Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124762, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38959687

ABSTRACT

Hydrogen sulfide (H2S) is a key factor in various biological processes such as plant grow and its response to environmental stress. Here, we develop a novel near-infrared (NIR) fluorescent probe for detecting hydrogen sulfide based on the regulatory NIR dye pKa values. After triggering the H2S substitution response, probe A with introducing the cyano moiety not only exhibits a significant near-infrared emission (Emax: 724 nm) response in physiological environments, but also shows a fast response, high selectivity, and sensitivity (LOD as 0.52 µM). In addition, probe A with low biological cytotoxicity is successfully used for imaging detection of cellular exogenous and endogenous hydrogen sulfide. More importantly, in situ imaging of probe A tracks the H2S fluctuations in the rice root system and its response to environmental stress. Hence, this work offers a new NIR fluorescence imaging monitoring tool for hydrogen sulfide in biological systems.

2.
Nat Prod Bioprospect ; 14(1): 41, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38955923

ABSTRACT

In this study, the effects of sea buckthorn oil (SBO), fish oil (FO) and an enzymatically synthesized structured lipid (SL) on serum, short-chain fatty acids (SCFAs) and intestinal microbiota in Sprague-Dawley (SD) rats were investigated. The results demonstrated that FO, SBO, and SL effectively reduced the levels of high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in the serum of SD rats. SBO increased serum triglyceride levels, while FO elevated total cholesterol levels. Furthermore, all three dietary lipids decreased short-chain fatty acid production and enhanced intestinal microbiota diversity. FO increased the abundance of intestinal microbiota including Romboutsia, Lactobacillus, Escherichia-Shigella, and Lachnospiraceae_NK4A136_group. Conversely, all three dietary lipids reduced the abundance of Klebsiella and Blautia. These findings provide a foundation for understanding the functionality of SBO and FO as well as their potential application in synthesizing novel SLs to regulate intestinal microbiota.

3.
Article in English | MEDLINE | ID: mdl-38980655

ABSTRACT

The vertebral artery's morphological characteristics are crucial in spontaneous vertebral artery dissection (sVAD). We aimed to investigate morphologic features related to ischemic stroke (IS) and develop a novel prediction model. Out of 126 patients, 93 were finally analyzed. We constructed 3D models and morphological analyses. Patients were randomly classified into training and validation cohorts (3:1 ratio). Variables selected by LASSO - including five morphological features and five clinical characteristics - were used to develop prediction model in the training cohort. The model exhibited a high area under the curve (AUC) of 0.944 (95%CI, 0.862-0.984), with internal validation confirming its consistency (AUC = 0.818, 95%CI, 0.597-0.948). Decision curve analysis (DCA) indicated clinical usefulness. Morphological features significantly contribute to risk stratification in sVAD patients. Our novel developed model, combining interdisciplinary parameters, is clinically useful for predicting IS risk. Further validation and in-depth research into the hemodynamics related to sVAD are necessary.

4.
J Nanobiotechnology ; 22(1): 331, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867284

ABSTRACT

BACKGROUND: In the context of increasing exposure to silica nanoparticles (SiNPs) and ensuing respiratory health risks, emerging evidence has suggested that SiNPs can cause a series of pathological lung injuries, including fibrotic lesions. However, the underlying mediators in the lung fibrogenesis caused by SiNPs have not yet been elucidated. RESULTS: The in vivo investigation verified that long-term inhalation exposure to SiNPs induced fibroblast activation and collagen deposition in the rat lungs. In vitro, the uptake of exosomes derived from SiNPs-stimulated lung epithelial cells (BEAS-2B) by fibroblasts (MRC-5) enhanced its proliferation, adhesion, and activation. In particular, the mechanistic investigation revealed SiNPs stimulated an increase of epithelium-secreted exosomal miR-494-3p and thereby disrupted the TGF-ß/BMPR2/Smad pathway in fibroblasts via targeting bone morphogenetic protein receptor 2 (BMPR2), ultimately resulting in fibroblast activation and collagen deposition. Conversely, the inhibitor of exosomes, GW4869, can abolish the induction of upregulated miR-494-3p and fibroblast activation in MRC-5 cells by the SiNPs-treated supernatants of BEAS-2B. Besides, inhibiting miR-494-3p or overexpression of BMPR2 could ameliorate fibroblast activation by interfering with the TGF-ß/BMPR2/Smad pathway. CONCLUSIONS: Our data suggested pulmonary epithelium-derived exosomes serve an essential role in fibroblast activation and collagen deposition in the lungs upon SiNPs stimuli, in particular, attributing to exosomal miR-494-3p targeting BMPR2 to modulate TGF-ß/BMPR2/Smad pathway. Hence, strategies targeting exosomes could be a new avenue in developing therapeutics against lung injury elicited by SiNPs.


Subject(s)
Collagen , Epigenesis, Genetic , Exosomes , Fibroblasts , Lung , MicroRNAs , Nanoparticles , Signal Transduction , Silicon Dioxide , Transforming Growth Factor beta , Exosomes/metabolism , Animals , Fibroblasts/metabolism , Fibroblasts/drug effects , Silicon Dioxide/chemistry , Signal Transduction/drug effects , Rats , Lung/metabolism , Lung/pathology , Collagen/metabolism , Humans , Nanoparticles/chemistry , MicroRNAs/metabolism , MicroRNAs/genetics , Cell Line , Transforming Growth Factor beta/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Male , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Rats, Sprague-Dawley , Epithelium/metabolism , Epithelium/drug effects
5.
J Hazard Mater ; 476: 134878, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38897115

ABSTRACT

Micro- and nanoplastic pollution has emerged as a significant global concern due to their extensive presence in the environment and potential adverse effects on human health. Nanoplastics can enter the human circulatory system and accumulate in the liver, disrupting hepatic metabolism and causing hepatotoxicity. However, the precise mechanism remains uncertain. Lipophagy is an alternative mechanism of lipid metabolism involving autophagy. This study aims to explore how polystyrene nanoplastics (PSNPs) influence lipid metabolism in hepatocytes via lipophagy. Initially, it was found that PSNPs were internalized by human hepatocytes, resulting in decreased cell viability. PSNPs were found to induce the accumulation of lipid droplets (LDs), with autophagy inhibition exacerbating this accumulation. Then, PSNPs were proved to activate lipophagy by recruiting LDs into autophagosomes and block the lipophagic flux by impairing lysosomal function, inhibiting LD degradation. Ultimately, PSNPs were shown to activate lipophagy through the AMPK/ULK1 pathway, and knocking down AMPK exacerbated lipid accumulation in hepatocytes. Overall, these results indicated that PSNPs triggered lipophagy via the AMPK/ULK1 pathway and blocked lipophagic flux, leading to lipid accumulation in hepatocytes. Thus, this study identifies a novel mechanism underlying nanoplastic-induced lipid accumulation, providing a foundation for the toxicity study and risk assessments of nanoplastics.

6.
Front Pharmacol ; 15: 1396834, 2024.
Article in English | MEDLINE | ID: mdl-38855740

ABSTRACT

Objective: This meta-analysis aimed to determine the efficacy of curcumin in preventing liver fibrosis in animal models. Methods: A systematic search was conducted on studies published from establishment to November 2023 in PubMed, Web of Science, Embase, Cochrane Library, and other databases. The methodological quality was assessed using Sycle's RoB tool. An analysis of sensitivity and subgroups were performed when high heterogeneity was observed. A funnel plot was used to assess publication bias. Results: This meta-analysis included 24 studies involving 440 animals with methodological quality scores ranging from 4 to 6. The results demonstrated that curcumin treatment significantly improved Aspartate aminotransferase (AST) [standard mean difference (SMD) = -3.90, 95% confidence interval (CI) (-4.96, -2.83), p < 0.01, I2 = 85.9%], Alanine aminotransferase (ALT)[SMD = - 4.40, 95% CI (-5.40, -3.40), p < 0.01, I2 = 81.2%]. Sensitivity analysis of AST and ALT confirmed the stability and reliability of the results obtained. However, the funnel plot exhibited asymmetry. Subgroup analysis based on species and animal models revealed statistically significant differences among subgroups. Furthermore, curcumin therapy improved fibrosis degree, oxidative stress level, inflammation level, and liver synthesis function in animal models of liver fibrosis. Conclusion: Curcumin intervention not only mitigates liver fibrosis but also enhances liver function, while concurrently modulating inflammatory responses and antioxidant capacity in animal models. This result provided a strong basis for further large-scale animal studies as well as clinical trials in humans in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024502671.

7.
Angew Chem Int Ed Engl ; : e202407551, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881501

ABSTRACT

Phosphorene and fullerene are representative two-dimensional (2D) and zero-dimensional (0D) nanomaterials respectively, constructing their heterodimensional hybrid not only complements their physiochemical properties but also extends their applications via synergistic interactions. This is however challenging because of their diversities in dimension and chemical reactivity, and theoretical studies predicted that it is improbable to directly bond C60 onto the surface of phosphorene due to their strong repulsion. Here, we develop a facile electrosynthesis method to synthesize the first phosphorene-fullerene hybrid featuring fullerene surface bonding via P-C bonds. Few-layer black phosphorus nanosheets (BPNSs) obtained from electrochemical exfoliation react with C602- dianion prepared by electroreduction of C60, fulfilling formation of the "improbable" phosphorene-fullerene hybrid (BPNS-s-C60). Theoretical results reveal that the energy barrier for formation of [BPNS-s-C60]2- intermediate is significantly decreased by 1.88 eV, followed by an oxidization reaction to generate neutral BPNS-s-C60 hybrid. Surface bonding of C60 molecules not only improves significantly the ambient stability of BPNSs, but also boosts dramatically the visible light and near-infrared (NIR) photocatalytic hydrogen evolution rates, reaching 1466 and 1039 µmol h-1 g-1 respectively, which are both the highest values among all reported BP-based metal-free photocatalysts.

8.
Dent Mater J ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38853006

ABSTRACT

To study the biocompatibility of nanohydroxyapatite (nmHA)-SiO2 fiber material and its efficacy in guided bone regeneration. ① The cytotoxicity of the nmHA-SiO2 fiber material to MC3T3-E1 cells was determined by CCK-8 assay. The adhesion of cells on the surface of the material was observed. ② Bone defects were prepared in the skull of three groups of New Zealand white rabbits. The following treatments were administered: implantation of nmHA-SiO2, implantation of Bio-Oss, and no treatment. The defects were then covered with nmHA-SiO2 membrane or Hai'ao oral repair membrane. Animal samples were analyzed by gross observation, micro-computed tomography, hematoxylin-eosin staining and Masson staining. The data were statistically analyzed by multivariate analysis of variance to evaluate the repair of bone defects. ① The nmHA-SiO2 fiber material has suitable biocompatibility. ② The nmHA-SiO2 fiber material performed more effectively as a barrier membrane than other bone substitute materials in GBR model rabbits.

9.
Chem Biol Interact ; : 111121, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944326

ABSTRACT

The toxicity of silica nanoparticles (SiNPs) to lung is known. We previously demonstrated that exposure to SiNPs promoted pulmonary impairments, but the precise pathogenesis remains elucidated. Ferroptosis has now been identified as a unique form of oxidative cell death, but whether it participated in SiNPs-induced lung injury remains unclear. In this work, we established a rat model with sub-chronic inhalation exposure of SiNPs via intratracheal instillation, and conducted histopathological examination, iron detection, and ferroptosis-related lipid peroxidation and protein assays. Moreover, we evaluated the effect of SiNPs on epithelial ferroptosis, possible mechanisms using in vitro-cultured human bronchial epithelial cells (16HBE) cells, and also assessed the ensuing impact on fibroblast activation for fibrogenesis. Consequently, fibrotic lesions occurred in the rat lungs, concomitantly by enhanced lipid peroxidation, iron overload, and ferroptosis. Consistently, the in vitro data showed SiNPs triggered oxidative stress and caused the accumulation of lipid peroxides, resulting in ferroptosis. Importantly, the mechanistic investigation revealed miR-21-5p as a key player in the epithelial ferroptotic process induced by SiNPs via targeting GCLM for GSH depletion. Of note, ferrostatin-1 could greatly suppress ferroptosis and alleviate epithelial injury and ensuing fibroblast activation by SiNPs. In conclusion, our findings first revealed SiNPs triggered epithelial ferroptosis through miR-21-5p/GCLM signaling and thereby promoted fibroblast activation for fibrotic lesions, and highlighted the therapeutic potential of inhibiting ferroptosis against lung impairments upon SiNPs exposure.

10.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793644

ABSTRACT

Neutralizing antibodies targeting the spike (S) protein of SARS-CoV-2, elicited either by natural infection or vaccination, are crucial for protection against the virus. Nonetheless, the emergence of viral escape mutants presents ongoing challenges by contributing to breakthrough infections. To define the evolution trajectory of SARS-CoV-2 within the immune population, we co-incubated replication-competent rVSV/SARS-CoV-2/GFP chimeric viruses with sera from COVID-19 convalescents. Our findings revealed that the E484D mutation contributes to increased viral resistant against both convalescent and vaccinated sera, while the L1265R/H1271Y double mutation enhanced viral infectivity in 293T-hACE2 and Vero cells. These findings suggest that under the selective pressure of polyclonal antibodies, SARS-CoV-2 has the potential to accumulate mutations that facilitate either immune evasion or greater infectivity, facilitating its adaption to neutralizing antibody responses. Although the mutations identified in this study currently exhibit low prevalence in the circulating SARS-CoV-2 populations, the continuous and meticulous surveillance of viral mutations remains crucial. Moreover, there is an urgent necessity to develop next-generation antibody therapeutics and vaccines that target diverse, less mutation-prone antigenic sites to ensure more comprehensive and durable immune protection against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Humans , COVID-19/immunology , COVID-19/virology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Animals , Chlorocebus aethiops , Vero Cells , Immune Evasion , HEK293 Cells
11.
Part Fibre Toxicol ; 21(1): 17, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561847

ABSTRACT

BACKGROUND: Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described. RESULTS: We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation. CONCLUSIONS: Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.


Subject(s)
Ferroptosis , Iron Overload , MicroRNAs , Nanoparticles , Humans , Myocytes, Cardiac , Silicon Dioxide/metabolism , Iron Overload/metabolism , Iron Overload/pathology , Iron/metabolism , Iron/pharmacology , MicroRNAs/metabolism , Nanoparticles/toxicity
12.
Front Med (Lausanne) ; 11: 1161560, 2024.
Article in English | MEDLINE | ID: mdl-38681054

ABSTRACT

Rationale: Monoclonal gammopathy of renal significance (MGRS) represents a group of disorders caused by monoclonal immunoglobulin (M protein) secreted by B cells or plasma cells. Proliferative glomerulonephritis with monoclonal immunoglobulin deposition (PGNMID) is a glomerular disease and a form of MGRS. Here, we presented a rare case of a patient with IgM kappa PGNMID complicated with nocardiosis dermatitis. Patient concerns and diagnoses: A 56-year-old man was admitted to the hospital because of cutaneous purpura and proteinuria. His initial pathological diagnosis indicated membranous proliferative glomerulonephritis, IgM(++), and subacute interstitial nephritis. Based on further examination, he was finally diagnosed to have IgM kappa PGNMID and subacute interstitial nephritis. After the initial diagnosis, the patient received hormonal therapy. During the treatment, nocardiosis dermatitis emerged as a complication, and the hormonal therapy was gradually reduced. The patient refused further treatment with rituximab, and his health is currently stable. Outcomes: IgM kappa PGNMID complicated with nocardiosis dermatitis is an extremely rare occurrence. Laboratory examination and pathological analysis are required to confirm the diagnosis of this disorder. Timely and accurate diagnosis is essential for the appropriate treatment of PGNMID.

13.
Small ; : e2311644, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456373

ABSTRACT

In the emerging Sb2 S3 -based solar energy conversion devices, a CdS buffer layer prepared by chemical bath deposition is commonly used to improve the separation of photogenerated electron-hole pairs. However, the cation diffusion at the Sb2 S3 /CdS interface induces detrimental defects but is often overlooked. Designing a stable interface in the Sb2 S3 /CdS heterojunction is essential to achieve high solar energy conversion efficiency. As a proof of concept, this study reports that the modification of the Sb2 S3 /CdS heterojunction with an ultrathin Al2 O3 interlayer effectively suppresses the interfacial defects by preventing the diffusion of Cd2+ cations into the Sb2 S3 layer. As a result, a water-splitting photocathode based on Ag:Sb2 S3 /Al2 O3 /CdS heterojunction achieves a significantly improved half-cell solar-to-hydrogen efficiency of 2.78% in a neutral electrolyte, as compared to 1.66% for the control Ag:Sb2 S3 /CdS device. This work demonstrates the importance of designing atomic interfaces and may provide a guideline for the fabrication of high-performance stibnite-type semiconductor-based solar energy conversion devices.

14.
J Fluoresc ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457075

ABSTRACT

Bisulfite (HSO3-) and biological thiols molecules, such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), play important roles in organisms. Developing a fluorescent probe that can simultaneously detect and distinguish HSO3- and biological thiols is of great significance. In this study, ethyl(2E,4Z)-5-chloro-2-cyano-5-(7-(diethylamino)-2-oxo-2 H-chromen-3-yl)penta-2,4-dienoate (CCO) as a novel enhanced fluorescence probe was synthesized by integrating coumarin derivatives and ethyl cyanoacetate, which can simultaneous detection and discrimination of hydrogen bisulfite anions and glutathione. The sensing mechanism was elucidated through spectral analysis and some control experiments. In weakly alkaline environments, the probe not only has good selectivity for HSO3- and GSH, but also has a lower detection limits of 0.0179 µM and 0.2034 µM. The probe exhibited fuorescent turn-on for distinguishing with 296 and 28 fold the fluorescent intensity increase at 486 and 505 nm, respectively, through diferent excitation wavelengths. This provides a new method for simultaneous detection and discrimination of HSO3- and biological thiol cell levels and further applications.

15.
Sci Total Environ ; 922: 170584, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38309355

ABSTRACT

Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.


Subject(s)
Liver Diseases , Nanoparticles , Humans , Animals , Mice , Silicon Dioxide/toxicity , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry , Nanoparticles/toxicity
16.
Front Bioeng Biotechnol ; 12: 1350024, 2024.
Article in English | MEDLINE | ID: mdl-38282893

ABSTRACT

Objective: A model of chronic infectious mandibular defect (IMD) caused by mixed infection with Staphylococcus aureus and Pseudomonas aeruginosa was established to explore the occurrence and development of IMD and identify key genes by transcriptome sequencing and bioinformatics analysis. Methods: S. aureus and P. aeruginosa were diluted to 3 × 108 CFU/mL, and 6 × 3 × 3 mm defects lateral to the Mandibular Symphysis were induced in 28 New Zealand rabbits. Sodium Morrhuate (0.5%) and 50 µL bacterial solution were injected in turn. The modeling was completed after the bone wax closed; the effects were evaluated through postoperative observations, imaging and histological analyses. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein‒protein interaction (PPI) network analyses were performed to investigate the function of the differentially expressed genes (DEGs). Results: All rabbits showed characteristics of infection. The bacterial cultures were positive, and polymerase chain reaction (PCR) was used to identify S. aureus and P. aeruginosa. Cone beam CT and histological analyses showed inflammatory cell infiltration, pus formation in the medullary cavity, increased osteoclast activity in the defect area, and blurring at the edge of the bone defect. Bioinformatics analysis showed 1,804 DEGs, 743 were upregulated and 1,061 were downregulated. GO and KEGG analyses showed that the DEGs were enriched in immunity and osteogenesis inhibition, and the core genes identified by the PPI network were enriched in the Hedgehog pathway, which plays a role in inflammation and tissue repair; the MEF2 transcription factor family was predicted by IRegulon. Conclusion: By direct injection of bacterial solution into the rabbit mandible defect area, the rabbit chronic IMD model was successfully established. Based on the bioinformatics analysis, we speculate that the Hedgehog pathway and the MEF2 transcription factor family may be potential intervention targets for repairing IMD.

17.
Small Methods ; : e2301430, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191992

ABSTRACT

Given the inevitable human exposure owing to its increasing production and utilization, the comprehensive safety evaluation of silica nanoparticles (SiNPs) has sparked concerns. Substantial evidence indicated liver damage by inhaled SiNPs. Notwithstanding, few reports focused on the persistence or reversibility of hepatic injuries, and the intricate molecular mechanisms involved remain limited. Here, rats are intratracheally instilled with SiNPs in two regimens (a 3-month exposure and a subsequent 6-week recovery after terminating SiNPs administration) to assess the hepatic effects. Nontargeted lipidomics revealed alterations in lipid metabolites as a contributor to the hepatic response and recovery effects of SiNPs. In line with the functional analysis of differential lipid metabolites, SiNPs activated oxidative stress, and induced lipid peroxidation and lipid deposition in the liver, as evidenced by the elevated hepatic levels of ROS, MDA, TC, and TG. Of note, these indicators showed great improvements after a 6-week recovery, even returning to the control levels. According to the correlation, ROC curve, and SEM analysis, 11 lipids identified as potential regulatory molecules for ameliorating liver injury by SiNPs. Collectively, the work first revealed the reversibility of SiNP-elicited hepatotoxicity from the perspective of lipidomics and offered valuable laboratory evidence and therapeutic strategy to facilitate nanosafety.

18.
Sci Total Environ ; 912: 168946, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38043812

ABSTRACT

Microplastics are plastic particles, films, and fibers with a diameter of < 5 mm. Given their long-standing existence in the environment and terrible increase in annual emissions, concerns were raised about the potential health risk of microplastics on human beings. In particular, the increased consumption of masks during the COVID-19 pandemic has dramatically increased human contact with microplastics. To date, the emergence of microplastics in the human body, such as feces, blood, placenta, lower airway, and lungs, has been reported. Related toxicological investigations of microplastics were gradually increased. To comprehensively illuminate the interplay of microplastic exposure and human health, we systematically reviewed the updated toxicological data of microplastics and summarized their mode of action, adverse effects, and toxic mechanisms. The emerging critical issues in the current toxicological investigations were proposed and discussed. Our work would facilitate a better understanding of MPs-induced health hazards for toxicological evaluation and provide helpful information for regulatory decisions.


Subject(s)
Microplastics , Humans , Microplastics/toxicity , Pandemics
19.
Eur J Pain ; 28(4): 551-564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37985464

ABSTRACT

BACKGROUND: Microcirculatory pathology is one of the pathophysiological theories of migraine, which may present as visually subclinical lesions. Image markers of cerebral small vessel disease (CSVD) have been investigated in elderly migraineurs. However, past studies looked at only part of image features, and the conclusions may have been hindered by confounding factors. The relationship between migraine and CSVD signs needs reliable demonstrations. METHODS: We conducted a case-control study by recruiting episodic young migraineurs from a tertiary headache centre, with tension-type headache (TTH) and healthy controls. Distinct image features of microvascular damage and baseline characteristics across groups were assessed, and multivariate linear regression was performed to evaluate the risk factors for image abnormalities in migraineurs. RESULTS: Forty-eight migraineurs, 32 TTHs and 49 healthy controls were included. The median age was 32 year-old. 58.7% of the participants were female. The Scheltens score and volume of white matter hyperintensities (WMHs) in migraineurs, and the number of Virchow-Robin spaces (VRSs) in both migraineurs and TTHs were different from those in normal controls. No lacunar infarct-like lesions (ILLs) or cerebral microbleeds (CMBs) were found. Age, education level (high level: ß = -2.23, lobar WMHs), attack duration (long duration: ß = 3.81, lobar WMHs) and attack frequency were independent risk factors for Scheltens score and volume of WMH in migraineurs. Migraine aura (ß = -2.389), attack frequency and education level were correlated with the number of VRSs. CONCLUSIONS: Migraine was associated with WMHs and VRSs. Aura, attack duration, attack frequency, age and education level were risk factors for image abnormalities of CVSD in migraineurs. SIGNIFICANCE: This study provides a novel and comprehensive landscape of CSVD MRI features in young migraineurs, and it fills the blank of CMBs and VRSs which received less attention, with more persuasive, more reliable and stronger evidence of the association between CSVD and migraine. Our results also imply some new feature of TTH and the possible pathophysiology of the migraine course as well as new clues for the early management of migraine in terms of visual brain damage.


Subject(s)
Cerebral Small Vessel Diseases , Epilepsy , Migraine Disorders , Tension-Type Headache , Humans , Female , Aged , Adult , Male , Case-Control Studies , Microcirculation , Migraine Disorders/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging
20.
Cochrane Database Syst Rev ; 12: CD005582, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38050854

ABSTRACT

BACKGROUND: Postherpetic neuralgia (PHN) is a common, serious, painful complication of herpes zoster. Corticosteroids have anti-inflammatory properties, and might be beneficial. This is an update of a review first published in 2008, and previously updated in 2013. OBJECTIVES: To assess the effects (benefits and harms) of corticosteroids in preventing postherpetic neuralgia. SEARCH METHODS: We updated the searches for randomised controlled trials (RCTs) of corticosteroids for preventing postherpetic neuralgia in the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, two other databases, and two trials registers (June 2022). We also reviewed the bibliographies of identified trials, contacted authors, and approached pharmaceutical companies to identify additional published or unpublished data. SELECTION CRITERIA: We included all RCTs involving corticosteroids given by oral, intramuscular, or intravenous routes for people of all ages, with herpes zoster of all degrees of severity within seven days after onset, compared with no treatment or placebo, but not with other treatments. DATA COLLECTION AND ANALYSIS: Two review authors independently identified potential articles, extracted data, assessed the risk of bias of each trial, and the certainty of the evidence. Disagreement was resolved by discussion among the co-authors. We followed standard Cochrane methodology. MAIN RESULTS: We identified five trials with a total of 787 participants that met our inclusion criteria. No new studies were identified for this update. All were randomised, double-blind, placebo-controlled parallel-group studies. The evidence is very uncertain about the effects of corticosteroids given orally during an acute herpes zoster infection in preventing postherpetic neuralgia six months after the onset of herpes (risk ratio (RR) 0.95, 95% confidence interval (CI) 0.45 to 1.99; 2 trials, 114 participants; very low-certainty evidence (downgraded for serious risk of bias and very serious imprecision)). The three other trials that fulfilled our inclusion criteria were not included in the meta-analysis because they did not provide separate information on the number of participants with PHN at six months. Adverse events during or within two weeks after stopping treatment were reported in all five included trials. There were no observed differences in serious (RR 1.65, 95% CI 0.51 to 5.29; 5 trials, 755 participants; very low-certainty evidence (downgraded for serious risk of bias and very serious imprecision)), or non-serious adverse events (RR 1.30, 95% CI 0.90 to 1.87; 5 trials, 755 participants; low-certainty evidence (downgraded for serious risk of bias and serious imprecision)) between the corticosteroid and placebo groups. One of these trials was at high risk of bias because of incomplete outcome data, two were at unclear risk of bias, and the other was at low risk of bias. The review was first published in 2008; no new RCTs were identified for inclusion in subsequent updates in 2010, 2013, and 2023. AUTHORS' CONCLUSIONS: Based on the current available evidence, we are uncertain about the effects of corticosteroids given orally during an acute herpes zoster infection on preventing postherpetic neuralgia. Corticosteroids given orally or intramuscularly may result in little to no difference in the risk of adverse events in people with acute herpes zoster. Some researchers have recommended using corticosteroids to relieve the zoster-associated pain in the acute phase of the disease. If further research is designed to evaluate the efficacy of corticosteroids for herpes zoster, long-term follow-up should be included to observe their effect on the transition from acute pain to postherpetic neuralgia. Future trials should include measurements of function and quality of life, as well as updated measures of pain.


Subject(s)
Herpes Zoster , Neuralgia, Postherpetic , Humans , Infant, Newborn , Adrenal Cortex Hormones/therapeutic use , Herpes Zoster/drug therapy , Neuralgia, Postherpetic/prevention & control , Neuralgia, Postherpetic/drug therapy , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...