Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Theranostics ; 14(10): 3927-3944, 2024.
Article in English | MEDLINE | ID: mdl-38994017

ABSTRACT

Rationale: Myocardial infarction (MI) is a severe global clinical condition with widespread prevalence. The adult mammalian heart's limited capacity to generate new cardiomyocytes (CMs) in response to injury remains a primary obstacle in developing effective therapies. Current approaches focus on inducing the proliferation of existing CMs through cell-cycle reentry. However, this method primarily elevates cyclin dependent kinase 6 (CDK6) and DNA content, lacking proper cytokinesis and resulting in the formation of dysfunctional binucleated CMs. Cytokinesis is dependent on ribosome biogenesis (Ribo-bio), a crucial process modulated by nucleolin (Ncl). Our objective was to identify a novel approach that promotes both DNA synthesis and cytokinesis. Methods: Various techniques, including RNA/protein-sequencing analysis, Ribo-Halo, Ribo-disome, flow cytometry, and cardiac-specific tumor-suppressor retinoblastoma-1 (Rb1) knockout mice, were employed to assess the series signaling of proliferation/cell-cycle reentry and Ribo-bio/cytokinesis. Echocardiography, confocal imaging, and histology were utilized to evaluate cardiac function. Results: Analysis revealed significantly elevated levels of Rb1, bur decreased levels of circASXL1 in the hearts of MI mice compared to control mice. Deletion of Rb1 induces solely cell-cycle reentry, while augmenting the Ribo-bio modulator Ncl leads to cytokinesis. Mechanically, bioinformatics and the loss/gain studies uncovered that circASXL1/CDK6/Rb1 regulates cell-cycle reentry. Moreover, Ribo-Halo, Ribo-disome and circRNA pull-down assays demonstrated that circASXL1 promotes cytokinesis through Ncl/Ribo-bio. Importantly, exosomes derived from umbilical cord mesenchymal stem cells (UMSC-Exo) had the ability to enhance cardiac function by facilitating the coordinated signaling of cell-cycle reentry and Ribo-bio/cytokinesis. These effects were attenuated by silencing circASXL1 in UMSC-Exo. Conclusion: The series signaling of circASXL1/CDK6/Rb1/cell-cycle reentry and circASXL1/Ncl/Ribo-bio/cytokinesis plays a crucial role in cardiac repair. UMSC-Exo effectively repairs infarcted myocardium by stimulating CM cell-cycle reentry and cytokinesis in a circASXL1-dependent manner. This study provides innovative therapeutic strategies targeting the circASXL1 signaling network for MI and offering potential avenues for enhanced cardiac repair.


Subject(s)
Cell Cycle , Cytokinesis , Mice, Knockout , Myocardial Infarction , Myocytes, Cardiac , Ribosomes , Animals , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Ribosomes/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Nucleolin , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Cell Proliferation , Male , Humans
2.
Proc Natl Acad Sci U S A ; 121(21): e2317495121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753506

ABSTRACT

Myogenic regeneration relies on the proliferation and differentiation of satellite cells. TECRL (trans-2,3-enoyl-CoA reductase like) is an endoplasmic reticulum protein only expressed in cardiac and skeletal muscle. However, its role in myogenesis remains unknown. We show that TECRL expression is increased in response to injury. Satellite cell-specific deletion of TECRL enhances muscle repair by increasing the expression of EGR2 through the activation of the ERK1/2 signaling pathway, which in turn promotes the expression of PAX7. We further show that TECRL deletion led to the upregulation of the histone acetyltransferase general control nonderepressible 5, which enhances the transcription of EGR2 through acetylation. Importantly, we showed that AAV9-mediated TECRL silencing improved muscle repair in mice. These findings shed light on myogenic regeneration and muscle repair.


Subject(s)
Early Growth Response Protein 2 , Muscle Development , Muscle, Skeletal , Regeneration , Animals , Mice , Muscle, Skeletal/metabolism , Early Growth Response Protein 2/metabolism , Early Growth Response Protein 2/genetics , Muscle Development/genetics , Regeneration/genetics , Up-Regulation , Satellite Cells, Skeletal Muscle/metabolism , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , MAP Kinase Signaling System , Mice, Knockout , Cell Differentiation
4.
MedComm (2020) ; 4(5): e357, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37667739

ABSTRACT

Tumor development relies on the stemness of cancer stem cells, which is regulated by environmental cues. Previous studies have shown that zyxin can inhibit the expression of genes for embryonic stem cell status. In the present study, the expression levels of zyxin protein in cancer tissues and adjacent noncancerous tissues from 73 gastric cancer patients with different clinical stages were analyzed by Western blot. We showed that the relative expression levels of zyxin in gastric cancer tissues (cancer tissues/adjacent tissues) were significantly downregulated in advanced clinical stages. Overexpression of zyxin inhibited the stemness and epithelial-mesenchymal transition (EMT) processes in gastric cancer cells. Zyxin also inhibited the proliferation, migration, and invasion but increased the sensitivity of cancer cells to drugs. Overexpression of zyxin in MKN45 cells inhibited tumor growth in nude mice. We show that the interactions between zyxin and SIRT1 led to the upregulation of SIRT1, reduced acetylation levels of histone H3 K9 and K23, decreased transcription levels of SNAI 1/2, and inhibition of the EMT process. This study demonstrated that zyxin negatively regulates the progression of gastric cancer by inhibiting the stemness of cancer stem cells and EMT. Our findings shed new light on the pathogenesis of gastric cancer.

5.
Signal Transduct Target Ther ; 8(1): 15, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36617563

ABSTRACT

The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.


Subject(s)
COVID-19 , Neoplasms , Neurodegenerative Diseases , Humans , Pregnancy , Female , COVID-19 Vaccines/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , COVID-19/metabolism , Ribosomes/genetics , Ribosomal Proteins/genetics , Neoplasms/drug therapy , Neoplasms/genetics , RNA, Untranslated , Mechanistic Target of Rapamycin Complex 1/metabolism
6.
MedComm (2020) ; 4(1): e202, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36636367

ABSTRACT

The regenerative capacity of skeletal muscle is dependent on satellite cells. The circadian clock regulates the maintenance and function of satellite cells. Cryptochrome 2 (CRY2) is a critical component of the circadian clock, and its role in skeletal muscle regeneration remains controversial. Using the skeletal muscle lineage and satellite cell-specific CRY2 knockout mice (CRY2scko), we show that the deletion of CRY2 enhances muscle regeneration. Single myofiber analysis revealed that deletion of CRY2 stimulates the proliferation of myoblasts. The differentiation potential of myoblasts was enhanced by the loss of CRY2 evidenced by increased expression of myosin heavy chain (MyHC) and myotube formation in CRY2-/- cells versus CRY2+/+ cells. Immunostaining revealed that the number of mononucleated paired box protein 7 (PAX7+) cells associated with myotubes formed by CRY2-/- cells was increased compared with CRY2+/+ cells, suggesting that more reserve cells were produced in the absence of CRY2. Loss of CRY2 leads to the activation of the ERK1/2 signaling pathway and ETS1, which binds to the promoter of PAX7 to induce its transcription. CRY2 deficient myoblasts survived better in ischemic muscle. Therefore, CRY2 is essential in regulating skeletal muscle repair.

7.
Theranostics ; 12(17): 7550-7566, 2022.
Article in English | MEDLINE | ID: mdl-36438474

ABSTRACT

Rational: Senescence is a major aging process that contributes to the development of cardiovascular diseases, but the underlying molecular mechanisms remain largely unknown. One reason is due to the lack of suitable animal models. We aimed to generate a cardiomyocyte (CM)-specific senescent animal model, uncover the underlying mechanisms, and develop new therapies for aging associated cardiac dysfunction. Methods: The gain/loss of circHIPK3 approach was used to explore the role of circHIPK3 in cardiomyocyte (CM) senescence. To investigate the mechanisms of circHIPK3 function in cardiac senescence, we generated CM-specific tamoxifen-induced circHIPK3 knockout (CKO) mice. We also applied various analyses including PCR, Western blot, nuclear and cytoplasmic protein extraction, immunofluorescence, echocardiography, RNA immunoprecipitation assay, RNA-pulldown assay, and co-immunoprecipitation. Results: Our novel CKO mice exhibited worse cardiac function, decreased circHIPK3 expression and telomere length shortening in the heart. The level of the senescence-inducer p21 in the hearts of CKO mice was significantly increased and survival was poor compared with control mice. In vitro, the level of p21 in CMs was significantly decreased by circHIPK3 overexpression, but increased by circHIPK3 silencing. We showed that circHIPK3 was a scaffold for p21 mRNA-binding protein HuR and E3 ubiquitin ligase ß-TrCP. circHIPK3 silencing weakened the interaction between HuR and ß-TrCP, reduced HuR ubiquitination, and enhanced the interaction between HuR and p21 mRNA. Moreover, we found that mice injected with human umbilical cord mesenchymal stem cell-derived exosomes (UMSC-Exos) showed increased circHIPK3 levels, decreased levels of p21, longer telomere length, and good cardiac function. However, these beneficial effects exerted by UMSC-Exos were inhibited by silencing circHIPK3. Conclusions: We successfully generated CM-specific CKO mice for aging research. Our results showed that deletion of circHIPK3 led to exaggerated CM senescence and decreased cardiac function. As a scaffold, circHIPK3 enhanced the binding of E3 ubiquitin ligase ß-TrCP and HuR in the cytoplasm, leading to the ubiquitination and degradation of HuR and reduced p21 activity. In addition, UMSC-Exos exerted an anti-senescence and cardio-protective effect by delivering circHIPK3. These findings pave the way to the development of new therapies for aging associated cardiac dysfunction.


Subject(s)
Cellular Senescence , Heart Diseases , Myocytes, Cardiac , RNA, Circular , Animals , Humans , Mice , beta-Transducin Repeat-Containing Proteins/genetics , beta-Transducin Repeat-Containing Proteins/metabolism , Heart Diseases/genetics , Heart Diseases/metabolism , RNA , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Cellular Senescence/genetics , Cellular Senescence/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology
8.
Nat Commun ; 13(1): 5838, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36192418

ABSTRACT

Magnesium alloys with high strength and excellent corrosion resistance are always sought-after in light-weighting structural components for automotive and aerospace applications. However, for most magnesium alloys that have a high specific strength, they usually have an inferior corrosion resistance and vice versa. In this work, we successfully develop a Mg-11Y-1Al (wt. %) alloy through conventional casting, solution treatment followed by extrusion. The overall properties of this alloy feature with a corrosion rate lower than 0.2 mm y-1, high yield strength of 350 MPa and moderate tensile elongation of 8%, the combination of which shows competitive advantage over other comparative magnesium alloys in the literature. It is found that a thin and dense protective film of Y2O3/Y(OH)3 can be fast developed with the aid of Al2O3/Al(OH)3 deposition to isolate this alloy from further attack of corrosion medium. Meanwhile, the refined grains, weak texture and activation of non-basal slip systems co-contribute to the high strength and good ductility. Our findings are expected to inspire the design of next-generation high performance magnesium alloys.

9.
Phytomedicine ; 107: 154462, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36162242

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a systemic autoimmune disease that often results in joint destruction. Ershiwuwei Lvxue Pill (ELP), a prescription of Tibetan medicine, has been used for centuries for the clinical treatment of RA in Tibet, China. In a previous study, we reported that ELP could ameliorate RA symptoms in CIA rats by inhibiting the inflammatory response and inducing apoptosis in synovial tissues. It is still needed further to clarify the mechanisms of action of ELP in mitigating RA. PURPOSE: In this study, we aim to elucidate the mechanism of action of ELP to improve RA joint damage and explore the changes in the intestinal flora and host metabolites. METHODS: Firstly, we analyzed the main absorbed constituents of ELP in the serum of rats by ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF/MS). Then, we verified the alleviating effects of ELP on cartilage injury and bone erosion as well as the inflammatory response in CIA rats by microCT, H&E staining, safranin-O staining, and ELISA. Moreover, we investigated the main factors that mediate joint damage, including the production of matrix metalloproteinases (MMPs) and osteoclast activity in the ankle of rats by immunohistochemistry and tartrate-resistant acid phosphatase (TRAP) staining. Further, we explored the molecular mechanisms of the MMPs production and osteoclast activity in CIA rats treated with ELP through various experiments such as ELISA, qRT-PCR, western blotting, and immunofluorescence assay. Besides, we investigated gut microbiota composition by 16S rDNA sequencing and serum metabolites through untargeted metabolomics. In addition, we analyzed the correlation between gut microbiota and metabolites by Spearman correlation analysis. RESULTS: In this study, we identified 20 compounds from rat serum samples, which could be the ELP components that improve RA. Moreover, we found that ELP could alleviate cartilage and bone injury by reducing MMP-1, MMP-3, and MMP-13 expression and osteoclast activity in CIA rats. Further studies demonstrated that ELP could reduce joint damage by inhibiting osteoprotegerin (OPG)/receptor activator for nuclear factor-κB ligand (RANKL) /nuclear factor-κB (NF-κB) and extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinases (JNK) signal pathways. The 16S rDNA sequencing analysis indicated that there was a significant difference in the gut microbiota composition between the normal and CIA rats, and these differences were changed after ELP administration. ELP could alter the gut microbiota by increasing the abundance of the genus Lactobacillus and decreasing the abundance of Dorea, [Eubacterium]_ventriosum_group, Anaerostipes, Collinsella, Coprococcus_1, Ruminiclostridium_5, Ruminococcus_1, Family_XIII_UCG-001, Butyricicoccus, Erysipelotrichaceae_UCG-003, Lachnoclostridium, Faecalibacterium, Lachnospiraceae_UCG-010, Roseburia, Rs-E47_termite_group_norank, Treponema_2 genera. Non-targeted metabolomics analysis showed that ELP reduced arachidonic acid levels. The serum arachidonic acid level was significantly correlated with the abundance of 41 genera, particularly Collinsella and Lactobacillus. CONCLUSION: Our study shows that ELP can improve RA joint damage by inhibiting MMPs production and osteoclast activity, and regulating intestinal flora and host metabolites, which provides a novel insight into the ELP in alleviating RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Gastrointestinal Microbiome , Animals , Arachidonic Acid , Arthritis, Rheumatoid/drug therapy , DNA, Ribosomal/pharmacology , Extracellular Signal-Regulated MAP Kinases , Ligands , Matrix Metalloproteinase 1/pharmacology , Matrix Metalloproteinase 1/therapeutic use , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 3 , NF-kappa B , Osteoprotegerin/metabolism , Rats , Tartrate-Resistant Acid Phosphatase
10.
Cell Rep ; 39(11): 110939, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35705041

ABSTRACT

Skeletal muscle regeneration relies on satellite cells that can proliferate, differentiate, and form new myofibers upon injury. Emerging evidence suggests that misregulation of satellite cell fate and function influences the severity of Duchenne muscular dystrophy (DMD). The transcription factor Pax7 determines the myogenic identity and maintenance of the pool of satellite cells. The circadian clock regulates satellite cell proliferation and self-renewal. Here, we show that the CLOCK-interacting protein Circadian (CIPC) a negative-feedback regulator of the circadian clock, is up-regulated during myoblast differentiation. Specific deletion of Cipc in satellite cells alleviates myopathy, improves muscle function, and reduces fibrosis in mdx mice. Cipc deficiency leads to activation of the ERK1/2 and JNK1/2 signaling pathways, which activates the transcription factor SP1 to trigger the transcription of Pax7 and MyoD. Therefore, CIPC is a negative regulator of satellite cell function, and loss of Cipc in satellite cells promotes muscle regeneration.


Subject(s)
Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Animals , Cell Differentiation/genetics , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Satellite Cells, Skeletal Muscle/metabolism
11.
J Cardiovasc Transl Res ; 15(3): 524-534, 2022 06.
Article in English | MEDLINE | ID: mdl-35484464

ABSTRACT

Ischemic diseases are life-threatening, and the incidence increases as people's lifestyles change. Medications and surgical intervention offer limited benefit, and stem cell therapy has emerged as a potential approach for treating ischemic diseases. The exosomes secreted by stem cells have attracted more attention because they do not trigger the immune response and can be used as drug carriers. The non-coding RNA (ncRNA) carried by exosomes plays a key role in mediating exosome's beneficial effect, which can be further enhanced when combined with nanomaterials to improve its retention time. Here, we review the downstream target molecules and signal pathways of ncRNA and summarize recent advances of some nanomaterials used to encapsulate exosomes and promote ischemic tissue repair. We highlight the imprinting of exosomes from parent cells and discuss how the inflammasome pathway may be targeted for the development of novel therapy for ischemic diseases.


Subject(s)
Exosomes , Exosomes/metabolism , Humans , Ischemia/metabolism , Ischemia/surgery , Signal Transduction , Stem Cell Transplantation
12.
Front Cardiovasc Med ; 8: 713021, 2021.
Article in English | MEDLINE | ID: mdl-34490375

ABSTRACT

Recent studies have shown that the hydrogels formed by composite biomaterials are better choice than hydrogels formed by single biomaterial for tissue repair. We explored the feasibility of the composite hydrogel formed by silk fibroin (SF) and silk sericin (SS) in tissue repair for the excellent mechanical properties of SF, and cell adhesion and biocompatible properties of SS. In our study, the SF SS hydrogel was formed by SF and SS protein with separate extraction method (LiBr dissolution for SF and hot alkaline water dissolution for SS), while SF-SS hydrogel was formed by SF and SS protein using simultaneous extraction method (LiBr dissolution for SF and SS protein). The effects of the two composite hydrogels on the release of inflammatory cytokines from macrophages and the wound were analyzed. Moreover, two hydrogels were used to encapsulate and deliver human umbilical cord mesenchymal stem cell derived exosomes (UMSC-Exo). Both SF SS and SF-SS hydrogels promoted wound healing, angiogenesis, and reduced inflammation and TNF-α secretion by macrophages. These beneficial effects were more significant in the experimental group treated by UMSC-Exo encapsulated in SF-SS hydrogel. Our study found that SF-SS hydrogel could be used as an excellent alternative to deliver exosomes for tissue repair.

13.
Signal Transduct Target Ther ; 6(1): 247, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34210954

ABSTRACT

Inflammasomes are protein complexes of the innate immune system that initiate inflammation in response to either exogenous pathogens or endogenous danger signals. Inflammasome multiprotein complexes are composed of three parts: a sensor protein, an adaptor, and pro-caspase-1. Activation of the inflammasome leads to the activation of caspase-1, which cleaves pro-inflammatory cytokines such as IL-1ß and IL-18, leading to pyroptosis. Effectors of the inflammasome not only provide protection against infectious pathogens, but also mediate control over sterile insults. Aberrant inflammasome signaling has been implicated in the development of cardiovascular and metabolic diseases, cancer, and neurodegenerative disorders. Here, we review the role of the inflammasome as a double-edged sword in various diseases, and the outcomes can be either good or bad depending on the disease, as well as the genetic background. We highlight inflammasome memory and the two-shot activation process. We also propose the M- and N-type inflammation model, and discuss how the inflammasome pathway may be targeted for the development of novel therapy.


Subject(s)
Cardiovascular Diseases , Inflammasomes/immunology , Metabolic Diseases , Neoplasms , Neurodegenerative Diseases , Cardiovascular Diseases/immunology , Cardiovascular Diseases/therapy , Humans , Interleukin-18/immunology , Interleukin-1beta/immunology , Metabolic Diseases/immunology , Metabolic Diseases/therapy , Neoplasms/immunology , Neoplasms/therapy , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/therapy , Pyroptosis/immunology
15.
J Ethnopharmacol ; 270: 113820, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33465441

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ershiwuwei Lvxue Pill (ELP, མགྲིན་མཚལ་ཉེར་ལྔ།), a traditional Tibetan medicine preparation, has been used hundreds of years for the clinical treatment of rheumatoid arthritis (RA) in the highland region of Tibet, China. However, the underlying mechanism of its therapeutic effect remains unclear. AIM OF THE STUDY: The present study aimed to investigate the potential pharmacological mechanisms of anti-arthritic effect of ELP. MATERIALS AND METHODS: The main chemical constituents of ELP were analyzed by ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF-MS). Forty-eight male Wistar rats (220 ± 20 g) were randomly divided into six groups: normal group, collagen-induced arthritis (CIA) group, methotrexate group (1.05 mg/kg), ELP groups (115, 230 and 460 mg/kg). CIA rat models were assigned to evaluate the anti-RA activity of ELP by determining the paws swelling, arthritis score, organ coefficients of spleen and thymus, and histopathological analysis of knee joints of synovial tissues. The levels of TNF-α, IL-10, IL-6 and IL-17 in serum were measured by ELISA. In addition, mRNA and protein expression levels associated with JAK2/STAT3 signaling pathway in synovial tissues of CIA rats were detected by qRT-PCR, immunohistochemistry and Western blot analyses. RESULTS: Fourteen main chemical constituents of ELP were quantitatively determined by UPLC-Q-TOF-MS analysis. Treatment with ELP reduced the paw swelling, arthritis score and organ coefficients of spleen and thymus. Histopathological examination revealed the protective effects of ELP on CIA rats with knee joint injury. The levels of serum pro-inflammatory cytokines (TNF-α, IL-6 and IL-17) were markedly reduced while the anti-inflammatory cytokine IL-10 was significantly increased with the treatment of ELP. Further investigations showed ELP down-regulated the mRNA and protein expression levels of Bcl-2, whereas up-regulated Bax, SOCS1 and SOCS3. Meanwhile, the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 proteins from synovial tissues were dramatically decreased with the treatment of ELP, whereas no changes of the mRNA and protein expression levels of JAK2 and STAT3 were observed. CONCLUSION: These results indicated that ELP reduced the severity of arthritis and joint swelling, suggesting an antirheumatic effect on CIA rats. The possible mechanism is related to inhibiting inflammatory response and inducing apoptosis in synovial tissues by regulating JAK2/STAT3 signaling pathway. However, further in vivo and in vitro investigations are still needed to clarify the underlying mechanism of ELP in treating RA.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Janus Kinase 2/antagonists & inhibitors , Medicine, Tibetan Traditional , Plant Extracts/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antirheumatic Agents/chemistry , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/metabolism , Cytokines/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Joints/pathology , Male , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Wistar , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Synovial Membrane/drug effects , Synovial Membrane/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
16.
Int J Nanomedicine ; 15: 10257-10269, 2020.
Article in English | MEDLINE | ID: mdl-33364757

ABSTRACT

Ischemic diseases, especially in the heart and the brain, have become a serious threat to human health. Growth factor and cell therapy are emerging as promising therapeutic strategies; however, their retention and sustainable functions in the injured tissue are limited. Self-assembling peptide (SAP)-based hydrogels, mimicking the extracellular matrix, are therefore introduced to encapsulate and controllably release cells, cell-derived exosomes or growth factors, thus promoting angiogenesis and tissue recovery after ischemia. We will summarize the classification, composition and structure of SAPs, and the influencing factors for SAP gelation. Moreover, we will describe the functionalized SAPs, and the combinatorial therapy of cells, exosomes or growth factors with functionalized SAPs for angiogenic process as well as its advantage in immunogenicity and injectability. Finally, an outlook on future directions and challenges is provided.


Subject(s)
Hydrogels/chemistry , Neovascularization, Physiologic/drug effects , Peptides/chemistry , Peptides/pharmacology , Animals , Humans
18.
Theranostics ; 10(15): 6728-6742, 2020.
Article in English | MEDLINE | ID: mdl-32550900

ABSTRACT

Rational: Ischemic injury of the skeletal muscle remains a serious clinical problem and currently there is no effective therapy. The aim of the present study is to determine whether human umbilical cord mesenchymal stem cells- derived exosomes (UMSC-Exo) could repair ischemic injury by releasing circular RNA. Methods and Results: To create hindlimb ischemia, we surgically ligated the left femoral artery in C57BL/6 mice. Using circRNA-seq analyses of total RNA from ischemic and control muscles, we found reduced expression of circHIPK3 in the ischemic muscle. To explore the role of circHIPK3 in ischemic injury, the mice were randomly assigned into three groups after surgery: 1) vehicle; 2) UMSC-Exo; 3) UMSC-Exo and siRNA targeting circHIPK3 (UMSC-Exo /si-circHIPK3). UMSC-Exo treatment significantly increased expression of circHIPK3 and improved blood perfusion, running distance and muscle force, which were reversed by injection of UMSC-Exo /si-circHIPK3, suggesting that UMSC-Exo improve muscle function by releasing circHIPK3. UMSC-Exo treatment also inhibited ischemia induced pyroptosis - cell death caused by inflammasome as evidenced by activation of NLRP3, cleaved caspase-1, and subsequent increase of IL-1ß and IL-18, and the effects were reversed by injection UMSC-Exo /si-circHIPK3. Bioinformatic analysis identified miR-421/FOXO3a as a potential target for circHIPK3, which was confirmed by luciferase reporter assay. Knockdown of circHIPK3 in C2C12 cells resulted in increased expression of miR-421. We established an in vitro model of pyroptosis by stimulating C2C12 cells with LPS and ATP. LPS and ATP treatment resulted in reduced expression of circHIPK3 and increased expression of miR-421, which was prevented by UMSC-Exo. Western blot analysis showed reduced levels of NLRP3 and cleaved caspase-1 when cells were treated by UMSC-Exo. The expression of FOXO3a in C2C12 cells was increased in the presence of miR-421 inhibitor, and the expression was reduced when cells were treated by LPS and ATP. Importantly, the expression of FOXO3a was upregulated by UMSC-Exo but was reduced when si-circHIPK3 was present. Conclusions: Using loss/gain-of function method, we demonstrated that miR-421/FOXO3a is the direct target of circHIPK3, and UMSC-Exo prevent ischemic injury by releasing circHIPK3, which in turn down regulate miR-421, resulting in increased expression of FOXO3a, leading to inhibition of pyroptosis and release of IL-1ß and IL-18.


Subject(s)
Exosomes/metabolism , Forkhead Box Protein O3/metabolism , Ischemia/prevention & control , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , RNA, Circular/genetics , Animals , Cell Line , Disease Models, Animal , Forkhead Box Protein O3/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Ischemia/etiology , Ischemia/pathology , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , Pyroptosis , Umbilical Cord/cytology
19.
Front Pharmacol ; 11: 352, 2020.
Article in English | MEDLINE | ID: mdl-32269527

ABSTRACT

Mammalian mitochondrial permeability transition pore (MPTP), across the inner and outer membranes of mitochondria, is a nonspecific channel for signal transduction or material transfer between mitochondrial matrix and cytoplasm such as maintenance of Ca2+ homeostasis, regulation of oxidative stress signals, and protein translocation evoked by some of stimuli. Continuous MPTP opening has been proved to stimulate neuronal apoptosis in ischemic stroke. Meanwhile, inhibition of MPTP overopening-induced apoptosis has shown excellent efficacy in the treatment of ischemic stroke. Among of which, the potential molecular mechanisms of drug therapy for stroke has also been gradually revealed by researchers. The characteristics of multi-components or multi-targets for ethnic drugs also provide the possibility to treat stroke from the perspective of mitochondrial MPTP. The advantages mentioned above make it necessary for us to explore and clarify the new perspective of ethnic medicine in treating stroke and to determine the specific molecular mechanisms through advanced technologies as much as possible. In this review, we attempt to uncover the relationship between abnormal MPTP opening and neuronal apoptosis in ischemic stroke. We further summarized currently authorized drugs, ethnic medicine prescriptions, herbs, and identified monomer compounds for inhibition of MPTP overopening-induced ischemic neuron apoptosis. Finally, we strive to provide a new perspective and enlightenment for ethnic medicine in the prevention and treatment of stroke by inhibition of MPTP overopening-induced neuronal apoptosis.

20.
Br J Cancer ; 122(10): 1477-1485, 2020 05.
Article in English | MEDLINE | ID: mdl-32203224

ABSTRACT

BACKGROUND: DAXX is a transcription repressor that has been implicated in several types of cancers, but its role in the development of gastric cancer remains unknown. METHODS: We analysed the expression of DAXX in 83 pairs of gastric cancer samples, including neoplastic and adjacent tissues, and correlated the expression levels with clinical stages. We also investigated the molecular mechanisms by which DAXX downregulation promotes cancer growth using both in vitro and in vivo models. RESULTS: DAXX was downregulated in advanced gastric cancer samples. The expression of DAXX inversely correlates with that of cancer stem cell markers CD44 and Oct4 in gastric cancer lines. DAXX overexpression in gastric cancer cells inhibited migration, invasion and epithelial- mesenchymal transition (EMT). The inhibition of EMT was achieved through the repression of SNAI3, a key inducer of EMT, by recruiting HDAC-1 into the nucleus. Using a xenograft mouse model, we demonstrated that the MKN45 cells formed smaller tumours when DAXX was overexpressed. Wild-type AGS cells were not able to form tumours in nude mice, but in contrast, formed visible tumours when DAXX was silenced in the cells. CONCLUSION: We for the first time demonstrated that DAXX functions as a tumour suppressor in gastric cancer by inhibiting stem cell growth and EMT.


Subject(s)
Co-Repressor Proteins/genetics , Epithelial-Mesenchymal Transition/genetics , Molecular Chaperones/genetics , Neoplastic Stem Cells/metabolism , Stomach Neoplasms/genetics , Adult , Aged , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Male , Mice , Middle Aged , Neoplastic Stem Cells/pathology , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...