Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 461
Filter
1.
J Sep Sci ; 47(13): e2400154, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948935

ABSTRACT

Glycosylation and phosphorylation rank as paramount post-translational modifications, and their analysis heavily relies on enrichment techniques. In this work, a facile approach was developed for the one-step simultaneous enrichment and stepwise elution of glycoproteins and phosphoproteins. The core of this approach was the application of the novel titanium (IV) ion immobilized poly(glycidyl methacrylate) microparticles functionalized with dendrimer polyethylenimine and phytic acid. The microparticles possessed dual enrichment capabilities due to their abundant titanium ions and hydroxyl groups on the surface. They demonstrate rapid adsorption equilibrium (within 30 min) and exceptional adsorption capacity for ß-casein (1107.7 mg/g) and horseradish peroxidase (438.6 mg/g), surpassing that of bovine serum albumin (91.7 mg/g). Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis was conducted to validate the enrichment capability. Experimental results across various biological samples, including standard protein mixtures, non-fat milk, and human serum, demonstrated the remarkable ability of these microparticles to enrich low-abundance glycoproteins and phosphoproteins from biological samples.


Subject(s)
Dendrimers , Glycoproteins , Phosphoproteins , Polyethyleneimine , Polymethacrylic Acids , Titanium , Glycoproteins/chemistry , Phosphoproteins/chemistry , Polyethyleneimine/chemistry , Dendrimers/chemistry , Humans , Titanium/chemistry , Polymethacrylic Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Surface Properties , Animals , Particle Size , Adsorption , Cattle
2.
Poult Sci ; 103(9): 103933, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38943801

ABSTRACT

The Hungarian White Goose (Anser anser domesticus) is an excellent European goose breed, with high feather and meat production. Despite its importance in the poultry industry, no available genome assembly information has been published. This study aimed to present Chromosome-level and functional genome sequencing of the Hungarian White Goose. The results showed that the genome assembly has a total length of 1115.82 Mb, 39 pairs of chromosomes, 92.98% of the BUSCO index, and contig N50 and scaffold N50 were up to 2.32 Mb and 60.69 Mb, respectively. Annotation of the genome assembly revealed 19550 genes, 286 miRNAs, etc. We identified 235 expanded and 1,167 contracted gene families in this breed compared with the other 16 species. We performed a positive selection analysis between this breed and four species of Anatidae to uncover the genetic information underlying feather follicle development. Further, we detected the function of miR-199-x, miR-143-y, and miR-23-z on goose embryonic skin fibroblast. In summary, we have successfully generated a highly complete genome sequence of the Hungarian white goose, which will provide a great resource to improve our understanding of gene functions and enhance the studies on feather follicle development at the genomic level.

3.
Zhongguo Zhen Jiu ; 44(6): 676-84, 2024 Jun 12.
Article in Chinese | MEDLINE | ID: mdl-38867630

ABSTRACT

OBJECTIVE: To observe the effects of electroacupuncture (EA) on the autophagy of ovarian granulosa cells in rats with premature ovarian insufficiency (POI), and explore the mechanism of EA in improving POI. METHODS: Thirty-two female SD rats were randomly divided into a blank group (n=8) and a model making group (n=24). The rats in the model making group were injected intraperitoneally with cyclophosphamide for 15 days to establish the POI model (the dosage on the 1st day was 50 mg/kg, and 8 mg/kg from the 2nd day to 15th day). The successfully modeled rats were then randomly divided into a model group, an EA group, and an estradiol (E2) group, with 8 rats in each group. Rats in the EA group received EA at bilateral "Gongsun" (SP 4) with continuous wave, frequency of 2 Hz, and current intensity of 0.1 to 1 mA, 20 min per treatment, once daily for 14 days. Rats in the E2 group were administered with E2 (0.01 mg/mL) by gavage (10 mL/kg), once daily for 14 days. The changes in estrous cycle were observed by rapid Giemsa staining before and after modeling. After intervention, ovarian tissue morphology was observed by HE staining; serum levels of follicle-stimulating hormone (FSH), E2, anti-Mullerian hormone (AMH), and inhibin B (INHB) were detected by ELISA; immunofluorescence staining was used to observe the expression of p62 in ovarian granulosa cells; the ultrastructure of ovarian granulosa cells was observed by transmission electron microscopy, and the number of autophagosomes and autolysosomes was compared; Western blot and real-time fluorescence quantitative PCR were used to detect the protein and mRNA expression of p62, Beclin-1, and microtubule-associated protein 1A/1B-light chain 3 (LC3) in ovarian tissue. RESULTS: The results of vaginal smears in the blank group showed regular cyclical changes; the rats in the model group showed prolonged estrous cycle or cycle arrest, mostly in proestrus or metestrus, with overall ovarian atrophy, disordered structure, and decreased granulosa cells. Compared with the blank group, rats in the model group showed increased serum FSH level (P<0.01), decreased serum levels of E2, AMH, and INHB (P<0.01), decreased positive expression of p62 in ovarian granulosa cells (P<0.01), with obvious swelling of ovarian granulosa cells, mild to moderate swelling of mitochondria, slight expansion of rough endoplasmic reticulum, and hypertrophy of Golgi apparatus; the number of autophagosomes and autolysosomes in the ovaries was increased (P<0.01), the expression of p62 protein and mRNA was decreased (P<0.01), and the expression of Beclin-1 and LC3 protein and mRNA in ovarian tissue was increased (P<0.01). Compared with the model group, rats in the EA group and the E2 group showed decreased serum FSH levels (P<0.01), increased levels of E2, AMH, and INHB (P<0.01), increased positive expression of p62 in ovarian granulosa cells (P<0.01), alleviated degree of ovarian granulosa cell damage, with relatively intact organelle morphology, and decreased number of autophagosomes and autolysosomes in the ovaries (P<0.01); the rats also showed increased expression of p62 protein and mRNA (P<0.01), and decreased expression of Beclin-1 and LC3 protein and mRNA (P<0.01) in ovarian tissue. CONCLUSION: EA at "Gongsun" (SP 4) could improve ovarian reserve function in POI rats by reducing the number of autophagosomes and autolysosomes, up-regulating p62 expression, and down-regulating Beclin-1 and LC3 expression, thus inhibiting autophagy of ovarian granulosa cells, and regulating the serum levels of FSH, E2, AMH, and INHB.


Subject(s)
Autophagy , Electroacupuncture , Granulosa Cells , Primary Ovarian Insufficiency , Rats, Sprague-Dawley , Animals , Female , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/physiopathology , Rats , Humans , Granulosa Cells/metabolism , Disease Models, Animal
5.
PeerJ ; 12: e17446, 2024.
Article in English | MEDLINE | ID: mdl-38827306

ABSTRACT

Objectives: To investigate the interaction between tramadol and representative tyrosine kinase inhibitors, and to study the inhibition mode of drug-interaction. Methods: Liver microsomal catalyzing assay was developed. Sprague-Dawley rats were administrated tramadol with or without selected tyrosine kinase inhibitors. Samples were prepared and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for analysis. Besides, liver, kidney, and small intestine were collected and morphology was examined by hematoxyline-eosin (H&E) staining. Meanwhile, liver microsomes were prepared and carbon monoxide differential ultraviolet radiation (UV) spectrophotometric quantification was performed. Results: Among the screened inhibitors, crizotinib takes the highest potency in suppressing the metabolism of tramadol in rat/human liver microsome, following non-competitive inhibitory mechanism. In vivo, when crizotinib was co-administered, the AUC value of tramadol increased compared with the control group. Besides, no obvious pathological changes were observed, including cell morphology, size, arrangement, nuclear morphology with the levels of alanine transaminase (ALT) and aspartate transaminase (AST) increased after multiple administration of crizotinib. Meanwhile, the activities of CYP2D1 and CYP3A2 as well as the total cytochrome P450 abundance were found to be decreased in rat liver of combinational group. Conclusions: Crizotinib can inhibit the metabolism of tramadol. Therefore, this recipe should be vigilant to prevent adverse reactions.


Subject(s)
Crizotinib , Cytochrome P-450 CYP3A , Microsomes, Liver , Rats, Sprague-Dawley , Tramadol , Animals , Tramadol/pharmacology , Crizotinib/pharmacology , Rats , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Cytochrome P-450 CYP3A/metabolism , Male , Drug Interactions , Humans , Tandem Mass Spectrometry , Cytochrome P450 Family 2/metabolism , Cytochrome P450 Family 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Analgesics, Opioid/pharmacology
7.
Front Pharmacol ; 15: 1392849, 2024.
Article in English | MEDLINE | ID: mdl-38855755

ABSTRACT

The purpose of this study is to clarify the drug interaction profile of aumolertinib, and the influence of CYP3A4 genetic polymorphism on aumolertinib metabolic characteristics. Through microsomal enzyme reactions, we screened 153 drugs and identified 15 that significantly inhibited the metabolism of aumolertinib. Among them, telmisartan and carvedilol exhibited potent inhibitory activities in rat liver microsomes (RLM) and human liver microsomes (HLM). In vivo, the pharmacokinetic parameters of aumolertinib, including AUC and Cmax, were significantly altered when co-administered with carvedilol, with a notable decrease in the clearance rate CLz/F. Interestingly, the pharmacokinetic parameters of the metabolite HAS-719 exhibited a similar trend as aumolertinib when co-administered. Mechanistically, both telmisartan and carvedilol exhibited a mixed-type inhibition on the metabolism of aumolertinib. Additionally, we used a baculovirus-insect cell expression system to prepare 24 recombinant CYP3A4 microsomes and obtained enzymatic kinetic parameters using aumolertinib as a substrate. Enzyme kinetic studies obtained the kinetic parameters of various CYP3A4 variant-mediated metabolism of aumolertinib. Based on the relative clearance rates, CYP3A4.4, 5, 7, 8, 9, 12, 13, 14, 17, 18, 19, 23, 24, 33, and 34 showed significantly lower clearance rates compared to the wild-type. Among the different CYP3A4 variants, the inhibitory potency of telmisartan and carvedilol on the metabolism of aumolertinib also varied. The IC50 values of telmisartan and carvedilol in CYP3A4.1 were 6.68 ± 1.76 µM and 0.60 ± 0.25 µM, respectively, whereas in CYP3A4.12, the IC50 exceeded 100 µM. Finally, we utilized adeno-associated virus to achieve liver-specific high expression of CYP3A4*1 and CYP3A4*12. In the group with high expression of the less active CYP3A4*12, the magnitude of the drug-drug interaction was significantly attenuated. In conclusion, CYP3A4 genetic polymorphism not only influences the pharmacokinetic characteristics of aumolertinib, but also the inhibitory potency of telmisartan and carvedilol on it.

8.
J Environ Manage ; 362: 121293, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833923

ABSTRACT

Soil acidification induced by reactive nitrogen (N) inputs is a major environmental issue in grasslands, as it lowers the acid neutralizing capacity (ANC). The specific impacts of different N compound forms on ANC remain unclear. Grassland management practices like mowing and grazing can remove a considerable amount of soil N and other nutrients, potentially mitigating soil acidification by removing N from the ecosystem or aggravating it by removing base cations. However, empirical evidence regarding the joint effects of adding different forms of N compounds and mowing on ANC changes in different-sized soil aggregates is still lacking. This study aimed to address this knowledge gap by examining the effects of three N compounds (urea, ammonium nitrate, and ammonium sulfate) combined with mowing (mown vs. unmown) on soil ANC in different soil aggregate sizes (>2000 µm, 250-2000 µm, and <250 µm) through a 6-year field experiment in Inner Mongolia grasslands. We found that the average decline in soil ANC caused by ammonium sulfate (AS) addition (-78.9%) was much greater than that by urea (-25.0%) and ammonium nitrate (AN) (-52.1%) as compared to control. This decline was attributed to increased proton (H+) release from nitrification and the leaching of exchangeable Ca2+ and Mg2+. Mowing aggravated the adverse effects of urea and AN on ANC, primarily due to the reduction in soil organic matter (SOM) contents and the removal of exchangeable Ca2+, K+, and Na + via plant biomass harvest. This pattern was consistent across all aggregate fractions. The lack of variation in soil ANC among different soil aggregate fractions is likely due to the contrasting trend in the distribution of exchangeable Ca2+ and Mg2+. Specifically, the concentration of exchangeable Ca2+ increased with increasing aggregate size, while the opposite was true for that of exchangeable Mg2+. These findings underscore the importance of considering the forms of N compounds when assessing the declines of ANC induced by N inputs, which also calls for an urgent need to reduce N emissions to ensure the sustainable development of the meadow ecosystems.


Subject(s)
Grassland , Nitrogen , Soil , Soil/chemistry , Nitrogen/analysis , Nitrates/analysis , Ecosystem
9.
Prev Med Rep ; 43: 102763, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831965

ABSTRACT

Background: The triglyceride-glucose (TyG) index has been recommended as a practical surrogate of insulin resistance (IR). However, the association between the TyG index and hyperuricemia among adults with hypertension remains to be elucidated. Methods: We included and analyzed 3134 HTN patients and 4233 non-HTN participants from the cross-sectional 2013-2018 U.S. National Health and Nutrition Examination Surveys (NHANES). Multivariable logistic regression and restricted cubic splines (RCS) were used to explore the association between the TyG index and hyperuricemia. Stratifed analyses were performed to assess the association in populations with different subgroups of hypertension. Results: The prevalence of hyperuricemia was higher in HTN patients (28.00 %) than in non-HTN participants (12.47 %). The multivariable logistic regression showed that the TyG index was significantly associated with hyperuricemia. After multivariable adjustment, higher TyG index levels were found to be associated with a higher prevalence of hyperuricemia in HTN patients (OR: 2.39, 95 % CI: 1.37-4.17, Ptrend < 0.001) and non-HTN participants (OR: 2.61, 95 % CI: 1.45-4.69, Ptrend < 0.001). Restricted cubic spline regression showed linearity of the associations between the TyG index and hyperuricemia (p-nonlinear > 0.05). In the subgroup analysis suggested that the positive association seemed to be strong among male, alcohol use, and diabetes group (P for interaction < 0.05). Conclusions: TyG index, a practical surrogate of IR, was linearly and positively associated with hyperuricemia in HTN and non-HTN participants. Proactive measures are needed to prevent the comorbidity of IR-driven hyperuricemia in the future.

11.
Toxicol Appl Pharmacol ; 489: 117016, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925514

ABSTRACT

To elucidate the impact of CYP3A4 activity inhibition and genetic polymorphism on the metabolism of crizotinib. Enzymatic incubation systems for crizotinib were established, and Sprague-Dawley rats were utilized for in vivo experiments. Analytes were quantified using LC-MS/MS. Upon screening 122 drugs and natural compounds, proanthocyanidins emerged as inhibitor of crizotinib metabolism, exhibiting a relative inhibition rate of 93.7%. The IC50 values were 24.53 ± 0.32 µM in rat liver microsomes and 18.24 ± 0.12 µM in human liver microsomes. In vivo studies revealed that proanthocyanidins markedly affected the pharmacokinetic parameters of crizotinib. Co-administration led to a significant reduction in the AUC(0-t), Cmax of PF-06260182 (the primary metabolite of crizotinib), and the urinary metabolic ratio. This interaction is attributed to the mixed-type inhibition of liver microsome activity by proanthocyanidins. CYP3A4, being the principal metabolic enzyme for crizotinib, has its genetic polymorphisms significantly influencing crizotinib's pharmacokinetics. Kinetic data showed that the relative metabolic rates of crizotinib across 26 CYP3A4 variants ranged from 13.14% (CYP3A4.12, 13) to 188.57% (CYP3A4.33) when compared to the wild-type CYP3A4.1. Additionally, the inhibitory effects of proanthocyanidins varied between CYP3A4.12 and CYP3A4.33, when compared to the wild type. Our findings indicate that proanthocyanidins coadministration and CYP3A4 genetic polymorphism can significantly influence crizotinib metabolism.

12.
Compr Rev Food Sci Food Saf ; 23(4): e13396, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925601

ABSTRACT

Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.


Subject(s)
Polysaccharides , Seaweed , Seaweed/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Rhodophyta/chemistry , Carrageenan/chemistry , Phaeophyceae/chemistry , Chlorophyta/chemistry
13.
Planta ; 260(1): 26, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861179

ABSTRACT

MAIN CONCLUSION: CaTPS2 and CaTPS3 were significantly expressed in flowers of Curcuma alismatifolia 'Shadow' and demonstrated bifunctional enzyme activity, CaTPS2 generated linalool and nerolidol as products, and CaTPS3 catalyzed ß-myrcene and ß-farnesene formation. This study presents the discovery and functional characterization of floral terpene synthase (TPS) genes in Curcuma alismatifolia 'Shadow', a cultivar renowned for its unique fragrance. Addressing the gap in understanding the genetic basis of floral scent in this species, we identified eight TPS genes through comprehensive transcriptome sequencing. Among these, CaTPS2 and CaTPS3 were significantly expressed in floral tissues and demonstrated bifunctional enzyme activity corresponding to the major volatile compounds detected in 'Shadow'. Functional analyses, including in vitro assays complemented with rigorous controls and alternative identification methods, elucidated the roles of these TPS genes in terpenoid biosynthesis. In vitro studies were conducted via heterologous expression in E. coli, followed by purification of the recombinant protein using affinity chromatography, enzyme assays were performed with GPP/FPP as the substrate, and volatile products were inserted into the GC-MS for analysis. Partially purified recombinant protein of CaTPS2 catalyzed GPP and FPP to produce linalool and nerolidol, respectively, while partially purified recombinant protein of CaTPS3 generated ß-myrcene and ß-farnesene with GPP and FPP as substrates, respectively. Real-time quantitative PCR further validated the expression patterns of these genes, correlating with terpenoid accumulation in different plant tissues. Our findings illuminate the molecular mechanisms underpinning floral fragrance in C. alismatifolia and provide a foundation for future genetic enhancements of floral scent in ornamental plants. This study, therefore, contributes to the broader understanding of terpenoid biosynthesis in plant fragrances, paving the way for biotechnological applications in horticulture plant breeding.


Subject(s)
Acyclic Monoterpenes , Alkyl and Aryl Transferases , Curcuma , Flowers , Sesquiterpenes , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Flowers/genetics , Flowers/enzymology , Flowers/metabolism , Sesquiterpenes/metabolism , Acyclic Monoterpenes/metabolism , Curcuma/genetics , Curcuma/enzymology , Curcuma/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Terpenes/metabolism , Volatile Organic Compounds/metabolism , Phylogeny , Odorants
14.
J Affect Disord ; 360: 249-258, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38795782

ABSTRACT

BACKGROUND: LGBTQ+ populations have been reported to have higher rates of depression compared with their heterosexual peers. Such data provided us the impetus to conduct a meta-analysis on the worldwide prevalence of major depressive disorder (MDD) in LGBTQ+ populations and moderating factors that contributed to differences in prevalence estimates between studies. METHODS: A systematic literature search was performed in major international (PubMed, PsycINFO, Web of Science, EMBASE) and Chinese (Chinese Nation Knowledge Infrastructure (CNKI) and WANFANG) databases from dates of inception to 10 December 2021. RESULTS: 48 articles comprising 4,616,903 individuals were included in the meta-analysis. The overall prevalence of MDD was 32.2 % (95%CI: 30.8-33.6 %, I2 = 99.6 %, τ2 = 0.284). MDD prevalence was higher in the LGBTQ+ samples from the United States than other countries, though the difference was not significant in moderator analyses. Moderator analyses indicated point and lifetime prevalence of MDD were significantly higher than estimates based on the past year (Q = 6.270, p = 0.043). Furthermore, studies that relied on convenience sampling had a higher prevalence of MDD than those based on other sampling methods (Q = 8.159, p = 0.017). In meta-regression analyses, mean age (B = 0.03, z = 9.54, p < 0.001) and study quality assessment score (B = 0.24, z = 67.64, p < 0.001) were positively associated with pooled prevalence of MDD while mediation data of year of study (B = -0.08, z = -72.55, p < 0.001) and sample size (B = -1.46, z = -37.83, p < 0.001) were negatively associated with pooled prevalence of MDD in LGBTQ+ samples. CONCLUSIONS: MDD is common among in LGBTQ+ individuals. Considering the negative consequences MDD has on daily life and well-being, appropriate prevention and treatment measures should be provided to vulnerable members of these populations. The findings of this meta-analysis could facilitate identifying at-risk subgroups, developing relevant health policy for LGBTQ+ individuals and allocating health resources from an intersectionality perspective.


Subject(s)
Depressive Disorder, Major , Sexual and Gender Minorities , Humans , Depressive Disorder, Major/epidemiology , Sexual and Gender Minorities/statistics & numerical data , Prevalence , Global Health/statistics & numerical data , Male , Female , Adult
15.
Technol Health Care ; 32(S1): 277-286, 2024.
Article in English | MEDLINE | ID: mdl-38759056

ABSTRACT

BACKGROUND: Early diagnosis of knee osteoarthritis is an important area of research in the field of clinical medicine. Due to the complexity in the MRI imaging sequences and the diverse structure of cartilage, there are many challenges in the segmentation of knee bone and cartilage. Relevant studies have conducted semantic fusion processing through splicing or summing forms, which results in reduced resolution and the accumulation of redundant information. OBJECTIVE: This study was envisaged to construct an MRI image segmentation model to improve the diagnostic efficiency and accuracy of different grade knee osteoarthritis by adopting the Dual Attention and Multi-scale Feature Fusion Segmentation network (DA-MFFSnet). METHODS: The feature information of different scales was fused through the Multi-scale Attention Downsample module to extract more accurate feature information, and the Global Attention Upsample module weighted lower-level feature information to reduce the loss of key information. RESULTS: The collected MRI knee images were screened and labeled, and the study results showed that the segmentation effect of DA-MFFSNet model was closer to that of the manually labeled images. The mean intersection over union, the dice similarity coefficient and the volumetric overlap error was 92.74%, 91.08% and 7.44%, respectively, and the accuracy of the differential diagnosis of knee osteoarthritis was 84.42%. CONCLUSIONS: The model exhibited better stability and classification effect. Our results indicated that the Dual Attention and Multi-scale Feature Fusion Segmentation model can improve the segmentation effect of MRI knee images in mild and medium knee osteoarthritis, thereby offering an important clinical value and improving the accuracy of the clinical diagnosis.


Subject(s)
Magnetic Resonance Imaging , Osteoarthritis, Knee , Humans , Magnetic Resonance Imaging/methods , Osteoarthritis, Knee/diagnostic imaging , Knee Joint/diagnostic imaging , Image Processing, Computer-Assisted/methods , Algorithms , Image Interpretation, Computer-Assisted/methods
17.
Environ Res ; 252(Pt 3): 119054, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704007

ABSTRACT

BACKGROUND: The connections between fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) and daily mortality of viral pneumonia and bacterial pneumonia were unclear. OBJECTIVES: To distinguish the connections between PM2.5 and PM2.5-10 and daily mortality due to viral pneumonia and bacterial pneumonia. METHODS: Using a comprehensive national death registry encompassing all areas of mainland China, we conducted a case-crossover investigation from 2013 to 2019 at an individual level. Residential daily particle concentrations were evaluated using satellite-based models with a spatial resolution of 1 km. To analyze the data, we employed the conditional logistic regression model in conjunction with polynomial distributed lag models. RESULTS: We included 221,507 pneumonia deaths in China. Every interquartile range (IQR) elevation in concentrations of PM2.5 (lag 0-2 d, 37.6 µg/m3) was associated with higher magnitude of mortality for viral pneumonia (3.03%) than bacterial pneumonia (2.14%), whereas the difference was not significant (p-value for difference = 0.38). An IQR increase in concentrations of PM2.5-10 (lag 0-2 d, 28.4 µg/m3) was also linked to higher magnitude of mortality from viral pneumonia (3.06%) compared to bacterial pneumonia (2.31%), whereas the difference was not significant (p-value for difference = 0.52). After controlling for gaseous pollutants, their effects were all stable; however, with mutual adjustment, the associations of PM2.5 remained, and those of PM2.5-10 were no longer statistically significant. Greater magnitude of associations was noted in individuals aged 75 years and above, as well as during the cold season. CONCLUSION: This nationwide study presents compelling evidence that both PM2.5 and PM2.5-10 exposures could increase pneumonia mortality of viral and bacterial causes, highlighting the more robust effects of PM2.5 and somewhat higher sensitivity of viral pneumonia.


Subject(s)
Air Pollutants , Air Pollution , Cross-Over Studies , Particulate Matter , Particulate Matter/analysis , Particulate Matter/adverse effects , Humans , China/epidemiology , Male , Female , Aged , Middle Aged , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Pneumonia, Bacterial/mortality , Pneumonia/mortality , Pneumonia/chemically induced , Environmental Exposure/adverse effects , Aged, 80 and over , Particle Size , Pneumonia, Viral/mortality , Adult
18.
Chemosphere ; 359: 142297, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729443

ABSTRACT

The large use and emission of p-nitrophenol (p-NP) seriously pollute the environment and endanger human health. In this work, a hydrazone-linked fluorescent covalent organic framework (BATHz-COF) was simply synthesized at room temperature and covalently linked N-acetyl-L-cysteine (NALC) via the "thiol-ene" click reaction, where carboxyl groups were introduced to improve dispersion and fluorescence intensity. As a rapid, good selectivity and reusability fluorescence sensor, the obtained COF-NALC has been used for quantitative analysis of p-NP predicated on the internal filtering effect (IFE). Under optimal conditions, COF-NALC enabled quantitative detection of p-NP with a linear range of 5-50 µM and the detection limit was 1.46 µM. The application of COF-NALC to the detection of p-NP in river water samples was successful, and the satisfactory recoveries were 98.0%-109.3%. Furthermore, the fluorescent COF paper chips constructed by in situ growth were combined with a smartphone to build a visual platform for the quick and real-time detection of p-NP, providing an excellent illustration for the development of intelligent fluorescence sensing in environmental analysis.


Subject(s)
Hydrazones , Nitrophenols , Water Pollutants, Chemical , Nitrophenols/analysis , Nitrophenols/chemistry , Hydrazones/chemistry , Water Pollutants, Chemical/analysis , Cysteine/analysis , Cysteine/chemistry , Limit of Detection , Fluorescent Dyes/chemistry , Metal-Organic Frameworks/chemistry , Paper , Fluorescence , Environmental Monitoring/methods , Spectrometry, Fluorescence , Rivers/chemistry
19.
Environ Int ; 187: 108721, 2024 May.
Article in English | MEDLINE | ID: mdl-38718675

ABSTRACT

BACKGROUND: The new round of WHO/ILO Joint Estimates of the Work-related Burden of Disease assessment requires futher research to provide more evidence, especially on the health impact of ambient air pollution around the workplace. However, the evidence linking obstructive ventilatory dysfunction (OVD) to fine particulate matter (PM2.5) and its chemical components in workers is very limited. Evidence is even more scarce on the interactive effects between occupational factors and particle exposures. We aimed to fill these gaps based on a large ventilatory function examination of workers in southern China. METHODS: We conducted a cross-sectional study among 363,788 workers in southern China in 2020. The annual average concentration of PM2.5 and its components were evaluated around the workplace through validated spatiotemporal models. We used mixed-effect models to evaluate the risk of OVD related to PM2.5 and its components. Results were further stratified by basic characteristics and occupational factors. FINDINGS: Among the 305,022 workers, 119,936 were observed with OVD. We found for each interquartile range (IQR) increase in PM2.5 concentration, the risk of OVD increased by 27.8 (95 % confidence interval (CI): 26.5-29.2 %). The estimates were 10.9 % (95 %CI: 9.7-12.1 %), 15.8 % (95 %CI: 14.5-17.2 %), 2.6 % (95 %CI: 1.4-3.8 %), 17.1 % (95 %CI: 15.9-18.4 %), and 11 % (95 %CI: 9.9-12.2 %), respectively, for each IQR increment in sulfate, nitrate, ammonium salt, organic matter and black carbon. We observed greater effect estimates among females, younger workers, workers with a length of service of 24-45 months, and professional skill workers. Furthermore, it is particularly noteworthy that the noise-exposed workers, high-temperature-exposed workers, and less-dust-exposed workers were at a 5.7-68.2 % greater risk than others. INTERPRETATION: PM2.5 and its components were significantly associated with an increased risk of OVD, with stronger links among certain vulnerable subgroups.


Subject(s)
Occupational Exposure , Particulate Matter , Humans , Particulate Matter/analysis , China , Cross-Sectional Studies , Adult , Male , Occupational Exposure/analysis , Middle Aged , Female , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Respiratory Function Tests
20.
Sleep Adv ; 5(1): zpae026, 2024.
Article in English | MEDLINE | ID: mdl-38737796

ABSTRACT

Study Objectives: Evidence suggests that adolescents and adults with a later chronotype have poorer sleep habits and are more susceptible to unhealthy behaviors, but little is known about these associations in younger children. The objective of the study was to (1) identify and compare individual chronotype tendencies among preschool-aged children and (2) investigate associations of sleep dimensions and chronotype with diet. Methods: Participants were 636 3-6 years old (mean ±â€…SD age: 4.74 ±â€…0.89 years, 49% girls) preschoolers from the cross-sectional Increased Health and Well-Being in Preschoolers (DAGIS) study in Finland. Sleep duration, sleep variability (in duration and midpoint), social jetlag, and midsleep on weekends adjusted for sleep debt (MSWEadj) were measured with 7-day actigraphy. Morning, intermediate, and evening chronotype tendencies were defined based on the lowest and highest 10th percentile cutoffs of MSWEadj. Food, energy, and macronutrient intake were assessed from 3-day records. Associations between sleep dimensions and diet were assessed with regression models. Results: MSWEadj was 1:13 ±â€…14 minutes for morning (n = 64), 2:25 ±â€…28 minutes for intermediate (n = 560), and 3:38 ±â€…15 minutes for evening (n = 64) chronotype tendency. Children with an evening chronotype tendency had greater social jetlag and sleep variability. Having an evening chronotype tendency was associated with higher added sugar, higher sugary food consumption, and lower vegetable consumption compared to intermediate tendency types. A later chronotype (MSWEadj) was associated with higher sugary food consumption, as well as lower vegetable and fiber intake. Sleep duration, social jetlag, and sleep variability were not associated with diet. Conclusions: Several less healthy sleep and diet behaviors were observed among children with later chronotypes. Future public health interventions aimed towards children would benefit from taking into account chronotype.

SELECTION OF CITATIONS
SEARCH DETAIL
...