Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 420
Filter
2.
J Mater Chem B ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949411

ABSTRACT

Most existing hydrogels, even recently developed injectable hydrogels that undergo a reversible sol-gel phase transition in response to external stimuli, are designed to gel immediately before or after implantation/injection to prevent the free diffusion of materials and drugs; however, the property of immediate gelation leads to a very weak tumour-targeting ability, limiting their application in anticancer therapy. Therefore, the development of tumour-specific responsive hydrogels for anticancer therapy is imperative because tumour-specific responses improve their tumour-targeting efficacy, increase therapeutic effects, and decrease toxicity and side effects. In this review, we introduce the following three types of tumour-responsive hydrogels: (1) hydrogels that gel specifically at the tumour site; (2) hydrogels that decompose specifically at the tumour site; and (3) hydrogels that react specifically with tumours. For each type, their compositions, the mechanisms of tumour-specific responsiveness and their applications in anticancer treatment are comprehensively discussed.

3.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998912

ABSTRACT

Managing chronic non-healing wounds presents a significant clinical challenge due to their frequent bacterial infections. Mesoporous silica-based materials possess robust wound-healing capabilities attributed to their renowned antimicrobial properties. The current study details the advancement of mesoporous silicon-loaded MnO and CaO molecules (HMn-Ca) against bacterial infections and chronic non-healing wounds. HMn-Ca was synthesized by reducing manganese chloride and calcium chloride by urotropine solution with mesoporous silicon as the template, thereby transforming the manganese and calcium ions on the framework of mesoporous silicon. The developed HMn-Ca was investigated using scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet-visible (UV-visible), and visible spectrophotometry, followed by the determination of Zeta potential. The production of reactive oxygen species (ROS) was determined by using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction. The wound healing effectiveness of the synthesized HMn-Ca is evaluated in a bacterial-infected mouse model. The loading of MnO and CaO inside mesoporous silicon enhanced the generation of ROS and the capacity of bacterial capture, subsequently decomposing the bacterial membrane, leading to the puncturing of the bacterial membrane, followed by cellular demise. As a result, treatment with HMn-Ca could improve the healing of the bacterial-infected wound, illustrating a straightforward yet potent method for engineering nanozymes tailored for antibacterial therapy.


Subject(s)
Manganese Compounds , Nanoparticles , Oxides , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Animals , Mice , Nanoparticles/chemistry , Oxides/chemistry , Oxides/pharmacology , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Porosity , Reactive Oxygen Species/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Oxidation-Reduction , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Manganese/chemistry , Manganese/pharmacology , Microbial Sensitivity Tests
4.
Chem Commun (Camb) ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988317

ABSTRACT

A novel NIR-II nanoprobe was developed through regulating the steric effect of an A-DA'D-A dye. The probe features the properties of strong fluorescence, high stability, and a large Stokes shift, thereby serving as a remarkable contrast agent for the fluorescence imaging of hindlimb vasculature and tumors in live mice.

5.
Vaccine ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824085

ABSTRACT

The conventional inactivated tetanus toxin plays an instrumental role in preventing tetanus. Nevertheless, the challenges associated with its production process, the potential for adverse reactions, and reduced effectiveness in vulnerable populations such as neonates and the elderly rise the need for a novel tetanus toxin vaccine. Recombinant subunit vaccine offer a viable solution, and the tetanus toxin fragment C (TTFC) is emerging as a promising candidate. In this study, through spontaneous isopeptide bond formation we conjugated the recombinant TTFC to self-assembled mi3 nanoparticle, which derived from an optimized KDPG aldolase, and generated the TTFC-mi3 protein nanoparticle vaccine. We found that TTFC-mi3 is stable, uniform spherical nanoparticles. Comparing with the free TTFC alone, TTFC-mi3 enhances the uptake and subsequent activation of dendric cells (DCs). In addition, a single dose of adjuvant-free TTFC-mi3 elicited a more rapid and potent protective immunity in mice. Moreover, TTFC-mi3 is of favorable safety in vitro and in vivo. Our findings indicate that TTFC-mi3 is a rapid-response, non-aluminum-adjuvanted vaccine against tetanus.

6.
Materials (Basel) ; 17(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930289

ABSTRACT

The field of electronic skin has received considerable attention due to its extensive potential applications in areas including tactile sensing and health monitoring. With the development of electronic skin devices, electronic skin can be attached to the surface of human skin for long-term health monitoring, which makes comfort an essential factor that cannot be ignored in the design of electronic skin. Therefore, this paper proposes an assessment method for evaluating the comfort of electronic skin based on neurodynamic analysis. The holistic analysis framework encompasses the mechanical model of the skin, the modified Hodgkin-Huxley model for the transduction of stimuli, and the gate control theory for the modulation and perception of pain sensation. The complete process, from mechanical stimulus to the generation of pain perception, is demonstrated. Furthermore, the influence of different factors on pain perception is investigated. Sensation and comfort diagrams are provided to assess the mechanical comfort of electronic skin. The comfort assessment method proposed in this paper provides a theoretical basis when assessing the comfort of electronic skin.

7.
Small Methods ; : e2400707, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923411

ABSTRACT

For N-type tunnel-oxide-passivated-contact silicon solar cells, optimal Ag/Al-Si contact interface is crucial to improve the efficiency. However, the specific roles of Ag and Al at the interface have not been clearly elucidated. Hence, this work delves into the sintering process of Ag/Al paste and examines the impact of the Ag/Al-Si interface structure on contact quality. By incorporating TeO2 into PbO-based Ag/Al paste, the Ag/Al-Si interface structure can be modulated. It can be found that TeO2 accelerates the sintering of Ag powder and increases Ag colloids within glass layer, while it simultaneously impedes the diffusion of molten Al. It leads to a reduced Al content near the Ag/Al-Si interface and a shorter diffusion distance of Al into Si. Notably, it can be demonstrated that the diffusion of Al in Si layer is more effective to reduce the contact resistance than the precipitation of Ag colloids. Therefore, the PbO-based Ag/Al paste, which favors Al diffusion, leads to solar cells with lower contact resistance and series resistance, higher fill factor, and superior photoelectric conversion efficiency. In brief, this work is significant for optimizing metallization of silicon solar cells and other semiconductor devices.

8.
Adv Mater ; : e2406026, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923609

ABSTRACT

While the construction of a donor-acceptor (D-A) structure has gained great attention across various scientific disciplines, such structures are seldomly reported within the field of hydrogen-bonded organic frameworks (HOFs). Herein, a D-A based HOF is synthesized, where the adjacent D-A pairs are connected by hydrogen bonds instead of the conventionally employed covalent bonds. This structural feature imparts material with a reduced energy gap between excited state and triplet state, thereby facilitating the intersystem crossing (ISC) and boosting the generation rate of single oxygen (quantum yield = 0.98). Consequently, the resulting material shows high performance for antimicrobial photodynamic therapy (PDT). The impact of D-A moiety is evident when comparing this finding to a parallel study conducted on an isoreticular HOF without a D-A structure. The study presented here provides in-depth insights into the photophysical properties of D-A pair in a hydrogen-bonded network, opening a new avenue to the design of innovative materials for efficient PDT.

9.
Expert Opin Ther Pat ; 34(8): 701-721, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38884569

ABSTRACT

INTRODUCTION: KRAS is a critical oncogenic protein intricately involved in tumor progression, and the difficulty in targeting KRAS has led it to be classified as an 'undruggable target.' Among the various KRAS mutations, KRASG12D is highly prevalent and represents a promising therapeutic target, yet there are currently no approved inhibitors for it. AREA COVERED: This review summarizes numerous patents and literature featuring inhibitors or degraders of KRASG12D through searching relevant information in PubMed, SciFinder and Web of Science databases from 2021 to February 2024, providing an overview of the research progress on inhibiting KRASG12D in terms of design strategies, chemical structures, biological activities, and clinical advancements. EXPERT OPINION: Since the approval of AMG510 (Sotorasib), there has been an increasing focus on the inhibition of KRASG12D, leading to numerous reports of related inhibitors and degraders. Among them, MRTX1133, as the first KRASG12D inhibitor to enter clinical trials, has demonstrated excellent tumor suppression in various KRASG12D-bearing human tumor xenograft models. It is important to note, however, that understanding the mechanisms of acquired resistance caused by KRAS inhibition and developing additional combination therapies is crucial. Moreover, seeking covalent inhibition of KRASG12D also holds significant potential.


Subject(s)
Antineoplastic Agents , Neoplasms , Patents as Topic , Proto-Oncogene Proteins p21(ras) , Humans , Animals , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Mutation , Drug Design , Drug Development , Drug Resistance, Neoplasm , Molecular Targeted Therapy , Piperazines , Pyridines , Pyrimidines
10.
Nano Lett ; 24(27): 8320-8326, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935843

ABSTRACT

Magnetic topological materials with coexisting magnetism and nontrivial band structures exhibit many novel quantum phenomena, including the quantum anomalous Hall effect, the axion insulator state, and the Weyl semimetal phase. As a stoichiometric layered antiferromagnetic topological insulator, thin films of MnBi2Te4 show fascinating even-odd layer-dependent physics. In this work, we fabricate a series of thin-flake MnBi2Te4 devices using stencil masks and observe the Chern insulator state at high magnetic fields. Upon magnetic field training, a large exchange bias effect is observed in odd but not in even septuple layer (SL) devices. Through theoretical calculations, we attribute the even-odd layer-dependent exchange bias effect to the contrasting surface and bulk magnetic properties of MnBi2Te4 devices. Our findings reveal the microscopic magnetic configuration of MnBi2Te4 thin flakes and highlight the challenges in replicating the zero magnetic field quantum anomalous Hall effect in odd SL MnBi2Te4 devices.

11.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931727

ABSTRACT

In recent years, underwater wireless ultrasonic energy transmission technology (UWUET) has attracted much attention because it utilizes the propagation characteristics of ultrasound in water. Effectively evaluating the performance of underwater ultrasonic wireless energy transmission is a key issue in engineering design. The current approach to performance evaluation is usually based on the system energy transfer efficiency as the main criterion, but this criterion mainly considers the overall energy conversion efficiency between the transmitting end and the receiving end, without an in-depth analysis of the characteristics of the distribution of the underwater acoustic field and the energy loss that occurs during the propagation of acoustic waves. In addition, existing methods focusing on acoustic field analysis tend to concentrate on a single parameter, ignoring the dynamic distribution of acoustic energy in complex aquatic environments, as well as the effects of changes in the underwater environment on acoustic propagation, such as spatial variability in temperature and salinity. These limitations reduce the usefulness and accuracy of models in complex marine environments, which in turn reduces the efficiency of acoustic energy management and optimization. To solve these problems, this study proposes a method to evaluate the performance of underwater ultrasonic energy radiation based on the spatial distribution characteristics of acoustic power. By establishing an acoustic power distribution model in a complex impedance-density aqueous medium and combining numerical simulation and experimental validation, this paper explores the spatial variation of acoustic power and its impact on the energy transfer efficiency in depth. Using high-resolution spatial distribution data and actual environmental parameters, the method significantly improves the accuracy of the assessment and the adaptability of the model in complex underwater environments. The results show that, compared with the traditional method, this method performs better in terms of the accuracy of the acoustic energy radiation calculation results, and is able to reflect the energy distribution and spatial heterogeneity of the acoustic source more comprehensively, which provides an important theoretical basis and practical guidance for the optimal design and performance enhancement of the underwater ultrasonic wireless energy transmission system.

12.
Nat Commun ; 15(1): 4989, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862510

ABSTRACT

Optical phase conjugation (OPC) is a nonlinear technique used for counteracting wavefront distortions, with applications ranging from imaging to beam focusing. Here, we present a diffractive wavefront processor to approximate all-optical phase conjugation. Leveraging deep learning, a set of diffractive layers was optimized to all-optically process an arbitrary phase-aberrated input field, producing an output field with a phase distribution that is the conjugate of the input wave. We experimentally validated this wavefront processor by 3D-fabricating diffractive layers and performing OPC on phase distortions never seen during training. Employing terahertz radiation, our diffractive processor successfully performed OPC through a shallow volume that axially spans tens of wavelengths. We also created a diffractive phase-conjugate mirror by combining deep learning-optimized diffractive layers with a standard mirror. Given its compact, passive and multi-wavelength nature, this diffractive wavefront processor can be used for various applications, e.g., turbidity suppression and aberration correction across different spectral bands.

13.
Sci Adv ; 10(24): eadn9420, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865455

ABSTRACT

We introduce an information-hiding camera integrated with an electronic decoder that is jointly optimized through deep learning. This system uses a diffractive optical processor, which transforms and hides input images into ordinary-looking patterns that deceive/mislead observers. This information-hiding transformation is valid for infinitely many combinations of secret messages, transformed into ordinary-looking output images through passive light-matter interactions within the diffractive processor. By processing these output patterns, an electronic decoder network accurately reconstructs the original information hidden within the deceptive output. We demonstrated our approach by designing information-hiding diffractive cameras operating under various lighting conditions and noise levels, showing their robustness. We further extended this framework to multispectral operation, allowing the concealment and decoding of multiple images at different wavelengths, performed simultaneously. The feasibility of our framework was also validated experimentally using terahertz radiation. This optical encoder-electronic decoder-based codesign provides a high speed and energy efficient information-hiding camera, offering a powerful solution for visual information security.

14.
Small ; : e2401360, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708800

ABSTRACT

Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.

15.
Chem Commun (Camb) ; 60(44): 5666-5682, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742398

ABSTRACT

Urea is an indispensable nitrogen-containing organic compound in modern human life. However, the current industrial synthesis of urea involves ammonia, which is produced through the Haber-Bosch process under harsh reaction conditions, causing huge energy consumption and heavy environmental pollution. Electrochemical reduction of carbon dioxide (CO2) and nitrogenous species (N2, NOx- and NO) have achieved significant progress, offering a promising approach for the electrochemical C-N coupling to produce urea under ambient conditions. Urea synthesis driven by renewable electricity represents a suitable alternative to the traditional process, contributing to the goal of carbon neutrality and nitrogen cycles. However, challenges such as low yield rate, poor selectivity and unveiled reaction mechanisms still need to be addressed. This review provides a summary of the latest catalysts utilized in urea electrosynthesis, aiming to provide guidance and prospects for the development of high-performance catalysts.

16.
Nat Commun ; 15(1): 4474, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796514

ABSTRACT

Olfaction feedback systems could be utilized to stimulate human emotion, increase alertness, provide clinical therapy, and establish immersive virtual environments. Currently, the reported olfaction feedback technologies still face a host of formidable challenges, including human perceivable delay in odor manipulation, unwieldy dimensions, and limited number of odor supplies. Herein, we report a general strategy to solve these problems, which associates with a wearable, high-performance olfactory interface based on miniaturized odor generators (OGs) with advanced artificial intelligence (AI) algorithms. The OGs serve as the core technology of the intelligent olfactory interface, which exhibit milestone advances in millisecond-level response time, milliwatt-scale power consumption, and the miniaturized size. Empowered by robust AI algorithms, the olfactory interface shows its great potentials in latency-free mixed reality (MR) and fast olfaction enhancement, thereby establishing a bridge between electronics and users for broad applications ranging from entertainment, to education, to medical treatment, and to human machine interfaces.


Subject(s)
Algorithms , Artificial Intelligence , Odorants , Smell , Wearable Electronic Devices , Humans , Smell/physiology , User-Computer Interface , Adult , Male
17.
Nat Commun ; 15(1): 4250, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762497

ABSTRACT

Axion insulators possess a quantized axion field θ = π protected by combined lattice and time-reversal symmetry, holding great potential for device applications in layertronics and quantum computing. Here, we propose a high-spin axion insulator (HSAI) defined in large spin-s representation, which maintains the same inherent symmetry but possesses a notable axion field θ = (s + 1/2)2π. Such distinct axion field is confirmed independently by the direct calculation of the axion term using hybrid Wannier functions, layer-resolved Chern numbers, as well as the topological magneto-electric effect. We show that the guaranteed gapless quasi-particle excitation is absent at the boundary of the HSAI despite its integer surface Chern number, hinting an unusual quantum anomaly violating the conventional bulk-boundary correspondence. Furthermore, we ascertain that the axion field θ can be precisely tuned through an external magnetic field, enabling the manipulation of bonded transport properties. The HSAI proposed here can be experimentally verified in ultra-cold atoms by the quantized non-reciprocal conductance or topological magnetoelectric response. Our work enriches the understanding of axion insulators in condensed matter physics, paving the way for future device applications.

18.
Diabetol Metab Syndr ; 16(1): 102, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760860

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) encompasses an array of cardiac and vascular disorders, posing a significant threat to global health. It remains unclear whether there exists an association between triglyceride-glucose index (TyG) and its derived indices and the incidence of cardiovascular disease, and in particular, the strength of the association in populations with different glucose metabolisms is not known. METHODS: Data extracted from the National Health and Nutrition Examination Survey (NHANES) covering the period from 1999 to 2020, involving a cohort of 14,545 participants, were leveraged for the analysis. Statistical assessments were executed utilizing R software, employing multivariable logistic regression models to scrutinize the correlation between TyG and its associated parameters with the incidence of cardiovascular disease across diverse glucose metabolism categories. Interaction analyses and restricted cubic splines were applied to evaluate potential heterogeneity in associations and investigate the link between TyG and its derivatives with the occurrence of cardiovascular disease. Furthermore, receiver operating characteristic curves were constructed to evaluate the extent of variability in the predictive performance of TyG and its derived parameters for cardiovascular disease across distinct glucose metabolic statuses. RESULTS: This study found that TyG and its related parameters were differentially associated with the occurrence of cardiovascular disease in different glucose metabolic states. Curvilinear correlations were found between TyG in the IFG population and TyG-WC, TyG-BMI, and TyG-WHtR in the impaired glucose tolerance (IGT) population with the occurrence of cardiovascular disease. In addition, the introduction of TyG and its derived parameters into the classical Framingham cardiovascular risk model improved the predictive performance in different glucose metabolism populations. Among them, the introduction of TyG-WHtR in the normal glucose tolerance (NGT), impaired fasting glucose (IFG), IFG & IGT and diabetes groups and TyG in the IGT group maximized the predictive power. CONCLUSIONS: The findings provide new insights into the relationship between the TyG index and its derived parameters in different glucose metabolic states and the risk of cardiovascular disease, offering important reference value for future clinical practice and research. The study highlights the potential for improved risk stratification and prevention strategies based on TyG and its derived parameters.

19.
Light Sci Appl ; 13(1): 120, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802376

ABSTRACT

Complex field imaging, which captures both the amplitude and phase information of input optical fields or objects, can offer rich structural insights into samples, such as their absorption and refractive index distributions. However, conventional image sensors are intensity-based and inherently lack the capability to directly measure the phase distribution of a field. This limitation can be overcome using interferometric or holographic methods, often supplemented by iterative phase retrieval algorithms, leading to a considerable increase in hardware complexity and computational demand. Here, we present a complex field imager design that enables snapshot imaging of both the amplitude and quantitative phase information of input fields using an intensity-based sensor array without any digital processing. Our design utilizes successive deep learning-optimized diffractive surfaces that are structured to collectively modulate the input complex field, forming two independent imaging channels that perform amplitude-to-amplitude and phase-to-intensity transformations between the input and output planes within a compact optical design, axially spanning ~100 wavelengths. The intensity distributions of the output fields at these two channels on the sensor plane directly correspond to the amplitude and quantitative phase profiles of the input complex field, eliminating the need for any digital image reconstruction algorithms. We experimentally validated the efficacy of our complex field diffractive imager designs through 3D-printed prototypes operating at the terahertz spectrum, with the output amplitude and phase channel images closely aligning with our numerical simulations. We envision that this complex field imager will have various applications in security, biomedical imaging, sensing and material science, among others.

20.
Int J Biol Macromol ; 272(Pt 2): 132602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788868

ABSTRACT

Tung oil is commonly utilized for coating protection in wooden products, often attracting attention for its appearance, antimicrobial capabilities, and insect-resistant coatings. However, its poor mechanical properties and poor weather resistance stem from excessive self-crosslinking of surplus conjugated double bonds and molecular chains, resulting in poor film wrinkling. Therefore, this study introduces natural rubber via the Diels-Alder reaction to consume the residual double bonds in tung oil, resulting in tung oil/natural rubber composite coatings (NRTO) with excellent mechanical properties and weather resistance. The results indicate that NRTO exhibits excellent mechanical properties, including high elongation (32 %) and strong adhesion (4.55 MPa). Furthermore, NRTO demonstrates outstanding acid resistance and UV aging resistance. Given its many benefits, NRTO film emerges as a promising candidate for substantially protecting wood surfaces in demanding environments.


Subject(s)
Plant Oils , Rubber , Wood , Rubber/chemistry , Wood/chemistry , Plant Oils/chemistry , Cycloaddition Reaction , Mechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...