Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927602

ABSTRACT

The low survival rate of transplanted plantlets, which has limited the utility of tissue-culture-based methods for the rapid propagation of tree peonies, is due to plantlet dormancy after rooting. We previously determined that the auxin response factor PsARF may be a key regulator of tree peony dormancy. To clarify the mechanism mediating tree peony plantlet dormancy, PsARF genes were systematically identified and analyzed. Additionally, PsARF16a was transiently expressed in the leaves of tree peony plantlets to examine its regulatory effects on a downstream gene network. Nineteen PsARF genes were identified and divided into four classes. All PsARF genes encoded proteins with conserved B3 and ARF domains. The number of motifs, exons, and introns varied between PsARF genes in different classes. The overexpression of PsARF16a altered the expression of NCED, ZEP, PYL, GA2ox1, GID1, and other key genes in abscisic acid (ABA) and gibberellin (GA) signal transduction pathways, thereby promoting ABA synthesis and decreasing GA synthesis. Significant changes to the expression of some key genes contributing to starch and sugar metabolism (e.g., AMY2A, BAM3, BGLU, STP, and SUS2) may be associated with the gradual conversion of sugar into starch. This study provides important insights into PsARF functions in tree peonies.


Subject(s)
Gene Expression Regulation, Plant , Paeonia , Plant Dormancy , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Dormancy/genetics , Paeonia/genetics , Paeonia/growth & development , Paeonia/metabolism , Abscisic Acid/metabolism , Gibberellins/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Trees/genetics , Trees/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Signal Transduction/genetics
2.
Mil Med Res ; 11(1): 36, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863031

ABSTRACT

BACKGROUND: Dysregulation of enhancer transcription occurs in multiple cancers. Enhancer RNAs (eRNAs) are transcribed products from enhancers that play critical roles in transcriptional control. Characterizing the genetic basis of eRNA expression may elucidate the molecular mechanisms underlying cancers. METHODS: Initially, a comprehensive analysis of eRNA quantitative trait loci (eRNAQTLs) was performed in The Cancer Genome Atlas (TCGA), and functional features were characterized using multi-omics data. To establish the first eRNAQTL profiles for colorectal cancer (CRC) in China, epigenomic data were used to define active enhancers, which were subsequently integrated with transcription and genotyping data from 154 paired CRC samples. Finally, large-scale case-control studies (34,585 cases and 69,544 controls) were conducted along with multipronged experiments to investigate the potential mechanisms by which candidate eRNAQTLs affect CRC risk. RESULTS: A total of 300,112 eRNAQTLs were identified across 30 different cancer types, which exert their influence on eRNA transcription by modulating chromatin status, binding affinity to transcription factors and RNA-binding proteins. These eRNAQTLs were found to be significantly enriched in cancer risk loci, explaining a substantial proportion of cancer heritability. Additionally, tumor-specific eRNAQTLs exhibited high responsiveness to the development of cancer. Moreover, the target genes of these eRNAs were associated with dysregulated signaling pathways and immune cell infiltration in cancer, highlighting their potential as therapeutic targets. Furthermore, multiple ethnic population studies have confirmed that an eRNAQTL rs3094296-T variant decreases the risk of CRC in populations from China (OR = 0.91, 95%CI 0.88-0.95, P = 2.92 × 10-7) and Europe (OR = 0.92, 95%CI 0.88-0.95, P = 4.61 × 10-6). Mechanistically, rs3094296 had an allele-specific effect on the transcription of the eRNA ENSR00000155786, which functioned as a transcriptional activator promoting the expression of its target gene SENP7. These two genes synergistically suppressed tumor cell proliferation. Our curated list of variants, genes, and drugs has been made available in CancereRNAQTL ( http://canernaqtl.whu.edu.cn/#/ ) to serve as an informative resource for advancing this field. CONCLUSION: Our findings underscore the significance of eRNAQTLs in transcriptional regulation and disease heritability, pinpointing the potential of eRNA-based therapeutic strategies in cancers.


Subject(s)
Enhancer Elements, Genetic , Neoplasms , Quantitative Trait Loci , Humans , Enhancer Elements, Genetic/genetics , Neoplasms/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Colorectal Neoplasms/genetics , Case-Control Studies , RNA/genetics , China , Enhancer RNAs
3.
Genome Med ; 16(1): 81, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38872215

ABSTRACT

BACKGROUND: Early detection of colorectal neoplasms can reduce the colorectal cancer (CRC) burden by timely intervention for high-risk individuals. However, effective risk prediction models are lacking for personalized CRC early screening in East Asian (EAS) population. We aimed to develop, validate, and optimize a comprehensive risk prediction model across all stages of the dynamic adenoma-carcinoma sequence in EAS population. METHODS: To develop precision risk-stratification and intervention strategies, we developed three trans-ancestry PRSs targeting colorectal neoplasms: (1) using 148 previously identified CRC risk loci (PRS148); (2) SNPs selection from large-scale meta-analysis data by clumping and thresholding (PRS183); (3) PRS-CSx, a Bayesian approach for genome-wide risk prediction (PRSGenomewide). Then, the performance of each PRS was assessed and validated in two independent cross-sectional screening sets, including 4600 patients with advanced colorectal neoplasm, 4495 patients with non-advanced adenoma, and 21,199 normal individuals from the ZJCRC (Zhejiang colorectal cancer set; EAS) and PLCO (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; European, EUR) studies. The optimal PRS was further incorporated with lifestyle factors to stratify individual risk and ultimately tested in the PLCO and UK Biobank prospective cohorts, totaling 350,013 participants. RESULTS: Three trans-ancestry PRSs achieved moderately improved predictive performance in EAS compared to EUR populations. Remarkably, the PRSs effectively facilitated a thorough risk assessment across all stages of the dynamic adenoma-carcinoma sequence. Among these models, PRS183 demonstrated the optimal discriminatory ability in both EAS and EUR validation datasets, particularly for individuals at risk of colorectal neoplasms. Using two large-scale and independent prospective cohorts, we further confirmed a significant dose-response effect of PRS183 on incident colorectal neoplasms. Incorporating PRS183 with lifestyle factors into a comprehensive strategy improves risk stratification and discriminatory accuracy compared to using PRS or lifestyle factors separately. This comprehensive risk-stratified model shows potential in addressing missed diagnoses in screening tests (best NPV = 0.93), while moderately reducing unnecessary screening (best PPV = 0.32). CONCLUSIONS: Our comprehensive risk-stratified model in population-based CRC screening trials represents a promising advancement in personalized risk assessment, facilitating tailored CRC screening in the EAS population. This approach enhances the transferability of PRSs across ancestries and thereby helps address health disparity.


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Female , Male , Middle Aged , Aged , Risk Assessment , Polymorphism, Single Nucleotide , Bayes Theorem , Risk Factors
4.
Front Vet Sci ; 11: 1383927, 2024.
Article in English | MEDLINE | ID: mdl-38812563

ABSTRACT

Peste des petits ruminants virus (PPRV) is a morbillivirus that causes the acute and highly pathogenic infectious disease peste des petits ruminants (PPR) in small ruminants and poses a major threat to the goat and sheep industries. Currently, there is no effective treatment for PPRV infection. Here, we propose Carboplatin, a platinum-based regimen designed to treat a range of malignancies, as a potential antiviral agent. We showed that Carboplatin exhibits significant antiviral activity against PPRV in a cell culture model. The mechanism of action of Carboplatin against PPRV is mainly attributed to its ability to block STING mediated autophagy. Together, our study supports the discovery of Carboplatin as an antiviral against PPRV and potentially other closely related viruses, sheds light on its mode of action, and establishes STING as a valid and attractive target to counteract viral infection.

5.
Pathogens ; 13(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38787256

ABSTRACT

Tibetan pig is a unique pig breed native to the Qinghai-Tibet Plateau. To investigate viral communities associated with porcine respiratory disease complex (PRDC), 167 respiratory samples were collected from Tibetan pigs in the Ganzi Tibetan autonomous prefecture of Sichuan province. Following library construction and Illunima Novaseq sequencing, 18 distinct viruses belonging to 15 viral taxonomic families were identified in Tibetan pigs with PRDC. Among the 18 detected viruses, 3 viruses were associated with PRDC, including porcine circovirus type 2 (PCV-2), Torque teno sus virus (TTSuV), and porcine cytomegalovirus (PCMV). The genomic sequences of two PCV-2 strains, three TTSuV strains, and one novel Porprismacovirus strain were assembled by SOAPdenovo software (v2). Sequence alignment and phylogenetic analysis showed that both PCV-2 strains belonged to PCV-2d, three TTSuVs were classified to TTSuV2a and TTSuV2b genotypes, and the Porprismacovirus strain PPMV-SCgz-2022 showed a close genetic relationship with a virus of human origin. Recombination analysis indicated that PPMV-SCgz-2022 may have originated from recombination events between Human 16,806 × 66-213 strain and Porcine 17,668 × 82-593 strain. Furthermore, the high proportion of single infection or co-infection of PCV2/TTSuV2 provides insight into PRDC infection in Tibetan pigs. This is the first report of the viral communities in PRDC-affected Tibetan pigs in this region, and the results provides reference for the prevention and control of respiratory diseases in these animals.

6.
BMC Vet Res ; 20(1): 225, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790010

ABSTRACT

BACKGROUND: Peste des Petits Ruminants (PPR) is a world organization for animal health (WOAH) notifiable and economically important transboundary, highly communicable viral disease of small ruminants. PPR virus (PPRV) belongs to the genus Morbillivirus of the family Paramyxoviridae. AIM: The present cross-sectional epidemiological investigation was accomplished to estimate the apparent prevalence and identify the risk factors linked with peste des petits ruminants (PPR) in the previously neglected northern border regions of Pakistan. METHOD: A total of 1300 samples (serum = 328; swabs = 972) from 150 flocks/herds were compiled from sheep (n = 324), goats (n = 328), cattle (n = 324), and buffaloes (n = 324) during 2020-2021 and tested using ELISA for detection of viral antibody in sera or antigen in swabs. RESULTS: An overall apparent prevalence of 38.7% (504 samples) and an estimated true prevalence (calculated by the Rogan and Gladen estimator) of 41.0% (95% CI, 38.0-44 were recorded in the target regions. The highest apparent prevalence of 53.4% (85 samples) and the true prevalence of 57.0%, 95% Confidence Interval (CI) were documented in the Gilgit district and the lowest apparent prevalence of 53 (25.1%) and the true prevalence of 26.0%, 95% Confidence Interval (CI), 19.0-33.0) was reported in the Swat district. A questionnaire was designed to collect data about associated risk factors that were put into a univariable logistic regression to decrease the non-essential assumed risk dynamics with a P-value of 0.25. ArcGIS, 10.8.1 was used to design hotspot maps and MedCalc's online statistical software was used to calculate Odds Ratio (OR). Some of the risk factors significantly different (P < 0.05) in the multivariable logistic regression were flock/herd size, farming methods, nomadic animal movement, and outbreaks of PPR. The odds of large-sized flocks/herds were 1.7 (OR = 1.79; 95% Confidence Interval (CI) = 0.034-91.80%) times more likely to be positive than small-sized. The odds of transhumance and nomadic systems were 1.1 (OR = 1.15; 95% Confidence Interval (CI) = 0.022-58.64%) and 1.0 (OR = 1.02; 95% Confidence Interval (CI) = 0.020-51.97%) times more associated to be positive than sedentary and mixed farming systems, respectively. The odds of nomadic animal movement in the area was 0.7 (OR = 0.57; 95% Confidence Interval (CI) = 0.014-38.06%) times more associated to be positive than in areas where no nomadic movement was observed. In addition, the odds of an outbreak of PPR in the area were 1.0 (OR = 1.00; 95% Confidence Interval (CI) = 0.018-46.73%) times more associated to be positive than in areas where no outbreak of PPR was observed. CONCLUSIONS: It was concluded that many northern regions considered endemic for PPR, large and small ruminants are kept and reared together making numerous chances for virus transmission dynamic, so a big threats of disease spread exist in the region. The results of the present study would contribute to the global goal of controlling and eradicating PPR by 2030.


Subject(s)
Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sheep Diseases , Animals , Pakistan/epidemiology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/virology , Risk Factors , Prevalence , Sheep , Cross-Sectional Studies , Goat Diseases/epidemiology , Goat Diseases/virology , Sheep Diseases/epidemiology , Sheep Diseases/virology , Peste-des-petits-ruminants virus/isolation & purification , Cattle , Buffaloes/virology , Cattle Diseases/epidemiology , Cattle Diseases/virology , Antibodies, Viral/blood
7.
Front Vet Sci ; 11: 1267571, 2024.
Article in English | MEDLINE | ID: mdl-38628941

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS), an important viral disease of swine caused by PRRS virus (PRRSV) was first confirmed in Nepal in 2013. Since then, the virus has spread throughout the country and has now become endemic affecting the pig production nationally. However, molecular characterization of circulating strains has not been done in Nepal yet. In the present study, serum samples were collected from outbreak areas of different districts of Nepal and samples positive for PRRSV by ELISA were sent to Animal and Plant Health Agency (APHA), United Kingdom for sequence analysis. Out of 35 samples that were sent to APHA, only one sample was found positive by PCR and subjected to sequence analysis based on ORF5, ORF7 and Nsp2. The results from the phylogenetic analysis demonstrated that the PRRSV strain belongs to PRRSV-2 and lineage 8 strain. The sequences from the Nepalese PRRSV strain revealed a high degree of similarity with the strains isolated from India, China and Vietnam, with the closest genetic relatedness to the Indian isolates from 2020 and 2018. This is the first study on molecular characterization of PRRS virus circulating in Nepal. Further studies on strains circulating in Nepal are very essential to understand the virus diversity, its spread and evolution.

8.
Exp Ther Med ; 27(6): 240, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633356

ABSTRACT

[This retracts the article DOI: 10.3892/etm.2020.9453.].

9.
Medicine (Baltimore) ; 103(12): e37184, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518044

ABSTRACT

To investigate the incidence, risk factors, and pathogenic characteristics of catheter-related bloodstream infection caused by peripherally inserted central venous catheter in neonates, and to provide references for reducing the infection rate of peripherally inserted central venous catheter. The clinical data of 680 neonates who underwent peripherally inserted central catheter (PICC) in the neonatal intensive care unit from June 2020 to June 2023 were retrospectively analyzed. The risk factors and independent risk factors of catheter-related bloodstream infection caused by PICC were determined by univariate and multivariate analysis, respectively. Catheter-related bloodstream infection occurred in 38 of 680 neonates who underwent PICC. The infection rate was 4.74%. The proportions of fungi, gram-positive bacteria, and gram-negative bacteria were 42.11%, 36.84%, and 21.05%, respectively. Candida parapsilosis was the main fungus (18.42%), coagulase negative Staphylococcus was the main gram-positive bacteria (23.68%), and Klebsiella pneumoniae and Escherichia coli were the main gram-negative bacteria (7.89%). Univariate analysis showed that gestational age ≤32 weeks, birth weight ≤1500 g, congenital diseases, nutritional support, catheterization time, 5-minute APGAR score ≤7, and neonatal respiratory distress syndrome were associated with catheter-related bloodstream infection caused by PICC. Multivariate analysis showed that premature delivery, low birth weight, parenteral nutrition, long catheterization time, and 5-minute APGAR score ≤7 were associated with catheter-related bloodstream infection caused by PICC. Among the pathogens detected, there were 6 cases of K pneumoniae, 5 cases of coagulase negative staphylococci, and 2 cases of fungi. Low birth weight, premature delivery, off-site nutrition, long catheterization time, and 5-minute APGAR score ≤7 are independent risk factors for catheter-related bloodstream infection in neonates with peripherally inserted central venous catheters. The pathogenic bacteria are fungi and multidrug-resistant bacteria.


Subject(s)
Catheter-Related Infections , Catheterization, Central Venous , Catheterization, Peripheral , Central Venous Catheters , Sepsis , Infant, Newborn , Humans , Infant , Retrospective Studies , Coagulase , Catheter-Related Infections/microbiology , Sepsis/etiology , Catheterization, Peripheral/adverse effects , Risk Factors , Catheterization, Central Venous/adverse effects
11.
Eur J Med Res ; 29(1): 88, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291502

ABSTRACT

BACKGROUND: Prostate cancer poses a considerable threat to human health. At present, the mechanism of tumor progression remains unclear. ZNF692 is overexpressed in many tumors, and the high expression of ZNF692 is correlated with tumor aggressiveness and tumor phenotype of prostate cancer, suggesting that ZNF692 may play an important role in tumor biology of prostate cancer. This paper aims to elucidate the relationship between them. METHODS: The expression level of ZNF692 was verified in normal prostate cells (RWPE-1) and prostate cancer cells (LNCaP, PC3, DU145). PC3 cells were selected to construct the ZNF692 knockout prostate cancer cell line. The changes of cell proliferation, apoptosis, invasion and metastasis were detected by CCK8, Edu staining, Transwell assay and scratch assay. The expression levels of related proteins were detected by Western blot. RESULTS: At the cellular level, ZNF692 was overexpressed to varying degrees in prostate cancer cell lines, with the highest expression in PC3 cell lines. CCK8 and Edu results showed that the proliferation of prostate cancer PC3 cells that knocked down ZNF692 was slowed. Transwell assay and scratch assay showed reduced invasion and migration of prostate cancer PC3 cells that knocked out ZNF692. Flow cytometry showed that the apoptosis rate of prostate cancer PC3 cells after ZNF692 knockout was increased. In addition, after ZNF692 silencing, the expression level of epithelial phenotype E-cadherin increased in PC3 cells, while the expression level of interstitial phenotype N-cadherin, Vimentin, c-Myc, and CyclinA1 decreased. The state of prostate cancer PC3 cells that overexpressed ZNF692 was reversed from the state after ZNF692 was knocked down. CONCLUSION: ZNF692 can be used as a new prognostic marker and a potential biologic therapeutic target for PCa. By inhibiting the expression of c-myc and cyclinA1, the EMT signaling pathway is regulated to provide evidence for its potential molecular mechanism.


Subject(s)
Prostatic Neoplasms , Signal Transduction , Humans , Male , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction/genetics
12.
Viruses ; 15(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38005816

ABSTRACT

Both Manganese (Mn2+) and MSA-2 can activate the downstream signal pathway through stimulator of interferon genes (STING) and induce the expression of type I interferon, which is important for hosts to protect against DNA viruses. However, its effect on RNA viruses remains unknown. In this study, we used Seneca Valley virus (SVV) as a model RNA virus to investigate the inhibitory effects of Mn2+ and MSA-2 on the virus replication in the porcine cells (PK-15 cells). The results showed that both MSA-2 and Mn2+ were able to inhibit the SVV replication in PK-15 cells. The combination of MAS-2 and Mn2+ could confer better protection against SVV. Further studies showed that MSA-2 and Mn2+ could activate TBK1, IRF3 and NFκB through STING and induce the expression of IFN-ß, IL-6 and TNF-α. The present study confirmed that MSA-2 synergized with Mn2+ in STING activation to generate a better antiviral effect in vitro, which would be helpful for the further development of effective antiviral drugs in the future.


Subject(s)
Interferon Type I , Picornaviridae , Animals , Swine , Manganese/pharmacology , Signal Transduction , Interferon Type I/metabolism , Picornaviridae/metabolism
13.
Viruses ; 15(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38005886

ABSTRACT

Seneca Valley Virus (SVV), a member of the Picornaviridae family, is an emerging porcine virus that can cause vesicular disease in pigs. However, the immune evasion mechanism of SVV remains unclear, as does its interaction with other pathways. STING (Stimulator of interferon genes) is typically recognized as a critical factor in innate immune responses to DNA virus infection, but its role during SVV infection remains poorly understood. In the present study, we observed that STING was degraded in SVV-infected PK-15 cells, and SVV replication in the cells was affected when STING was knockdown or overexpressed. The STING degradation observed was blocked when the SVV-induced autophagy was inhibited by using autophagy inhibitors (Chloroquine, Bafilomycin A1) or knockdown of autophagy related gene 5 (ATG5), suggesting that SVV-induced autophagy is responsible for STING degradation. Furthermore, the STING degradation was inhibited when reticulophagy regulator 1 (FAM134B), a reticulophagy related receptor, was knocked down, indicating that SVV infection induces STING degradation via reticulophagy. Further study showed that in eukaryotic translation initiation factor 2 alpha kinase 3 (PERK)/activating transcription factor 6 (ATF6) deficient cells, SVV infection failed to induce reticulophagy-medaited STING degradation, indicating that SVV infection caused STING degradation via PERK/ATF6-mediated reticulophagy. Notably, blocking reticulophagy effectively hindered SVV replication. Overall, our study suggested that SVV infection resulted in STING degradation via PERK and ATF6-mediated reticulophagy, which may be an immune escape strategy of SVV. This finding improves the understanding of the intricate interplay between viruses and their hosts and provides a novel strategy for the development of novel antiviral drugs.


Subject(s)
Activating Transcription Factor 6 , Picornaviridae , Animals , Swine , Activating Transcription Factor 6/metabolism , Picornaviridae/metabolism , Autophagy , Immune Evasion
14.
Nat Commun ; 14(1): 7900, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036550

ABSTRACT

Left ventricular regional wall thickness (LVRWT) is an independent predictor of morbidity and mortality in cardiovascular diseases (CVDs). To identify specific genetic influences on individual LVRWT, we established a novel deep learning algorithm to calculate 12 LVRWTs accurately in 42,194 individuals from the UK Biobank with cardiac magnetic resonance (CMR) imaging. Genome-wide association studies of CMR-derived 12 LVRWTs identified 72 significant genetic loci associated with at least one LVRWT phenotype (P < 5 × 10-8), which were revealed to actively participate in heart development and contraction pathways. Significant causal relationships were observed between the LVRWT traits and hypertrophic cardiomyopathy (HCM) using genetic correlation and Mendelian randomization analyses (P < 0.01). The polygenic risk score of inferoseptal LVRWT at end systole exhibited a notable association with incident HCM, facilitating the identification of high-risk individuals. The findings yield insights into the genetic determinants of LVRWT phenotypes and shed light on the biological basis for HCM etiology.


Subject(s)
Cardiomyopathy, Hypertrophic , Genome-Wide Association Study , Humans , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/genetics , Heart , Heart Ventricles/pathology , Phenotype
15.
Biol Trace Elem Res ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37828391

ABSTRACT

Chronic fluorosis has been widely investigated for its adverse effects on skeletal and neurological health; however, its impact on reproductive health, especially in females, remains underexplored. In this study, female Sprague-Dawley rats were exposed to different fluoride concentrations (0.75, 50, and 100 mg/L) in their drinking water for six months. Dental fluorosis and increased urinary fluoride content were observed in fluoride-exposed rats, reflecting fluoride accumulation and exposure levels. Chronic fluorosis resulted in reduced ovary organ coefficient, indicating harmful effects on ovarian tissue. Additionally, the number of ovarian primordial and primary/secondary follicles decreased, while the number of atresia follicles increased. Furthermore, chronic fluorosis led to disrupted estrous cycles. Hormonal analysis revealed altered secretion of estrogen, progesterone, anti-Müllerian hormone, luteinizing hormone, follicular stimulating hormone, and inhibin B in response to fluoride exposure. Ultrastructural observation of ovarian granulosa cells showed evidence of apoptosis, which was further confirmed by flow cytometry. Caspase-3 activity was increased, and ATP levels were decreased, suggesting mitochondrial impairment and apoptosis induction. The mRNA and protein expression of BMP15 and GDF9, essential regulators of ovarian function, significantly decreased with increasing fluoride concentration. Furthermore, gene expression analysis identified a panel of premature ovarian failure-related genes that were downregulated in fluoride-exposed rat ovaries. These findings suggest that chronic fluoride exposure may contribute to ovarian dysfunction and possibly the pathogenesis of premature ovarian failure. Understanding the toxicological effects of chronic fluoride exposure on ovarian function is essential for identifying potential environmental risk factors affecting female reproductive health.

16.
Cancer Res ; 83(21): 3650-3666, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37669142

ABSTRACT

Alternative polyadenylation (APA) is emerging as a major mechanism of posttranscriptional regulation. APA can impact the development and progression of cancer, suggesting that the genetic determinants of APA might play an important role in regulating cancer risk. Here, we depicted a pan-cancer atlas of human APA quantitative trait loci (apaQTL), containing approximately 0.7 million apaQTLs across 32 cancer types. Systematic multiomics analyses indicated that cancer apaQTLs could contribute to APA regulation by altering poly(A) motifs, RNA-binding proteins (RBP), and chromatin regulatory elements and were preferentially enriched in genome-wide association studies (GWAS)-identified cancer susceptibility loci. Moreover, apaQTL-related genes (aGene) were broadly related to cancer signaling pathways, high mutational burden, immune infiltration, and drug response, implicating their potential as therapeutic targets. Furthermore, apaQTLs were mapped in Chinese colorectal cancer tumor tissues and then screened for functional apaQTLs associated with colorectal cancer risk in 17,789 cases and 19,951 controls using GWAS-ChIP data, with independent validation in a large-scale population consisting of 6,024 cases and 10,022 controls. A multi-ancestry-associated apaQTL variant rs1020670 with a C>G change in DNM1L was identified, and the G allele contributed to an increased risk of colorectal cancer. Mechanistically, the risk variant promoted aberrant APA and facilitated higher usage of DNM1L proximal poly(A) sites mediated by the RBP CSTF2T, which led to higher expression of DNM1L with a short 3'UTR. This stabilized DNM1L to upregulate its expression, provoking colorectal cancer cell proliferation. Collectively, these findings generate a resource for understanding APA regulation and the genetic basis of human cancers, providing insights into cancer etiology. SIGNIFICANCE: Cancer risk is mediated by alternative polyadenylation quantitative trait loci, including the rs1020670-G variant that promotes alternative polyadenylation of DNM1L and increases colorectal cancer risk.


Subject(s)
Colorectal Neoplasms , Genome-Wide Association Study , Humans , Polyadenylation/genetics , Gene Expression Regulation , Quantitative Trait Loci , Colorectal Neoplasms/genetics , 3' Untranslated Regions/genetics
17.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685945

ABSTRACT

Holotrichia parallela is an important plant pest. Comparative feeding experiments showed that the egg production, oviposition duration and survival rate of H. parallela beetles were significantly higher when they fed on elm leaves than when they fed on willow or purpus privet leaves. RNA sequencing was used to determine transcriptomic changes associated with oviposition. Comparative transcriptome analysis revealed that the beetles that fed on elm and willow had a total of 171 genes with differential expression. When the beetles fed on elm and purpus privet, 3568 genes had differential expression. The vitellogenesis, ovarian serine protease, odorant-binding proteins, acyl-CoA synthetase and follicle cell proteins were commonly upregulated genes in elm-fed beetles compared with those fed on willow/purpus privet leaves. The involvement of the follicle cell protein 3C gene in the regulation of oviposition was confirmed using RNA interference. The results provide insights into the molecular mechanisms underlying oviposition in H. parallela feeding on different host plants. This study also describes a method for identifying potentially effective genes for pest control.


Subject(s)
Chlorophyceae , Coleoptera , Female , Animals , Transcriptome , Oviposition , Gene Expression Profiling , Coleoptera/genetics
18.
Zygote ; 31(6): 557-569, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37737063

ABSTRACT

The aim was to explore the implications of follicular output rate (FORT), ovarian sensitivity index (OSI), ovarian response prediction index (ORPI), and follicle-to-oocyte index (FOI) in low-prognosis patients defined by POSEIDON criteria. In total, 4030 fresh in vitro fertilization (IVF) cycles from January 2013 to October 2021 were included in this retrospective cohort analysis and were categorized into four groups based on the POSEIDON criteria. The FORT between Groups 1 and 2 (0.61 ± 0.34 vs. 0.65 ± 0.35, P = 0.081) and Groups 3 and 4 (1.08 ± 0.82 vs. 1.09 ± 0.94, P = 0.899) were similar. The OSI in the order from the highest to the lowest were 3.01 ± 1.46 in Group 1, 2.28 ± 1.09 in Group 2, 1.54 ± 1.04 in Group 3, and 1.34 ± 0.96 in Group 4 (P < 0.001). The trend in the ORPI values was consistent with that in the OSI. FORT, OSI, ORPI, and FOI complemented each other and offered excellent effectiveness in reflecting ovarian reserve and response, but they were not good predictors of clinical pregnancy rate (CPR) from IVF.


Subject(s)
Ovarian Reserve , Pregnancy , Female , Humans , Retrospective Studies , Ovarian Reserve/physiology , Pregnancy Rate , Fertilization in Vitro , Prognosis , Ovulation Induction
19.
Nat Commun ; 14(1): 5958, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749132

ABSTRACT

Genome-wide association studies have identified numerous variants associated with human complex traits, most of which reside in the non-coding regions, but biological mechanisms remain unclear. However, assigning function to the non-coding elements is still challenging. Here we apply Activity-by-Contact (ABC) model to evaluate enhancer-gene regulation effect by integrating multi-omics data and identified 544,849 connections across 20 cancer types. ABC model outperforms previous approaches in linking regulatory variants to target genes. Furthermore, we identify over 30,000 enhancer-gene connections in colorectal cancer (CRC) tissues. By integrating large-scale population cohorts (23,813 cases and 29,973 controls) and multipronged functional assays, we demonstrate an ABC regulatory variant rs4810856 associated with CRC risk (Odds Ratio = 1.11, 95%CI = 1.05-1.16, P = 4.02 × 10-5) by acting as an allele-specific enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which synergistically activate p-AKT signaling. Our study provides comprehensive regulation maps and illuminates a single variant regulating multiple genes, providing insights into cancer etiology.


Subject(s)
Genome-Wide Association Study , Neoplasms , Humans , Regulatory Sequences, Nucleic Acid , Gene Expression Regulation , Chromosome Mapping , Alleles , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Enhancer Elements, Genetic/genetics , Neoplasms/genetics , Cytoskeletal Proteins/genetics , RNA-Binding Proteins/genetics
20.
Arch Toxicol ; 97(10): 2799-2812, 2023 10.
Article in English | MEDLINE | ID: mdl-37587385

ABSTRACT

Tens of thousands of long non-coding RNAs (lncRNAs) have been identified through RNA-seq analysis, but the biological and pathological significance remains unclear. By integrating the genome-wide lncRNA data with a cross-ancestry meta-analysis of PDAC GWASs, we depicted a comprehensive atlas of pancreatic ductal adenocarcinoma (PDAC)-associated lncRNAs, containing 1,204 lncRNA (445 novel lncRNAs and 759 GENCODE annotated lncRNAs) and 4,368 variants. Furthermore, we found that PDAC-associated lncRNAs could function by altering chromatin activity, transcription factors, and RNA-binding proteins binding affinity. Importantly, genetic variants linked to PDAC are preferentially found at PDAC-associated lncRNA regions, supporting the biological and clinical relevance of PDAC-associated lncRNAs. Finally, we prioritized a novel transcript (MICT00000110172.1) of RP11-638I2.4 as a potential tumor promoter. MICT00000110172.1 is able to reinforce the interaction with YY1, which could reverse the effect of YY1 on pancreatic cancer cell cycle arrest to promote the pancreatic cancer growth. G > A change at rs2757535 in the second exon of MICT00000110172.1 induces a spatial structural change and creates a target region for YY1 binding, which enforces the effect of MICT00000110172.1 in an allele-specific manner, and thus confers susceptibility to tumorigenesis. In summary, our results extend the repertoire of PDAC-associated lncRNAs that could act as a starting point for future functional explorations, and the identification of lncRNA-based target therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Alleles , YY1 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...