Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Sci Rep ; 14(1): 11050, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745054

Phosphorus (P) is a crucial macronutrient for plant growth and development. Basic metabolic processes regulate growth; however, the molecular detail of these pathways under low phosphorous (LP) in wheat is still unclear. This study aims to elucidate the varied regulatory pathways responses to LP stress in wheat genotypes. Phenotypic, physiological, and transcriptome analyses were conducted on Fielder (P efficient) and Ardito (P inefficient) wheat genotypes after four days of normal phosphorous (NP) and LP stress. In response to LP, Fielder outperformed Ardito, displaying higher chlorophyll content-SPAD values (13%), plant height (45%), stem diameter (12%), shoot dry weight (42%), and root biomass (75%). Root structure analysis revealed that Fielder had greater total root length (50%), surface area (56%), volume (15%), and diameter (4%) than Ardito under LP. These findings highlight Fielder's superior performance and adaptation to LP stress. Transcriptome analysis of wheat genotype roots identified 3029 differentially expressed genes (DEGs) in Fielder and 1430 in Ardito, highlighting LP-induced changes. Key DEGs include acid phosphatases (PAPs), phosphate transporters (PHT1 and PHO1), SPX, and transcription factors (MYB, bHLH, and WRKY). KEGG enrichment analysis revealed key pathways like plant hormones signal transduction, biosynthesis of secondary metabolites, and carbohydrate biosynthesis metabolism. This study unveils crucial genes and the intricate regulatory process in wheat's response to LP stress, offering genetic insights for enhancing plant P utilization efficiency.


Adaptation, Physiological , Gene Expression Regulation, Plant , Phosphorus , Plant Roots , Transcriptome , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Phosphorus/deficiency , Phosphorus/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Adaptation, Physiological/genetics , Stress, Physiological/genetics , Gene Expression Profiling , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Phenotype
2.
Front Plant Sci ; 15: 1376214, 2024.
Article En | MEDLINE | ID: mdl-38742215

Sustainable food security and safety are major concerns on a global scale, especially in developed nations. Adverse agroclimatic conditions affect the largest agricultural-producing areas, which reduces the production of crops. Achieving sustainable food safety is challenging because of several factors, such as soil flooding/waterlogging, ultraviolet (UV) rays, acidic/sodic soil, hazardous ions, low and high temperatures, and nutritional imbalances. Plant growth-promoting rhizobacteria (PGPR) are widely employed in in-vitro conditions because they are widely recognized as a more environmentally and sustainably friendly approach to increasing crop yield in contaminated and fertile soil. Conversely, the use of nanoparticles (NPs) as an amendment in the soil has recently been proposed as an economical way to enhance the texture of the soil and improving agricultural yields. Nowadays, various research experiments have combined or individually applied with the PGPR and NPs for balancing soil elements and crop yield in response to control and adverse situations, with the expectation that both additives might perform well together. According to several research findings, interactive applications significantly increase sustainable crop yields more than PGPR or NPs alone. The present review summarized the functional and mechanistic basis of the interactive role of PGPR and NPs. However, this article focused on the potential of the research direction to realize the possible interaction of PGPR and NPs at a large scale in the upcoming years.

3.
Plants (Basel) ; 13(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38475553

Sugarcane is a significant primitive source of sugar and energy worldwide. The progress in enhancing the sugar content in sugarcane cultivars remains limited due to an insufficient understanding of specific genes related to sucrose production. The present investigation examined the enzyme activities, levels of reducing and non-reducing sugars, and transcript expression using RT-qPCR to assess the gene expression associated with sucrose metabolism in a high-sucrose sugarcane clone (GXB9) in comparison to a low-sucrose sister clone (B9). Sucrose phosphate synthase (SPS), sucrose phosphate phosphatase (SPP), sucrose synthase (SuSy), cell wall invertase (CWI), soluble acid invertase (SAI), and neutral invertase (NI) are essential enzymes involved in sucrose metabolism in sugarcane. The activities of these enzymes were comparatively quantified and analyzed in immature and maturing internodes of the high- and low-sucrose clones. The results showed that the higher-sucrose-accumulating clone had greater sucrose concentrations than the low-sucrose-accumulating clone; however, maturing internodes had higher sucrose levels than immature internodes in both clones. Hexose concentrations were higher in immature internodes than in maturing internodes for both clones. The SPS and SPP enzymes activities were higher in the high-sucrose-storing clone than in the low-sucrose clone. SuSy activity was higher in the low-sucrose clone than in the high-sucrose clone; further, the degree of SuSy activity was higher in immature internodes than in maturing internodes for both clones. The SPS gene expression was considerably higher in mature internodes of the high-sucrose clones than the low-sucrose clone. Conversely, the SuSy gene exhibited up-regulated expression in the low-sucrose clone. The enhanced expression of SPS in the high-sucrose clone compared to the low-sucrose clone suggests that SPS plays a major role in the increased accumulation of sucrose. These findings provide the opportunity to improve sugarcane cultivars by regulating the activity of genes related to sucrose metabolism using transgenic techniques.

4.
Front Plant Sci ; 15: 1334907, 2024.
Article En | MEDLINE | ID: mdl-38476689

Introduction: Sugarcane endophytic nitrogen-fixing bacterium Klebsiella variícola DX120E displayed broad impact on growth, but the exact biological mechanism, especially polyamines (PAs) role, is still meager. Methods: To reveal this relationship, the content of polyamine oxidase (PAO), PAs, reactive oxygen species (ROS)-scavenging antioxidative enzymes, phytohormones, 1-aminocyclopropane-1-carboxylic synthase (ACS), chlorophyll content, and biomass were determined in sugarcane incubated with the DX120E strain. In addition, expression levels of the genes associated with polyamine metabolism were measured by transcriptomic analysis. Results: Genomic analysis of Klebsiella variícola DX120E revealed that 39 genes were involved in polyamine metabolism, transport, and the strain secrete PAs in vitro. Following a 7-day inoculation period, DX120E stimulated an increase in the polyamine oxidase (PAO) enzyme in sugarcane leaves, however, the overall PAs content was reduced. At 15 days, the levels of PAs, ROS-scavenging antioxidative enzymes, and phytohormones showed an upward trend, especially spermidine (Spd), putrescine (Put), catalase (CAT), auxin (IAA), gibberellin (GA), and ACS showed a significant up-regulation. The GO and KEGG enrichment analysis found a total of 73 differentially expressed genes, involving in the cell wall (9), stimulus response (13), peroxidase activity (33), hormone (14) and polyamine metabolism (4). Discussion: This study demonstrated that endophytic nitrogen-fixing bacteria stimulated polyamine metabolism and phytohormones production in sugarcane plant tissues, resulting in enhanced growth. Dual RNA-seq analyses provided insight into the early-stage interaction between sugarcane seedlings and endophytic bacteria at the transcriptional level. It showed how diverse metabolic processes selectively use distinct molecules to complete the cell functions under present circumstances.

5.
Front Plant Sci ; 14: 1283852, 2023.
Article En | MEDLINE | ID: mdl-38053770

Plastics' unavoidable and rampant usage causes their trash to be extensively dispersed in the atmosphere and land due to its numerous characteristics. Because of extensive plastic usage and increased manufacturing, there is insufficient recycling and a large accumulation of microplastics (MPs) in the environment. In addition to their wide availability in the soil and atmosphere, micro- and nanoplastics are becoming contaminants worldwide. Agro-ecosystem functioning and plant development are being negatively impacted in several ways by the contamination of the environment and farmland soils with MPs (<5 mm) and nanoplastics (<1 µm). The contributions of some recyclable organic waste and plastic film mulching and plastic particle deposition in agroecosystems may be substantial; therefore, it is crucial to understand any potentially hazardous or undesirable impacts of these pollutants on agroecosystems. The dissolution of bioplastics into micro- and nano-particles (MBPs and NBPs) has not been considered in recent studies, which focus primarily on agro-ecosystems. It is essential to properly understand the distribution, concentration, fate, and main source of MPs, NPS, MBPs, and NBPs in agroecosystems. Based on the limited findings, understanding the knowledge gap of environmental impact from micro and nanoplastic in farming systems does not equate to the absence of such evidence. It reveals the considerations for addressing the gaps to effectively protect global food safety and security in the near future.

6.
BMC Plant Biol ; 23(1): 601, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38030995

BACKGROUND: Lodging seriously affects sugarcane stem growth and sugar accumulation, reduces sugarcane yield and sucrose content, and impedes mechanization. However, the molecular mechanisms underlying sugarcane lodging tolerance remain unclear. In this study, comprehensive transcriptomic and proteomic analyses were performed to explore the differential genetic regulatory mechanisms between upright (GT42) and lodged (GF98-296) sugarcane varieties. RESULTS: The stain test showed that GT42 had more lignin and vascular bundles in the stem than GF98-296. The gene expression analysis revealed that the genes that were differentially expressed between the two varieties were mainly involved in the phenylpropanoid pathway at the growth stage. The protein expression analysis indicated that the proteins that were differentially expressed between the two varieties were related to the synthesis of secondary metabolites, the process of endocytosis, and the formation of aminoacyl-tRNA. Time-series analysis revealed variations in differential gene expression patterns between the two varieties, whereas significant protein expression trends in the two varieties were largely consistent, except for one profile. The expression of CYP84A, 4CL, and CAD from the key phenylpropanoid biosynthetic pathway was enhanced in GT42 at stage 2 but suppressed in GF98-296 at the growth stage. Furthermore, the expression of SDT1 in the nicotinate and nicotinamide metabolism was enhanced in GT42 cells but suppressed in GF98-296 cells at the growth stage. CONCLUSION: Our findings provide reference data for mining lodging tolerance-related genes that are expected to facilitate the selective breeding of sugarcane varieties with excellent lodging tolerance.


Saccharum , Transcriptome , Saccharum/metabolism , Proteomics , Gene Expression Profiling , Edible Grain/genetics , Gene Expression Regulation, Plant
7.
BMC Plant Biol ; 23(1): 573, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37978424

BACKGROUND: Drought limits crop growth and is an important issue in commercial sugarcane (Saccharum officinarum) production. Drought tolerance in sugarcane induced by endophytic nitrogen-fixing bacteria is a complex biological process that ranges from altered gene expression and cellular metabolism to changes in growth and productivity. RESULTS: In this study, changes in physiological features and transcriptome related to drought tolerance in sugarcane conferred by the Burkholderia endophytic nitrogen-fixing bacterial strain GXS16 were investigated. Sugarcane samples inoculated with GXS16 exhibited significantly higher leaf relative water content than those without GXS16 inoculation during the drought stages. Sugarcane treated with GXS16 had lower levels of H2O2 and higher levels of abscisic acid than sugarcane not treated with GXS16 in the non-watering groups. Transcriptomic analysis of sugarcane roots identified multiple differentially expressed genes between adjacent stages under different treatments. Moreover, both trend and weighted correlation network analyses revealed that carotenoid biosynthesis, terpenoid backbone biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction strongly contributed to the drought-tolerant phenotype of sugarcane induced by GXS16 treatment. Accordingly, a gene regulatory network including four differentially regulated genes from carotenoid biosynthesis (crtB, crtZ, ZEP and CYP707A) and three genes from terpenoid backbone biosynthesis (dxs, dxr, and PCME) was constructed. CONCLUSIONS: This study provides insights into the molecular mechanisms underlying the application of GXS16 treatment to enhance drought tolerance in sugarcane, which will lay the foundation for crop development and improve productivity.


Nitrogen-Fixing Bacteria , Saccharum , Saccharum/metabolism , Drought Resistance , Nitrogen-Fixing Bacteria/metabolism , Hydrogen Peroxide/metabolism , Abscisic Acid/metabolism , Droughts , Water/metabolism , Gene Expression Regulation, Plant
8.
J Agric Food Chem ; 71(44): 16815-16826, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37856846

Sugarcane, a major sugar and energy crop worldwide faces an increasing demand for higher yields. Identifying yield-related markers and candidate genes is valuable for breeding high-yield varieties using molecular techniques. In this work, seven yield-related traits were evaluated in a diversity panel of 159 genotypes, derived from Tripidium arundinaceum, Saccharum spontaneum, and modern sugarcane genotypes. All traits exhibited significant genetic variance with high heritability and high correlations. Genetic diversity analysis reveals a genomic decay of 23 kb and an average single nucleotide polymorphism (SNP) number of 25,429 per genotype. These 159 genotypes were divided into 4 subgroups. Genome-wide association analysis identified 47 SNPs associated with brix, spanning 36 quantitative trait loci (QTLs), and 138 SNPs for other traits across 104 QTLs, covering all 32 chromosomes. Interestingly, 12 stable QTLs associated with yield-related traits were identified, which contained 35 candidate genes. This work provides markers and candidate genes for marker-assisted breeding to improve sugarcane yields.


Quantitative Trait Loci , Saccharum , Genome-Wide Association Study , Saccharum/genetics , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide , Edible Grain
9.
Plant Physiol Biochem ; 204: 108089, 2023 Nov.
Article En | MEDLINE | ID: mdl-37852069

Fluoride (F-) stress is one of the major environmental pollutant, affecting plant growth, development and production, globally. Acquisition of eco-friendly F- stress reliever seems to be the major concern these days. Consequently, application of engineered nanomaterials (ENMs) has been increasing to improve agri-economy. However, the impact of silicon nanoparticles (Si NPs) on mitigation of F- stress has not been investigated yet. Thus, the present study was conducted to compare their protective roles against F- stress by improving diurnal photosynthetic efficiency of sugarcane plant leaves. An ability of sugarcane (Saccharum officinarum cv. GT44) plants to ameliorate F- toxicity assessed through soil culture medium. After an adaptive growth phase, 45 days old plants select to examine F- mitigative efficacy of silicon nanoparticles (SiNPs: 0, 100, 300 and 500 ppm) on sugarcane plants, irrigated by F- contaminated water (0, 100, 200 and 500 ppm). Our results strongly favour that SiNPs enhanced diurnally leaf photosynthetic gas exchange viz., photosynthesis (∼1.0-29%), stomatal conductance (∼3.0-90%), and transpiration rate (∼0.5-43%), significantly, as revealed by increments in photochemical chlorophyll fluorescence efficiency of PS II linked with performance index and photosynthetic pigments during F- stress. To the best of our knowledge, this is the first investigation to explore the impact of SiNPs improving and/or maintaining the diurnal photosynthetic responses in sugarcane plants in response to F- stress. It may also precisely unlayer action of molecular mechanism(s) mediated by SiNPs, found essential for mitigation of F--toxicity to explore nano-phytoremediation approach for crop improvement and agri-economy as well.


Nanoparticles , Saccharum , Silicon/pharmacology , Fluorides/pharmacology , Photosynthesis , Plant Leaves/physiology , Chlorophyll
10.
Front Microbiol ; 14: 1229955, 2023.
Article En | MEDLINE | ID: mdl-37808307

Globally, due to widespread dispersion, intraspecific diversity, and crucial ecological components of halophilic ecosystems, halophilic bacteria is considered one of the key models for ecological, adaptative, and biotechnological applications research in saline environments. With this aim, the present study was to enlighten the plant growth-promoting features and investigate the systematic genome of a halophilic bacteria, Virgibacillus halodenitrificans ASH15, through single-molecule real-time (SMRT) sequencing technology. Results showed that strain ASH15 could survive in high salinity up to 25% (w/v) NaCl concentration and express plant growth-promoting traits such as nitrogen fixation, plant growth hormones, and hydrolytic enzymes, which sustain salt stress. The results of pot experiment revealed that strain ASH15 significantly enhanced sugarcane plant growth (root shoot length and weight) under salt stress conditions. Moreover, the sequencing analysis of the strain ASH15 genome exhibited that this strain contained a circular chromosome of 3,832,903 bp with an average G+C content of 37.54%: 3721 predicted protein-coding sequences (CDSs), 24 rRNA genes, and 62 tRNA genes. Genome analysis revealed that the genes related to the synthesis and transport of compatible solutes (glycine, betaine, ectoine, hydroxyectoine, and glutamate) confirm salt stress as well as heavy metal resistance. Furthermore, functional annotation showed that the strain ASH15 encodes genes for root colonization, biofilm formation, phytohormone IAA production, nitrogen fixation, phosphate metabolism, and siderophore production, which are beneficial for plant growth promotion. Strain ASH15 also has a gene resistance to antibiotics and pathogens. In addition, analysis also revealed that the genome strain ASH15 has insertion sequences and CRISPRs, which suggest its ability to acquire new genes through horizontal gene transfer and acquire immunity to the attack of viruses. This work provides knowledge of the mechanism through which V. halodenitrificans ASH15 tolerates salt stress. Deep genome analysis, identified MVA pathway involved in biosynthesis of isoprenoids, more precisely "Squalene." Squalene has various applications, such as an antioxidant, anti-cancer agent, anti-aging agent, hemopreventive agent, anti-bacterial agent, adjuvant for vaccines and drug carriers, and detoxifier. Our findings indicated that strain ASH15 has enormous potential in industries such as in agriculture, pharmaceuticals, cosmetics, and food.

12.
Front Microbiol ; 14: 1132016, 2023.
Article En | MEDLINE | ID: mdl-37649627

Sugarcane is an important sugar and energy crop worldwide, requiring a large amount of nitrogen (N). However, excessive application of synthetic N fertilizer causes environmental pollution in farmland. Endophytic nitrogen-fixing bacteria (ENFB) provide N nutrition for plants through biological N fixation, thus reducing the need for chemical fertilizers. The present study investigated the effect of the N-fixing endophytic strain Enterobacter roggenkampii ED5 on phytohormone indole-3-acetic acid (IAA), N-metabolism enzyme activities, microbial community compositions, and N cycle genes in sugarcane rhizosphere soil at different N levels. Three levels of 15N-urea, such as low N (0 kg/ha), medium N (150 kg/ha), and high N (300 kg/ha), were applied. The results showed that, after inoculating strain ED5, the IAA content in sugarcane leaves was significantly increased by 68.82% under low N condition at the seedling stage (60 days). The nitrate reductase (NR) activity showed a downward trend. However, the glutamine synthase (GS) and NADH-glutamate dehydrogenase (NADH-GDH) activities were significantly enhanced compared to the control under the high N condition, and the GS and NR genes had the highest expression at 180 and 120 days, respectively, at the low N level. The total N content in the roots, stems, and leaves of sugarcane was higher than the control. The 15N atom % excess of sugarcane decreased significantly under medium N condition, indicating that the medium N level was conducive to N fixation in strain ED5. Metagenome analysis of sugarcane rhizosphere soil exhibited that the abundance of N-metabolizing microbial richness was increased under low and high N conditions after inoculation of strain ED5 at the genus level, while it was increased at the phylum level only under the low N condition. The LefSe (LDA > 2, p < 0.05) found that the N-metabolism-related differential microorganisms under the high N condition were higher than those under medium and low N conditions. It was also shown that the abundance of nifDHK genes was significantly increased after inoculation of ED5 at the medium N level, and other N cycle genes had high abundance at the high N level after inoculation of strain ED5. The results of this study provided a scientific reference for N fertilization in actual sugarcane production.

13.
Plants (Basel) ; 12(13)2023 Jun 22.
Article En | MEDLINE | ID: mdl-37446979

Type 2C protein phosphatases (PP2Cs) represent a major group of protein phosphatases in plants, some of which have already been confirmed to play important roles in diverse plant processes. In this study, analyses of the phylogenetics, gene structure, protein domain, chromosome localization, and collinearity, as well as an identification of the expression profile, protein-protein interaction, and subcellular location, were carried out on the PP2C family in wild sugarcane (Saccharum spontaneum). The results showed that 145 PP2C proteins were classified into 13 clades. Phylogenetic analysis suggested that SsPP2Cs are evolutionarily closer to those of sorghum, and the number of SsPP2Cs is the highest. There were 124 pairs of SsPP2C genes expanding via segmental duplications. Half of the SsPP2C proteins were predicted to be localized in the chloroplast (73), with the next most common predicted localizations being in the cytoplasm (37) and nucleus (17). Analysis of the promoter revealed that SsPP2Cs might be photosensitive, responsive to abiotic stresses, and hormone-stimulated. A total of 27 SsPP2Cs showed cold-stress-induced expressions, and SsPP2C27 (Sspon.01G0007840-2D) and SsPP2C64 (Sspon.03G0002800-3D) were the potential hubs involved in ABA signal transduction. Our study presents a comprehensive analysis of the SsPP2C gene family, which can play a vital role in the further study of phosphatases in wild sugarcane. The results suggest that the PP2C family is evolutionarily conserved, and that it functions in various developmental processes in wild sugarcane.

14.
Front Microbiol ; 14: 1096754, 2023.
Article En | MEDLINE | ID: mdl-37152763

Sugarcane is an important sugar and bioenergy source and a significant component of the economy in various countries in arid and semiarid. It requires more synthetic fertilizers and fungicides during growth and development. However, the excess use of synthetic fertilizers and fungicides causes environmental pollution and affects cane quality and productivity. Plant growth-promoting bacteria (PGPB) indirectly or directly promote plant growth in various ways. In this study, 22 PGPB strains were isolated from the roots of the sugarcane variety GT42. After screening of plant growth-promoting (PGP) traits, it was found that the DJ06 strain had the most potent PGP activity, which was identified as Pseudomonas aeruginosa by 16S rRNA gene sequencing. Scanning electron microscopy (SEM) and green fluorescent protein (GFP) labeling technology confirmed that the DJ06 strain successfully colonized sugarcane tissues. The complete genome sequencing of the DJ06 strain was performed using Nanopore and Illumina sequencing platforms. The results showed that the DJ06 strain genome size was 64,90,034 bp with a G+C content of 66.34%, including 5,912 protein-coding genes (CDSs) and 12 rRNA genes. A series of genes related to plant growth promotion was observed, such as nitrogen fixation, ammonia assimilation, siderophore, 1-aminocyclopropane-1-carboxylic acid (ACC), deaminase, indole-3-acetic acid (IAA) production, auxin biosynthesis, phosphate metabolism, hydrolase, biocontrol, and tolerance to abiotic stresses. In addition, the effect of the DJ06 strain was also evaluated by inoculation in two sugarcane varieties GT11 and B8. The length of the plant was increased significantly by 32.43 and 12.66% and fresh weight by 89.87 and 135.71% in sugarcane GT11 and B8 at 60 days after inoculation. The photosynthetic leaf gas exchange also increased significantly compared with the control plants. The content of indole-3-acetic acid (IAA) was enhanced and gibberellins (GA) and abscisic acid (ABA) were reduced in response to inoculation of the DJ06 strain as compared with control in two sugarcane varieties. The enzymatic activities of oxidative, nitrogen metabolism, and hydrolases were also changed dramatically in both sugarcane varieties with inoculation of the DJ06 strain. These findings provide better insights into the interactive action mechanisms of the P. aeruginosa DJ06 strain and sugarcane plant development.

15.
Int J Mol Sci ; 24(10)2023 May 17.
Article En | MEDLINE | ID: mdl-37240257

Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.


Saccharum , Transcriptome , Saccharum/metabolism , Proteomics , Gene Expression Profiling , Sugars/metabolism , Gene Expression Regulation, Plant
16.
Biotechnol Genet Eng Rev ; : 1-21, 2023 Feb 22.
Article En | MEDLINE | ID: mdl-36814143

Diazotrophic microorganisms are free-living groups of organisms that can convert atmospheric nitrogen (N) into bioavailable nitrogen for plants, which increases crop development and production. The purpose of the current study was to ascertain how diazotrophic plant growth promoting (PGP) Pseudomonas strains (P. koreensis CY4 and P. entomophila CN11) enhanced nitrogen fixation, defense activity, and PGP attributes of sugarcane varieties; GT11 and G×B9. A 15N isotope-dilution study was conducted to confirm the sugarcane strains' capacity to fix nitrogen, and the results indicated that between 21 to 35% of plant, nitrogen is fixed biologically by selected rhizobacteria. In comparison to the control, after 30, 60, and 90 days, both CY4 and CN11 strains significantly increased defense-related enzymes (catalase, peroxidase, phenylalanine ammonia-lyase, superoxide dismutase, glucanase, and chitinase) and phytohormones (abscisic acid, ABA, cytokinin, etc.) in GT11 and GXB. Additionally, the expression of SuCHI, SuGLU, SuCAT, SuSOD, and SuPAL genes was found to be elevated in Pseudomonas strains inoculated plants using real-time quantitative polymerase chain reaction (RT-qPCR). Both bacterial strains increased all physiological parameters and chlorophyll content in sugarcane plants more than their control. The effects of P. koreensis CY4 and P. entomophila CN11 strains on sugarcane growth promotion and nitrogen fixation under greenhouse conditions are described here for the first time systematically. The results of confirmation studies demonstrated that P. koreensis CY4 and P. entomophila are PGP bacterial strains with the potential to be employed as a biofertilizer for sugarcane growth, nitrogen nutrient absorption, and reduced application of chemical nitrogenous fertilizers in agricultural fields. .

17.
BMC Plant Biol ; 23(1): 54, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36694111

BACKGROUND: Sugarcane growth and yield are complex biological processes influenced by endophytic nitrogen-fixing bacteria, for which the molecular mechanisms involved are largely unknown. In this study, integrated metabolomic and RNA-seq were conducted to investigate the interaction between an endophytic bacterial strain, Burkholderia GXS16, and sugarcane tissue culture seedlings. RESULTS: During treatment, the colonization of GXS16 in sugarcane roots were determined, along with the enhanced activities of various antioxidant enzymes. Accordingly, 161, 113, and 37 differentially accumulated metabolites (DAMs) were found in the pairwise comparisons of adjacent stages. In addition, transcriptomic analyses obtained 1,371 (IN-vs-CN), 1,457 (KN-vs-IN), and 365 (LN-vs-KN) differentially expressed genes (DEGs), which were mainly involved in the pathways of glutathione metabolism and carbon metabolism. We then assessed the pattern of metabolite accumulation and gene expression in sugarcane during GXS16 colonization. The results showed that both DAMs and DGEs in the upregulated expression profiles were involved in the flavonoid biosynthesis pathway. Overall, p-coumaroyl-CoA in sugarcane roots transferred into homoeriodictyol chalcone and 5-deoxyleucopelargonidin due to the upregulation of the expression of genes shikimate O-hydroxycinnamoyltransferase (HCT), chalcone synthase (CHS), and phlorizin synthase (PGT1). CONCLUSIONS: This study provides insights into the gene regulatory mechanisms involved in the interaction between GXS16 and sugarcane roots, which will facilitate future applications of endophytic nitrogen-fixing bacteria to promote crop growth.


Biological Phenomena , Nitrogen-Fixing Bacteria , Saccharum , Transcriptome , Gene Expression Regulation, Plant
18.
Iran J Biotechnol ; 21(3): e3451, 2023 Jul.
Article En | MEDLINE | ID: mdl-38344705

Background: Biological nitrogen fixation (BNF) is a unique mechanism in which microorganisms utilize the nitrogenase enzyme to catalyze the conversion of atmospheric nitrogen (N2) to ammonia (NH3). Fe protein, encoded by the nifH gene, is an essential component of the nitrogenase in Klebsiella variicola DX120E. However, the function of this gene in regulating nitrogen fixing activity is still unclear. Objectives: The objective of this study was to reveal the function of nifH gene in associative nitrogen-fixing bacteria Klebsiella variicola DX120E and micro-sugarcane system by immunoassay and gene editing. Materials and Methods: In the current investigation, the nifH gene was cloned in a pET-30a (+) vector and expressed in Escherichia coli. The NifH protein was purified and used to immunize rabbit, and then the serum was collected and purified to obtain rabbit anti-NifH polyclonal antibodies. The CRISPR-Cas9 system was applied to produce nifH mutant strains, and the nitrogen-fixing enzyme activity, gene, and protein expression were analyzed. Results: Both in vitro and in vivo NifH proteins were detected by Western blotting, which were 43 and 32 kDa respectively. The expression of nifD and nifK genes was decreased, and nitrogenase activity was reduced in the nifH mutant strain. Conclusion: The nifH gene mutant weakened the nitrogenase activity by regulating the expression of Fe protein, which suggests a potential strategy to study the nitrogen fixation-related genes and the interactions between endophytic nitrogen-fixing bacteria and sugarcane.

19.
Front Plant Sci ; 13: 1014816, 2022.
Article En | MEDLINE | ID: mdl-36531341

Insufficient availability of water is a major global challenge that plants face and that can cause substantial losses in plant productivity and quality, followed by complete crop failure. Thus, it becomes imperative to improve crop cultivation/production in unsuitable agricultural fields and integrate modern agri-techniques and nanoparticles (NPs)-based approaches to extend appropriate aid to plants to handle adverse environmental variables. Nowadays, NPs are commonly used with biological systems because of their specific physicochemical characteristics, viz., size/dimension, density, and surface properties. The foliar/soil application of nanosilicon (nSi) has been shown to have a positive impact on plants through the regulation of physiological and biochemical responses and the synthesis of specific metabolites. Reactive oxygen species (ROS) are produced in plants in response to drought/water scarcity, which may enhance the ability for adaptation in plants/crops to withstand adverse surroundings. The functions of ROS influenced by nSi and water stress have been assessed widely. However, detailed information about their association with plants and stress is yet to be explored. Our review presents an update on recent developments regarding nSi and water stress in combination with ROS accumulation for sustainable agriculture and an eco-friendly environment.

20.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article En | MEDLINE | ID: mdl-36430736

Sugarcane, a cash crop, is easily affected by low temperature, which results in a decrease in yield and sugar production. Breeding a new variety with cold tolerance is an essential strategy to reduce loss from cold stress. The identification of germplasms and genes/proteins with cold tolerance is a vital step in breeding sugarcane varieties with cold tolerance via a conventional program and molecular technology. In this study, the physiological and biochemical indices of 22 genotypes of S. spontaneum were measured, and the membership function analysis method was used to comprehensively evaluate the cold tolerance ability of these genotypes. The physiological and biochemical indices of these S. spontaneum genotypes showed a sophisticated response to low temperature. On the basis of the physiological and chemical indices, the genotypes were classified into different cold tolerance groups. Then, the high-tolerance genotype 1027 and the low-tolerance genotype 3217 were selected for DIA-based proteomic analysis by subjecting them to low temperature. From the four comparison groups, 1123, 1341, 751, and 1693 differentially abundant proteins (DAPs) were identified, respectively. The DAPs based on genotypes or treatments participated in distinct metabolic pathways. Through detailed analysis of the DAPs, some proteins related to protein homeostasis, carbohydrate and energy metabolism, amino acid transport and metabolism, signal transduction, and the cytoskeleton may be involved in sugarcane tolerance to cold stress. Furthermore, five important proteins related to cold tolerance were discovered for the first time in this study. This work not only provides the germplasms and candidate target proteins for breeding sugarcane varieties with cold tolerance via a conventional program and molecular breeding, but also helps to accelerate the determination of the molecular mechanism underlying cold tolerance in sugarcane.


Saccharum , Plant Breeding , Proteomics , Saccharum/metabolism , Temperature
...