Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.393
Filter
1.
J Clin Anesth ; 97: 111520, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954871

ABSTRACT

STUDY OBJECTIVE: To assess the association of intraoperative hypotension with long-term survivals in older patients after major noncardiac surgery mainly for cancer. DESIGN: A secondary analysis of databases from three randomized trials with long-term follow-up. SETTING: The underlying trials were conducted in 17 tertiary hospitals in China. PATIENTS: Patients aged 60 to 90 years who underwent major noncardiac thoracic or abdominal surgeries (≥ 2 h) in a single center were included in this analysis. EXPOSURES: Restricted cubic spline models were employed to determine the lowest mean arterial pressure (MAP) threshold that was potentially harmful for long-term survivals. Patients were arbitrarily divided into three groups according to the cumulative duration or area under the MAP threshold. The association between intraoperative hypotension exposure and long-term survivals were analyzed with the Cox proportional hazard regression models. MEASUREMENTS: Our primary endpoint was overall survival. Secondary endpoints included recurrence-free and event-free survivals. MAIN RESULTS: A total of 2664 patients (mean age 69.0 years, 34.9% female sex, 92.5% cancer surgery) were included in the final analysis. MAP < 60 mmHg was adopted as the threshold of intraoperative hypotension. Patients were divided into three groups according to duration under MAP < 60 mmHg (<1 min, 1-10 min, and > 10 min) or area under MAP <60 mmHg (< 1 mmHg⋅min, 1-30 mmHg⋅min, and > 30 mmHg⋅min). After adjusting confounders, duration under MAP < 60 mmHg for > 10 min was associated with a shortened overall survival when compared with the < 1 min patients (adjusted hazard ratio [HR] 1.31, 95% confidence interval [CI] 1.09 to 1.57, P = 0.004); area under MAP < 60 mmHg for > 30 mmHg⋅min was associated with a shortened overall survival when compared with the < 1 mmHg⋅min patients (adjusted HR 1.40, 95% CI 1.16 to 1.68, P < 0.001). Similar associations exist between duration under MAP < 60 mmHg for > 10 min or area under MAP < 60 mmHg for > 30 mmHg⋅min and recurrence-free or event-free survivals. CONCLUSIONS: In older patients who underwent major noncardiac surgery mainly for cancer, intraoperative hypotension was associated with worse overall, recurrence-free, and event-free survivals.

2.
World J Pediatr ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970731

ABSTRACT

BACKGROUND: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of prenatally diagnosed developmental malformation. This study aimed to assess the relationship between maternal diseases and CAKUT in offspring. METHODS: This retrospective study enrolled all pregnant women registered from January 2020 to December 2022 at one medical center. Medical information on maternal noncommunicable diseases, including obesity, hypertension, diabetes mellitus, kidney disease, hyperthyroidism, hypothyroidism, psychiatric disease, epilepsy, cancer, and autoimmune disease was collected. Based on the records of ultrasound scanning during the third trimester, the diagnosis was classified as isolated urinary tract dilation (UTD) or kidney anomalies. Multivariate logistic regression was performed to establish models to predict antenatal CAKUT. RESULTS: Among the 19,656 pregnant women, perinatal ultrasound detected suspicious CAKUT in 114 (5.8/1000) fetuses, comprising 89 cases with isolated UTD and 25 cases with kidney anomalies. The risk of antenatal CAKUT was increased in the fetuses of mothers who experienced gestational diabetes, thyroid dysfunction, neuropsychiatric disease, anemia, ovarian and uterine disorders. A prediction model for isolated UTD was developed utilizing four confounding factors, namely gestational diabetes, gestational hypertension, maternal thyroid dysfunction, and hepatic disease. Similarly, a separate prediction model for kidney anomalies was established based on four distinct confounding factors, namely maternal thyroid dysfunction, gestational diabetes, disorders of ovarian/uterine, and kidney disease. CONCLUSIONS: Isolated UTD and kidney anomalies were associated with different maternal diseases. The results may inform the clinical management of pregnancy and highlight potential differences in the genesis of various subtypes of CAKUT.

3.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948784

ABSTRACT

Mitochondrial creatine kinases are key players in maintaining energy homeostasis in cells by working in conjunction with cytosolic creatine kinases for energy transport from mitochondria to cytoplasm. High levels of MtCK observed in Her2+ breast cancer and inhibition of breast cancer cell growth by substrate analog, cyclocreatine, indicate dependence of cancer cells on the 'energy shuttle' for cell growth and survival. Hence, understanding the key mechanistic features of creatine kinases and their inhibition plays an important role in the development of cancer therapeutics. Herein, we present the mutational and structural investigation on understudied ubiquitous mitochondrial creatine kinase (uMtCK). Our cryo-EM structures and biochemical data on uMtCK showed closure of the loop comprising residue His61 is specific to and relies on creatine binding and the reaction mechanism of phosphoryl transfer depends on electrostatics in the active site. In addition, the previously identified covalent inhibitor CKi showed inhibition in breast cancer BT474 cells, however our biochemical and structural data indicated that CKi is not a potent inhibitor for breast cancer due to strong dependency on the covalent link formation and inability to induce conformational changes upon binding.

4.
Kaohsiung J Med Sci ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963317

ABSTRACT

An increasing number of elderly individuals are experiencing postoperative cognitive dysfunction (POCD) problems after undergoing hip replacement surgery, with gut microbiota metabolites playing a role in its pathogenesis. Among these, the specific effects of trimethylamine N-oxide (TMAO) on POCD are still unclear. This study aimed to explore the role of TMAO on cognitive dysfunction and underlying mechanisms in mice. The POCD model was created through femoral fracture surgery in elderly mice, followed by cognitive function assessments using the Morris Water Maze and Novel Object Recognition tests. The gut microbiota depletion and fecal microbiota transplantation were performed to examine the relationship between TMAO levels and cognitive outcomes. The effects of TMAO treatment on cognitive dysfunction, microglial activation, and inflammatory cytokine levels in the brain were also evaluated, with additional assessment of the role of microglial ablation in reducing TMAO-induced cognitive impairment. Elevated TMAO levels were found to be associated with cognitive decline in mice following femoral fracture surgery, with gut microbiota depletion mitigating both TMAO elevation and cognitive dysfunction. In contrast, fecal microbiota transplantation from postoperative mice resulted in accelerated cognitive dysfunction and TMAO accumulation in germ-free mice. Furthermore, TMAO treatment worsened cognitive deficits, neuroinflammation, and promoted microglial activation, which were reversed through the ablation of microglia. TMAO exacerbates cognitive dysfunction and neuroinflammation in POCD mice, with microglial activation playing a crucial role in this process. Our findings may provide new therapeutic strategies for managing TMAO-related POCD and improving the quality of life for elderly patients.

5.
World J Gastrointest Oncol ; 16(6): 2271-2283, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994170

ABSTRACT

The morbidity and mortality of gastrointestinal (GI) malignancies are among the highest in the world, posing a serious threat to human health. Because of the insidious onset of the cancer, it is difficult for patients to be diagnosed at an early stage, and it rapidly progresses to an advanced stage, resulting in poor treatment and prognosis. Fusobacterium nucleatum (F. nucleatum) is a gram-negative, spore-free anaerobic bacterium that primarily colonizes the oral cavity and is implicated in the development of colorectal, esophageal, gastric, and pancreatic cancers via various intricate mechanisms. Recent development in novel research suggests that F. nucleatum may function as a biomarker in GI malignancies. Detecting the abundance of F. nucleatum in stool, saliva, and serum samples of patients may aid in the diagnosis, risk assessment, and prognosis monitoring of GI malignancies. This editorial systematically describes the biological roles and mechanisms of F. nucleatum in GI malignancies focusing on the application of F. nucleatum as a biomarker in the diagnosis and prognosis of GI malignancies to promote the clinical translation of F. nucleatum and GI tumors-related research.

6.
Article in English | MEDLINE | ID: mdl-38996754

ABSTRACT

Diabetic nephropathy (DN) remains the primary cause of end-stage renal disease (ESRD), warranting equal attention and separate analysis of glomerular, tubular, and interstitial lesions in its diagnosis and intervention. This study aims to identify the specific proteomics characteristics of DN, and assess changes in the biological processes associated with DN. 5 patients with DN and 5 healthy kidney transplant donor control individuals were selected for analysis. The proteomic characteristics of glomeruli, renal tubules, and renal interstitial tissue obtained through laser capture microscopy (LCM) were studied using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Significantly, the expression of multiple heat shock proteins (HSPs), tubulins, and heterogeneous nuclear ribonucleoproteins (hnRNPs) in glomeruli and tubules was significantly reduced. Differentially expressed proteins (DEPs) in the glomerulus showed significant enrichment in pathways related to cell junctions and cell movement, including the regulation of actin cytoskeleton and tight junction. DEPs in renal tubules were significantly enriched in glucose metabolism-related pathways, such as glucose metabolism, glycolysis/gluconeogenesis, and the citric acid cycle. Moreover, the glycolysis/gluconeogenesis pathway was a co-enrichment pathway in both DN glomeruli and tubules. Notably, ACTB emerged as the most crucial protein in the protein-protein interaction (PPI) analysis of DEPs in both glomeruli and renal tubules. In this study, we delve into the unique proteomic characteristics of each sub-region of renal tissue. This enhances our understanding of the potential pathophysiological changes in DN, particularly the potential involvement of glycolysis metabolic disorder, glomerular cytoskeleton and cell junctions. These insights are crucial for further research into the identification of disease biomarkers and the pathogenesis of DN.

7.
World J Gastrointest Surg ; 16(6): 1857-1870, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983342

ABSTRACT

BACKGROUND: Sarcopenia is a syndrome marked by a gradual and widespread reduction in skeletal muscle mass and strength, as well as a decline in functional ability, which is associated with malnutrition, hormonal changes, chronic inflammation, disturbance of intestinal flora, and exercise quality. Pancreatoduodenectomy is a commonly employed clinical intervention for conditions such as pancreatic head cancer, ampulla of Vater cancer, and cholangiocarcinoma, among others, with a notably high rate of postoperative complications. Sarcopenia is frequent in patients undergoing pancreatoduodenectomy. However, data regarding the effects of sarcopenia in patients undergoing pancreaticoduodenectomy (PD) are both limited and inconsistent. AIM: To assess the influence of sarcopenia on outcomes in patients undergoing PD. METHODS: The PubMed, Cochrane Library, Web of Science, and Embase databases were screened for studies published from the time of database inception to June 2023 that described the effects of sarcopenia on the outcomes and complications of PD. Two researchers independently assessed the quality of the data extracted from the studies that met the inclusion criteria. Meta-analysis using RevMan 5.3.5 and Stata 14.0 software was conducted. Forest and funnel plots were used, respectively, to demonstrate the outcomes of the sarcopenia group vs the non-sarcopenia group after PD and to evaluate potential publication bias. RESULTS: Sixteen studies encompassing 2381 patients were included in the meta-analysis. The patients in the sarcopenia group (n = 833) had higher overall postoperative complication rates [odds ratio (OR) = 3.42, 95% confidence interval (CI): 1.95-5.99, P < 0.0001], higher Clavien-Dindo class ≥ III major complication rates (OR = 1.41, 95%CI: 1.04-1.90, P = 0.03), higher bacteremia rates (OR = 4.46, 95%CI: 1.42-13.98, P = 0.01), higher pneumonia rates (OR = 2.10, 95%CI: 1.34-3.27, P = 0.001), higher pancreatic fistula rates (OR = 1.42, 95%CI: 1.12-1.79, P = 0.003), longer hospital stays (OR = 2.86, 95%CI: 0.44-5.28, P = 0.02), higher mortality rates (OR = 3.17, 95%CI: 1.55-6.50, P = 0.002), and worse overall survival (hazard ratio = 2.81, 95%CI: 1.45-5.45, P = 0.002) than those in the non-sarcopenia group (n = 1548). However, no significant inter-group differences were observed regarding wound infections, urinary tract infections, biliary fistulas, or postoperative digestive bleeding. CONCLUSION: Sarcopenia is a common comorbidity in patients undergoing PD. Patients with preoperative sarcopenia have increased rates of complications and mortality, in addition to a poorer overall survival rate and longer hospital stays after PD.

8.
Angew Chem Int Ed Engl ; : e202407135, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018249

ABSTRACT

Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron ß-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθµ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.

9.
Vaccine ; : 126145, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39034218

ABSTRACT

Protein-based subunit vaccines like RBD-Fc are promising tools to fight COVID-19. RBD-Fc fuses the receptor-binding domain (RBD) of the SARS-CoV-2 virus spike protein with the Fc region of human IgG1, making it more immunogenic than RBD alone. Earlier work showed that combining RBD-Fc with iNKT cell agonists as adjuvants improved neutralizing antibodies but did not sufficiently enhance T cell responses, a limitation RBD-Fc vaccines share with common adjuvants. Here we demonstrate that aluminum hydroxide combined with α-C-GC, a C-glycoside iNKT cell agonist, significantly improved the RBD-Fc vaccine's induction of RBD-specific T-cell responses. Additionally, aluminum hydroxide with α-GC-CPOEt, a phosphonate diester derivative, synergistically elicited more robust neutralizing antibodies. Remarkably, modifying αGC with phosphate (OPO3H2) or phosphonate (CPO3H2) to potentially enhance aluminum hydroxide interaction did not improve efficacy over unmodified αGC with aluminum hydroxide. These findings underscore the straightforward yet potent potential of this approach in advancing COVID-19 vaccine development and provide insights for iNKT cell-based immunotherapy.

10.
Stem Cell Res Ther ; 15(1): 201, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971839

ABSTRACT

BACKGROUND: Dysfunction or deficiency of corneal epithelium results in vision impairment or blindness in severe cases. The rapid and effective regeneration of corneal epithelial cells relies on the limbal stem cells (LSCs). However, the molecular and functional responses of LSCs and their niche cells to injury remain elusive. METHODS: Single-cell RNA sequencing was performed on corneal tissues from normal mice and corneal epithelium defect models. Bioinformatics analysis was performed to confirm the distinct characteristics and cell fates of LSCs. Knockdown of Creb5 and OSM treatment experiment were performed to determine their roles of in corneal epithelial wound healing. RESULTS: Our data defined the molecular signatures of LSCs and reconstructed the pseudotime trajectory of corneal epithelial cells. Gene network analyses characterized transcriptional landmarks that potentially regulate LSC dynamics, and identified a transcription factor Creb5, that was expressed in LSCs and significantly upregulated after injury. Loss-of-function experiments revealed that silencing Creb5 delayed the corneal epithelial healing and LSC mobilization. Through cell-cell communication analysis, we identified 609 candidate regeneration-associated ligand-receptor interaction pairs between LSCs and distinct niche cells, and discovered a unique subset of Arg1+ macrophages infiltrated after injury, which were present as the source of Oncostatin M (OSM), an IL-6 family cytokine, that were demonstrated to effectively accelerate the corneal epithelial wound healing. CONCLUSIONS: This research provides a valuable single-cell resource and reference for the discovery of mechanisms and potential clinical interventions aimed at ocular surface reconstruction.


Subject(s)
Cell Plasticity , Limbal Stem Cells , Limbus Corneae , Wound Healing , Animals , Mice , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Epithelium, Corneal/injuries , Limbal Stem Cells/cytology , Limbal Stem Cells/metabolism , Limbus Corneae/metabolism , Limbus Corneae/cytology , Limbus Corneae/pathology , Mice, Inbred C57BL , Stem Cell Niche , Wound Healing/genetics
11.
Int Immunopharmacol ; 139: 112710, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029229

ABSTRACT

PANoptosis is manifested with simultaneous activation of biomarkers for both pyroptotic, apoptotic and necroptotic signaling via the molecular platform PANoptosome and it is involved in pathologies of various inflammatory diseases including hemophagocytic lymphohistiocytosis (HLH). Scutellarin is a flavonoid isolated from herbal Erigeron breviscapus (Vant.) Hand.-Mazz. and has been shown to possess multiple pharmacological effects, but it is unknown whether scutellarin has any effects on PANoptosis and related inflammatory diseases. In this study, we found that scutellarin inhibited cell death in bone marrow-derived macrophages (BMDMs) and J774A.1 cells treated with TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (OXO) plus lipopolysaccharide (LPS), which has been commonly used to induce PANoptosis. Western blotting showed that scutellarin dose-dependently inhibited the activation biomarkers for pyroptotic (Caspase-1p10 and GSDMD-NT), apoptotic (cleaved Casp3/8/9 and GSDME-NT), and necroptotic (phosphorylated MLKL) signaling. The inhibitory effect of scutellarin was unaffected by NLRP3 or Caspase-1 deletion. Interestingly, scutellarin blocked the assembly of PANoptosome that encompasses ASC, RIPK3, Caspase-8 and ZBP1, suggesting its action on upstream signaling. Consistent with this, scutellarin inhibited mitochondrial damage and mitochondrial reactive oxygen species (mtROS) generation in cells treated with OXO+LPS. Further, mito-TEMPO that can scavenge mtROS significantly inhibited OXO+LPS-induced PANoptotic cell death. In line with the in vitro results, scutellarin markedly alleviated systemic inflammation, multiple organ injury, and activation of PANoptotic biomarkers in mice with HLH. Collectively, our data suggest that scutellarin can inhibit PANoptosis by suppressing mitochondrial damage and mtROS generation and thereby mitigating multiple organ injury in mice with inflammatory disorders.

12.
Oncogenesis ; 13(1): 27, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030175

ABSTRACT

The regulatory significance of ubiquitin-specific peptidase 32 (USP32) in tumor is significant, nevertheless, the biological roles and regulatory mechanisms of USP32 in non-small cell lung cancer (NSCLC) remain unclear. According to our research, USP32 was strongly expressed in NSCLC cell lines and tissues and was linked to a bad prognosis for NSCLC patients. Interference with USP32 resulted in a significant inhibition of NSCLC cell proliferation, migration potential, and EMT development; on the other hand, USP32 overexpression had the opposite effect. To further elucidate the mechanism of action of USP32 in NSCLC, we screened H1299 cells for interacting proteins and found that USP32 interacts with BAG3 (Bcl2-associated athanogene 3) and deubiquitinates and stabilizes BAG3 in a deubiquitinating activity-dependent manner. Functionally, restoration of BAG3 expression abrogated the antitumor effects of USP32 silencing. Furthermore, USP32 increased the phosphorylation level of the RAF/MEK/ERK signaling pathway in NSCLC cells by stabilizing BAG3. In summary, these findings imply that USP32 is critical to the development of NSCLC and could offer a theoretical framework for the clinical diagnosis and management of NSCLC patients in the future.

13.
Toxicology ; 507: 153886, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39002880

ABSTRACT

Benzo[a]pyrene (BaP) is associated with the development of lung cancer, but the underlying mechanism has not been completely clarified. Here, we used 10 µM BaP to induce malignant transformation of human bronchial epithelial BEAS-2B cells, named BEAS-2B-T. Results indicated that BaP (6.25, 12.5 and 25 µM) treatment significantly promoted the migration and invasion of BEAS-2B-T cells. Meanwhile, BaP exposure inhibited ferroptosis in BEAS-2B-T, ferroptosis-related indexes Fe2+, malondialdehyde (MDA), lipid peroxidation (LPO) and reactive oxygen species (ROS) decreased significantly. The protein level of ferroptosis-related molecule transferrin receptor (TFRC) decreased significantly, while solute carrier family 7 membrane 11 (SLC7A11), ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) increased significantly. The intervention of ferroptosis dramatically effected the migration and invasion of BEAS-2B-T induced by BaP. Furthermore, the expression of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) was markedly increased after BaP exposure. YTHDF1 knockdown inhibited BEAS-2B-T migration and invasion by promoting ferroptosis. In the meantime, the contents of Fe2+, MDA, LPO and ROS increased significantly, TFRC was markedly increased, and SLC7A11, FTH1, and GPX4 were markedly decreased. Moreover, overexpression of YTHDF1 promoted BEAS-2B-T migration and invasion by inhibiting ferroptosis. Importantly, knockdown of YTHDF1 promoted ferroptosis and reduced BEAS-2B-T migration and invasion during BaP exposure, and overexpression of YTHDF1 increased migration and invasion of BEAS-2B-T by inhibiting ferroptosis during BaP exposure. RNA immunoprecipitation assays indicated that the binding of YTHDF1 to SLC7A11 and FTH1 markedly increased after YTHDF1 overexpression. Therefore, we concluded that BaP promotes the malignant progression of BEAS-2B-T cells through YTHDF1 upregulating SLC7A11 and FTH1 to inhibit ferroptosis. This study reveals new epigenetic and ferroptosis markers for preventing and treating lung cancer induced by environmental carcinogens.

14.
Environ Pollut ; 359: 124531, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996995

ABSTRACT

Bisphenol F (BPF) has been extensively utilized in daily life, which brings new hazards to male reproductive health. However, the specific functional mechanism is still unclear. Both cell and animal models were utilized for exploring the role of RNA methylation and ferroptosis and its underlying mechanisms in male reproductive injury induced by BPF. In animal model, BPF severely destroyed the integrity of the blood-testis barrier (BTB) and induced ferroptosis. Furthermore, BPF significantly affected the barrier function of TM4 cells and promoted ferroptosis. Importantly, ChIP assays revealed that BPF inhibited AR transcriptional regulation of FTO and FTO expression was downregulated in TM4 cells. Overexpression of FTO prevented the impairment of BTB by inhibiting ferroptosis in TM4 cells. Mechanistically, FTO could significantly down-regulate the m6A modification level of TfRc and SLC7A11 mRNA through MeRIP experiment. RIP experiments showed that YTHDF1 can bind to TfRc mRNA and promote its translation while YTHDF2 could bind to SLC7A11 mRNA and reduce its mRNA stability. Therefore, our results suggest that FTO plays a key role in BPF induced male reproductive toxicity through YTHDF1-TfRc axis and YTHDF2-SLC7A11 axis and may provide new ideas and methods for the prevention and treatment of male reproductive diseases associated with environmental pollutants.

15.
J Am Heart Assoc ; 13(14): e035337, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38979802

ABSTRACT

BACKGROUND: Statins are widely used for treating patients with ischemic stroke at risk of secondary cerebrovascular events. It is unknown whether Asian populations benefit from more intensive statin-based therapy for stroke recurrence. Therefore, in the present study we evaluated the effectiveness and safety of high-dose and moderate-dose statins for patients who had experienced mild ischemic stroke during the acute period. METHODS AND RESULTS: This multicenter prospective study included patients with mild ischemic stroke who presented within 72 hours of symptom onset. The outcomes of patients in the high-intensity and moderate-intensity statin treatment groups were compared, with the main efficacy outcome being stroke recurrence and the primary safety end point being intracranial hemorrhage. The propensity score matching method was employed to control for imbalances in baseline variables. Subgroup analyses were conducted to evaluate group differences. In total, the data of 2950 patients were analyzed at 3 months, and the data of 2764 patients were analyzed at 12 months due to loss to follow-up. According to the multivariable Cox analyses adjusted for potential confounders, stroke recurrence occurred similarly in the high-intensity statin and moderate-intensity statin groups (3 months: adjusted hazard ratio [HR], 1.12 [95% CI, 0.85-1.49]; P=0.424; 12 months: adjusted HR, 1.08 [95% CI, 0.86-1.34]; P=0.519). High-intensity statin therapy was associated with an increased risk of intracranial hemorrhage (3 months: adjusted HR, 1.81 [95% CI, 1.00-3.25]; P=0.048; 12 months: adjusted HR, 1.86 [95% CI, 1.10-3.16]; P=0.021). The results from the propensity score-matched analyses were consistent with those from the Cox proportional hazards analysis. CONCLUSIONS: Compared with moderate-intensity statin therapy, high-dose statin therapy may not decrease the risk of mild, noncardiogenic ischemic stroke recurrence but may increase the risk of intracranial hemorrhage. REGISTRATION: URL: www.chictr.org.cn/. Unique Identifier: ChiCTR1900025214.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Ischemic Stroke , Recurrence , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Female , Male , Prospective Studies , Ischemic Stroke/drug therapy , Ischemic Stroke/epidemiology , Ischemic Stroke/diagnosis , Aged , Middle Aged , Treatment Outcome , Time Factors , Risk Factors , Propensity Score , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/epidemiology , Severity of Illness Index , Secondary Prevention/methods
16.
RSC Adv ; 14(31): 22113-22122, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39005248

ABSTRACT

Purpose: the aim of this study was to improve the stability and bioavailability of paeoniflorin (PF) by using nanoparticle encapsulation technology. Methods: paeoniflorin nanoparticles (PF NPs) were prepared with PLGA as the carrier using the compound emulsion method. The nanoparticles were characterised by using a Malvern laser particle sizer, transmission electron microscope (TEM), X-ray diffraction (XRD) analyser, and Fourier-transform infrared (FT-IR) spectrometry. The PF NPs were subjected to a series of stability investigations (such as for 4 °C storage stability, pH stability, and thermal stability), lyophilisation protection technology investigations, and in vitro release studies. Finally, the intestinal absorption properties of PF and PF NPs were studied by the in situ single-pass intestinal perfusion (SPIP) rat model, using the effective permeability coefficient (P eff) and the absorption rate constant (K a) as relevant indexes. Results: the prepared nanoparticles had a particle size of 105.0 nm with blue opalescent, rounded morphology, uniform size, good stability and slow release. We found that 4% alginate was the best lyoprotectant for the PF NPs. In the intestinal absorption experiments, P eff was higher for the PF NPs group compared with the original PF material drug group in all intestinal segments (P < 0.05), and the absorption rate constant K a increased with the increase in the drug concentration. Conclusion: the nanoparticles produced by this method have good stability and a slow-release effect; they can thus improve the absorption of PF in rat intestines, helping improve the stability and bioavailability of PF and enhancing its pharmacological effects.

17.
Se Pu ; 42(7): 702-710, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966978

ABSTRACT

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Subject(s)
Citric Acid Cycle , Humans , HeLa Cells , Succinic Acid/metabolism , Succinic Acid/chemistry , Fumarates/metabolism , Fumarates/chemistry
18.
Neuroimage ; 297: 120719, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971485

ABSTRACT

It is increasingly clear that unconscious information impairs the performance of the corresponding action when the instruction to act is delayed. However, whether this impairment occurs at the response level or at the perceptual level remains controversial. This study used fMRI and a computational model with a pre-post design to address this elusive issue. The fMRI results showed that when the unconscious information containing strong stimulus-response associations was irrelevant to subsequent stimuli, the precuneus in the parietal lobe, which is thought to be involved in sensorimotor processing, was activated. In contrast, when the unconscious information was relevant to subsequent stimuli, regardless of the strength of the stimulus-response associations, some regions in the occipital and temporal cortices, which are thought to be involved in visual perceptual processing, were activated. In addition, the percent signal change in the regions of interest associated with motor inhibition was modulated by compatibility in the irrelevant but not in the relevant stimuli conditions. Modeling of behavioral data further supported that the irrelevant and relevant stimuli conditions involved fundamentally different mechanisms. Our finding reconciles the debate about the mechanism by which unconscious information impairs action performance and has important implications for understanding of unconscious cognition.

19.
World J Hepatol ; 16(6): 900-911, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38948438

ABSTRACT

Achievement of a 'clinical cure' in chronic hepatitis B (CHB) implies sustained virological suppression and immunological control over the infection, which is the ideal treatment goal according to domestic and international CHB management guidelines. Clinical practice has shown encouraging results for specific patient cohorts using tailored treatment regimens. These regimens incorporate either nucleos(t)ide analogs, immunomodulatory agents such as pegylated interferon α, or a strategic combination of both, sequentially or concurrently administered. Despite these advancements in the clinical handling of hepatitis B, achieving a clinical cure remains elusive for a considerable subset of patients due to the number of challenges that preclude the realization of optimal treatment outcomes. These include, but are not limited to, the emergence of antiviral resistance, incomplete immune recovery, and the persistence of covalently closed circular DNA. Moreover, the variance in response to interferon therapy and the lack of definitive biomarkers for treatment cessation also contribute to the complexity of achieving a clinical cure. This article briefly overviews the current research progress and existing issues in pursuing a clinical cure for hepatitis B.

20.
Cardiovasc Toxicol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951468

ABSTRACT

Radix Paeoniae Rubra. (Chishao, RPR) and Cortex Moutan. (Mudanpi, CM) are a pair of traditional Chinese medicines that play an important role in the treatment of atherosclerosis (AS). The main objective of this study was to identify potential synergetic function and underlying mechanisms of RPR-CM in the treatment of AS. The main active ingredients, targets of RPR-CM and AS-related genes were obtained from public databases. A Venn diagram was utilized to screen the common targets of RPR-CM in treating AS. The protein-protein interaction network was established based on STRING database. Biological functions and pathways of potential targets were analyzed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Cytoscape was used to construct the drug-compound-target-signal pathway network. Molecular docking was performed to verify the binding ability of the bioactive ingredients and the target proteins. The endothelial inflammation model was constructed with human umbilical vein endothelial cells stimulated with ox-LDL, and the function of RPR-CM in treating AS was verified by CCK-8 assay, enzyme-linked immunosorbent assay, and qPCR. In this study, 12 active components and 401 potential target genes of RPR-CM were identified, among which quercetin, kaempferol and baicalein were considered to be the main active components. A total of 1903 AS-related genes were identified through public databases and four GEO datasets (GSE57691, GSE72633, GSE6088 and GSE199819). There are 113 common target genes of RPR-CM in treating AS. PPI network analysis identified 17 genes in cluster 1 as the core targets. Bioinformatics analysis showed that RPR-CM in AS treatment was associated with multiple downstream biological processes and signal pathways. PTGS2, JUN, CASP3, TNF, IL1B, IL6, FOS, STAT1 were identified as the core targets of RPR-CM, and molecular docking showed that the main bioactive components of RPR-CM had good binding ability with the core targets. RPR-CM extract significantly inhibited the levels of inflammatory factors TNF-α, IL-6, IL-1ß, MCP-1, VCAM-1 and ICAM-1 in HUVECs, and inhibited endothelial inflammation. This study revealed the active ingredients of RPR-CM, and identified the key downstream targets and signaling pathways in the treatment of AS, providing theoretical basis for the application of RPR-CM in prevention and treatment of AS.

SELECTION OF CITATIONS
SEARCH DETAIL