human mouth and nose breathing. This work is expected to bring new prospect to construct high performance humidity sensors using gelatin based humidity-responsive materials for a wide range of potential applications in respiratory diagnostics, sleep monitoring, electronic skin and wearable electronics.

7.
Metabolites ; 14(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39330472

ABSTRACT

Poor maternal nutrition during gestation negatively affects offspring growth and metabolism. To evaluate the impact of maternal nutrient restriction and realimentation on metabolism in the fetal liver, skeletal muscle, and circulation, on day 50 of gestation, ewes (n = 48) pregnant with singletons were fed 100% (CON) or 60% (RES) of requirements until day 90 of gestation, when a subset of ewes (n = 7/treatment) were euthanized, and fetal samples were collected. The remaining ewes were maintained on a current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to an alternative diet (CON-RES, RES-CON; n = 7/treatment). On day 130 of gestation, the remaining ewes were euthanized, and fetal samples were collected. Fetal liver, longissimus dorsi (LD), and blood metabolites were analyzed using LC-MS/MS, and pathway enrichment analysis was conducted using MetaboAnalyst. Then, 600, 518, and 524 metabolites were identified in the liver, LD, and blood, respectively, including 345 metabolites that were present in all three. Nutrient restriction was associated with changes in amino acid, carbohydrate, lipid, and transulfuration/methionine metabolic pathways, some of which were alleviated by realimentation. Fetal age also affected metabolite abundance. The differential abundance of metabolites involved in amino acid, methionine, betaine, and bile acid metabolism could impact fetal epigenetic regulation, protein synthesis, lipid metabolism, and signaling associated with glucose and lipid metabolism.

8.
Med Image Anal ; 99: 103353, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39340971

ABSTRACT

Segmentation of the fetal and maternal structures, particularly intrapartum ultrasound imaging as advocated by the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) for monitoring labor progression, is a crucial first step for quantitative diagnosis and clinical decision-making. This requires specialized analysis by obstetrics professionals, in a task that i) is highly time- and cost-consuming and ii) often yields inconsistent results. The utility of automatic segmentation algorithms for biometry has been proven, though existing results remain suboptimal. To push forward advancements in this area, the Grand Challenge on Pubic Symphysis-Fetal Head Segmentation (PSFHS) was held alongside the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023). This challenge aimed to enhance the development of automatic segmentation algorithms at an international scale, providing the largest dataset to date with 5,101 intrapartum ultrasound images collected from two ultrasound machines across three hospitals from two institutions. The scientific community's enthusiastic participation led to the selection of the top 8 out of 179 entries from 193 registrants in the initial phase to proceed to the competition's second stage. These algorithms have elevated the state-of-the-art in automatic PSFHS from intrapartum ultrasound images. A thorough analysis of the results pinpointed ongoing challenges in the field and outlined recommendations for future work. The top solutions and the complete dataset remain publicly available, fostering further advancements in automatic segmentation and biometry for intrapartum ultrasound imaging.

9.
Int J Biol Macromol ; 280(Pt 1): 135630, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278445

ABSTRACT

Conductive hydrogels as ideal candidate materials for flexible sensors have exhibited many promising applications. However, complex application environments, such as low temperatures or underwater conditions, have introduced new requirements for hydrogel sensors. Herein, a high-performance conductive hydrogel based on carboxymethyl cellulose-polyaniline (CMC-PANI) submicron spheres, poly (vinyl alcohol) (PVA) and phytic acid (PA) was designed and fabricated via a dual design strategy. CMC-PANI particles were introduced to not only empower the good electromechanical performance to the hydrogels, but also enhance the mechanical properties. The obtained hydrogel exhibited good mechanical property, anti-freezing, anti-swellable behavior and recyclable performance. Resistive-type strain sensors assembled by the prepared hydrogels exhibited high pressure sensitivity (34.17×10-2 kPa-1) and fast response time (100 ms), which can clearly detect the pulse beats. Moreover, the hydrogel sensors can achieve long-term stability, high sensitivity and fatigue resistance as an underwater sensor. Based on these favorable performances, the conductive polymer hydrogels may open up an enticing avenue for functional soft materials in health diagnostic and electronic components.

10.
Immunol Invest ; : 1-16, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291775

ABSTRACT

OBJECTIVES: The mitochondrial function in anti-MDA5 and TIF1-γ-positive dermatomyositis (DM) is relatively unknown. This study attempted to explore mitochondrial mass within the peripheral lymphocyte subsets of anti-MDA5 and TIF1-γ-positive DM. METHODS: This cross-sectional study enrolled 109 DM patients and 32 healthy controls (HCs). The mitochondrial mass of peripheral lymphocyte subsets was analyzed via flow cytometry using median fluorescence intensity assessment. RESULTS: Compared with HCs, there was an abnormal change in peripheral lymphocyte subsets in anti-MDA5 and anti-TIF1-γ-positive DM patients. Anti-MDA5 and anti-TIF1-γ-positive DM patients also exhibited a significantly elevated mitochondrial mass in peripheral lymphocyte subsets. Furthermore, anti-MDA5 antibody levels were positively associated with the mitochondrial mass of most lymphocyte subsets in anti-MDA5-positive DM patients. Univariate logistic regression analysis indicated that the increased mitochondrial mass in some peripheral lymphocyte subsets was related to the occurrence of anti-MDA5-positive DM and presence of anti-MDA5 antibodies. Similar results were obtained in anti-TIF1-γ-positive DM patients. CONCLUSIONS: Abnormal lymphocyte subset counts and percentages as well as altered mitochondrial mass in anti-MDA5 and TIF1-γ-positive DM patients were associated with anti-MDA5 and TIF1-γ antibodies. We believe that these results may provide novel mitochondria-based insights into DM pathogenesis.

11.
Toxicology ; 509: 153955, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303899

ABSTRACT

Bisphenol A (BPA), a common endocrine disruptor, has shown cardiovascular toxicity in several epidemiological studies, as well as in vivo and in vitro experimental studies. However, the related adverse outcome pathway (AOP) of BPA toxicity remains unraveled. This study aimed to develop an AOP for the cardiac toxicity of BPA through bioinformatics analysis. The interactions among BPA, genes, phenotypes, and cardiac toxicity were retrieved from several databases, including the Comparative Toxicogenomics Database, Computational Toxicology, DisGeNet, and MalaCards. The target genes and part of target phenotypes were obtained by Venn analysis and literature screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed for target genes by using the DAVID online analysis tool to obtain other target phenotypes. AOP hypotheses from BPA exposure to heart disease were established and evaluated comprehensively by a quantitative weight of evidence (QWOE) method. The target genes included ESR2, MAPK1, TGFB1, and ESR1, and the target phenotypes included heart contraction, cardiac muscle contraction, cellular Ca2+ homeostasis, cellular metabolic process, heart development, etc. Overall, the AOP of BPA cardiac toxicity was deduced to be as follows. Initially, BPA bound with ERα/ß and then activated the MAPK, AKT, and IL-17 signaling pathways, leading to Ca2+ homeostasis disorder and increased inflammatory response. Subsequently, cardiac function was impaired, causing coronary heart disease, arrhythmia, cardiac dysplasia, and other heart diseases. According to the Bradford-Hill causal considerations, the score of AOP by QWOE was 69, demonstrating a moderate confidence and providing clues on cardiotoxicity-assessment procedure and further studies on BPA.

12.
Bioresour Technol ; 410: 131278, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151572

ABSTRACT

The efficient utilization of residual sludge and the rapid cultivation of aerobic granular sludge in continuous-flow engineering applications present significant challenges. In this study, aerobic granular cultivation was fostered in a continuous-flow system using Ca(ClO)2-sludge carbon (Ca-SC). Ca-SC retained the original sludge properties, contributing to granular growth in an A/O bioreactor. By day 40, the granule diameters increased to 0.8 mm with the SVI30 decreased by 2.7 times. Moreover, Ca-SC facilitated protein secretion, reaching 98.06 mg/g VSS and enhanced the hydrophobicity to 68.4 %. The continuous-flow aerobic granular sludge exhibited a nutrient removal rate above 90 %. Furthermore, Tessaracoccus and Nitrospira were enriched to promote granular formation and nitrogen removal. The residual sludge was carbonized and reused in the traditional wastewater treatment process to culture granular sludge in situ, aiming to achieve "self-production and self-consumption" of sludge and promote the innovative model of "treating waste with waste" in urban sewage environmental restoration.


Subject(s)
Bioreactors , Sewage , Sewage/microbiology , Aerobiosis , Nitrogen , Waste Disposal, Fluid/methods , Water Purification/methods , Calcium Chloride/pharmacology
13.
Environ Sci Pollut Res Int ; 31(38): 50952-50966, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39103584

ABSTRACT

Antibiotic resistance genes (ARG) are widespread across various regions. While several studies have investigated the distribution of antibiotic resistance in natural environments, the occurrence and diversity of ARGs in the Three Gorges Reservoir have not been fully elucidated. In this study, we employed metagenomic sequencing techniques to investigate the abundance, diversity, and influencing factors of ARGs in the ecosystem of the Three Gorges Reservoir. A total of 874 ARGs, 20 antibiotic classes, and 6 resistance mechanisms were detected. The dominant ARG is the macB, the dominant antibiotic class is multidrug resistance (MDR), and the dominant resistance mechanism is antibiotic efflux. The microorganisms with the highest contribution to ARGs are Betaproteobacteria and Gammaproteobacteria. In this region, pH and NH4+ concentration were significantly negatively correlated with the relative abundance of most ARGs, while NO3- concentration and TN were significantly positively correlated with the relative abundance of most ARGs. The results indicate that the Three Gorges Reservoir constitutes a significant reservoir of ARGs. By studying the distribution of ARGs in the sediments of the Three Gorges Reservoir Area and the relationship between environmental factors and ARGs, we can more comprehensively understand the pollution status of ARGs in this area, and provide theoretical support for subsequent treatment.


Subject(s)
Drug Resistance, Microbial , Drug Resistance, Microbial/genetics , China , Anti-Bacterial Agents/analysis , Genes, Bacterial
14.
ACS Appl Mater Interfaces ; 16(34): 45704-45712, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39199021

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising hole-transporting material for perovskite light-emitting diodes (PeLEDs). However, intrinsic luminance quenching at the PEDOT:PSS/perovskite interface causes deterioration of performance. Here, we develop a facile and effective strategy to passivate the interface defects via the modification of PEDOT:PSS by l-norvaline. As a pre-buried additive, l-norvaline not only reacts with PEDOT:PSS, but also forms the coordination and hydrogen bond with perovskite. We demonstrated that the generation of buried defects at the PEDOT:PSS/perovskite interface originates from the crystallization process of the perovskite film during annealing by in-situ photoluminescence measurements. The surface of l-norvaline-modified PEDOT:PSS can passivate the interfacial defects and inhibit exciton quenching. As a result, the PeLED shows a good device performance with a luminance of 80089 cd m-2 at 509 nm and an external quantum efficiency of 13.04%.

15.
Mater Today Bio ; 27: 101152, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39104901

ABSTRACT

Uniaxial cyclic stretching plays a pivotal role in the fields of tissue engineering and regenerative medicine, influencing cell behaviors and functionality based on physical properties, including matrix morphology and mechanical stimuli. This study delves into the response of endothelial cells to uniaxial cyclic strain within the geometric constraints of micro-nano fibers. Various structural scaffold forms of poly(l-lactide-co-caprolactone) (PLCL), such as flat membranes, randomly oriented fiber membranes, and aligned fiber membranes, were fabricated through solvent casting and electrospinning methods. Our investigation focuses on the morphological variation of endothelial cells under diverse geometric constraints and the mechanical-dependent release of nitric oxide (NO) on oriented fibrous membranes. Our results indicate that while uniaxial cyclic stretching promotes endothelial cell spreading, the anisotropy of the matrix morphology remains the primary driving factor for cell alignment. Additionally, uniaxial cyclic stretching significantly enhances NO release, with a notably stronger effect correlated to the increasing strain amplitude. Importantly, this study reveals that uniaxial cyclic stretching enhances the mRNA expression of key proteins, including talin, vinculin, rac, and nitric oxide synthase (eNOS).

16.
BMC Infect Dis ; 24(1): 809, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123106

ABSTRACT

OBJECTIVE: The current study aimed to investigate the baseline immune and inflammatory features and in-hospital outcomes of patients infected with the Omicron variant (PIWO) who presented with different disease severities during the first wave of mass Omicron infections in the Chinese population has occurred. METHOD: A cross-sectional study was conducted on 140 hospitalized PIWO between December 11, 2022, and February 16, 2023. The clinical features, antibodies against SARS-CoV-2, immune cells, and inflammatory cytokines among mildly, severely, and critically ill PIWO at baseline and during follow-up period were compared. RESULT: Patients with severe (n = 49) and critical (n = 35) disease were primarily male, needed invasive mechanical ventilation treatment, and exhibited higher mortality than those with mild disease (n = 56). During acute infection, SARS-CoV-2-specific antibody levels fluctuated with disease severity, serum antibodies increased and the incidence of severe cases decreased in critically ill PIWO over time. Antibody titers in severe or critical PIWO with no antibody responses at baseline did not increase significantly over time. Meanwhile, CD4+T cell, CD8+T cell, and natural killer cell counts were negatively correlated with disease severity, whereas interleukin (IL)-6 and IL-10 levels were positively correlated. In addition, combined diabetes, immunosuppressive therapy before infection, serum amyloid A, IL-10 and neutrophil counts were independently associated with severe and critical illness in PIWO. Among the 11 nonsurvivors, 8, 2, 1 died of respiratory failure, sudden cardiac death, and renal failure, respectively. Compared with survivors, nonsurvivors exhibited lower seropositivity of SARS-CoV-2-specific antibody, reduced CD3+T and CD4+T cell counts, and higher IL-2R, IL-6, IL-8, and IL-10 levels. Of note, lactate dehydrogenase was a significant risk factor of death in severe or critically ill PIWO. CONCLUSION: This present study assessed the dynamic changes of SARS-CoV-2-specific antibodies, immune cells and inflammatory indexes between severely and critically ill PIWO. Critical and dead PIWO featured compromised humoral immune response and excessive inflammation, which broadened the understanding of the pathophysiology of Omicron infection and provides warning markers for severe disease and poor prognosis.


Subject(s)
COVID-19 , Critical Illness , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , COVID-19/epidemiology , Male , Female , China/epidemiology , SARS-CoV-2/immunology , Middle Aged , Cross-Sectional Studies , Adult , Aged , Antibodies, Viral/blood , Cytokines/blood , Cytokines/immunology , Inflammation/immunology
17.
Heliyon ; 10(13): e33860, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027572

ABSTRACT

Primary Sjögren's Syndrome (pSS) is a systemic autoimmune disease that leads to reduced saliva production, primarily affecting women due to estrogen deficiency. The estrogen receptor α (ERα) plays a crucial role in mediating the expression of the aquaporin 5 (AQP5) gene through the estrogen response element-dependent signaling pathway, making ERα a key drug target for pSS. Several flavonoids have been reported to have the potential to treat pSS. This study aimed to screen and compare flavonoids binding to ERα using AutoDock, providing a basis for treating pSS with flavonoids. The estrogenic potential of six representative flavonoids was examined in this study. Molecular docking revealed that the binding energy of all six flavonoids to ERα was less than -5.6 kcal/mol. Apigenin, naringenin, and daidzein were the top three flavonoids with even lower binding energies of -7.8, -8.09, and -8.59 kcal/mol, respectively. Similar to the positive control estradiol, apigenin, naringenin, and daidzein showed hydrogen bond interactions with GLU353, GLY521, and HIS524 at the active site. The results of luciferase reporter assays demonstrated that apigenin, naringenin, and daidzein significantly enhanced the transcription of estrogen receptor element (ERE) in the PGL3/AQP5 promoter. Furthermore, molecular dynamics simulations using GROMACS for a time scale of 100 ns revealed relatively stable binding of apigenin-ERα, naringenin-ERα, and daidzein-ERα. Mechanistically, homology modeling indicated that GLU353, GLY521, and HIS524 were the key residues of ERα exerting an estrogenic effect. The therapeutic effect of apigenin on dry mouth in pSS models was further validated. In conclusion, these results indicate the estrogenic and pSS therapeutic potential of apigenin, naringenin, and daidzein.

18.
BMC Pulm Med ; 24(1): 312, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961438

ABSTRACT

BACKGROUND: The Omicron variant broke out in China at the end of 2022, causing a considerable number of severe cases and even deaths. The study aimed to identify risk factors for death in patients hospitalized with SARS-CoV-2 Omicron infection and to establish a scoring system for predicting mortality. METHODS: 1817 patients were enrolled at eight hospitals in China from December 2022 to May 2023, including 815 patients in the training group and 1002 patients in the validation group. Forty-six clinical and laboratory features were screened using LASSO regression and multivariable logistic regression. RESULTS: In the training set, 730 patients were discharged and 85 patients died. In the validation set, 918 patients were discharged and 84 patients died. LASSO regression identified age, levels of interleukin (IL) -6, blood urea nitrogen (BUN), lactate dehydrogenase (LDH), and D-dimer; neutrophil count, neutrophil-to-lymphocyte ratio (NLR) as associated with mortality. Multivariable logistic regression analysis showed that older age, IL-6, BUN, LDH and D-dimer were significant independent risk factors. Based on these variables, a scoring system was developed with a sensitivity of 83.6% and a specificity of 83.5% in the training group, and a sensitivity of 79.8% and a sensitivity of 83.0% in the validation group. CONCLUSIONS: A scoring system based on age, IL-6, BUN, LDH and D-dime can help clinicians identify patients with poor prognosis early.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/mortality , Male , Female , Middle Aged , China/epidemiology , Aged , Risk Factors , Hospitalization/statistics & numerical data , Adult , Prognosis , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism , Age Factors , Logistic Models , Neutrophils , Blood Urea Nitrogen , L-Lactate Dehydrogenase/blood
19.
Environ Int ; 190: 108863, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959566

ABSTRACT

Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.


Subject(s)
Air Pollutants , Particulate Matter , Proto-Oncogene Mas , Humans , Particulate Matter/toxicity , Female , Male , Air Pollutants/toxicity , Databases, Factual , Respiratory Tract Diseases/chemically induced , Endocrine System Diseases/chemically induced
20.
J Mol Diagn ; 26(9): 832-842, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972592

ABSTRACT

Timely detection of Aspergillus infection is crucial given the high mortality rate of pulmonary aspergillosis (PA). Here, the diagnostic performances for PA of mycological culture, Aspergillus real-time PCR, and metagenomic next-generation sequencing (mNGS) assay from bronchoalveolar lavage fluid, were evaluated. In total, 139 patients with suspected fungal pneumonia were enrolled between December 2021 and July 2023, collecting 139 bronchoalveolar lavage fluid samples for real-time PCR and culture, with 87 undergoing mNGS assay. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve with 95% CIs of these assays for PA were as follows: 35.3% (14.2%-61.7%), 100.0% (94.0%-100.0%), 100.0% (54.1%-100.0%), 84.5% (79.3%-88.6%), and 0.676 (0.560-0.779), respectively, for culture; 82.4% (56.6%-96.2%), 98.3% (91.1%-100.0%), 93.3% (66.4%-99.0%), 95.2% (87.6%-98.2%), and 0.903 (0.815-0.959), respectively, for same diagnostic performance of real-time PCR and mNGS; and 94.1% (71.3%-99.9%), 96.7% (88.5%-99.6%), 88.9% (67.1%-96.9%), 98.3% (89.6%-99.7%), and 0.954 (0.880-0.989), respectively, for real-time PCR combining mNGS; real-time PCR, mNGS, and their combination significantly improved in area under the curve values over culture (P < 0.001), but real-time PCR testing and mNGS had no significant difference with each other and their combination. Overall, the performance of culture was limited by low sensitivity; both real-time PCR and mNGS assays as single diagnostic tests are promising compared with culture and combined tests.


Subject(s)
Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Metagenomics , Pulmonary Aspergillosis , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Humans , Bronchoalveolar Lavage Fluid/microbiology , Real-Time Polymerase Chain Reaction/methods , High-Throughput Nucleotide Sequencing/methods , Male , Middle Aged , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/microbiology , Female , Metagenomics/methods , Aged , Adult , Aspergillus/genetics , Aspergillus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL