Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 11(1): 81, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081504

ABSTRACT

BACKGROUND: A large proportion of prokaryotic microbes in marine sediments remains uncultured, hindering our understanding of their ecological functions and metabolic features. Recent environmental metagenomic studies suggested that many of these uncultured microbes contribute to the degradation of organic matter, accompanied by acetogenesis, but the supporting experimental evidence is limited. RESULTS: Estuarine sediments were incubated with different types of organic matters under anaerobic conditions, and the increase of uncultured bacterial populations was monitored. We found that (1) lignin stimulated the increase of uncultured bacteria within the class Dehalococcoidia. Their ability to metabolize lignin was further supported by the presence of genes associated with a nearly complete degradation pathway of phenolic monomers in the Dehalococcoidia metagenome-assembled genomes (MAGs). (2) The addition of cellulose stimulated the increase of bacteria in the phylum Ca. Fermentibacterota and family Fibrobacterales, a high copy number of genes encoding extracellular endoglucanase or/and 1,4-beta-cellobiosidase for cellulose decomposition and multiple sugar transporters were present in their MAGs. (3) Uncultured lineages in the order Bacteroidales and the family Leptospiraceae were enriched by the addition of casein and oleic acid, respectively, a high copy number of genes encoding extracellular peptidases, and the complete ß-oxidation pathway were found in those MAGs of Bacteroidales and Leptospiraceae, respectively. (4) The growth of unclassified bacteria of the order Clostridiales was found after the addition of both casein and cellulose. Their MAGs contained multiple copies of genes for extracellular peptidases and endoglucanase. Additionally, 13C-labeled acetate was produced in the incubations when 13C-labeled dissolved inorganic carbon was provided. CONCLUSIONS: Our results provide new insights into the roles of microorganisms during organic carbon degradation in anaerobic estuarine sediments and suggest that these macro and single molecular organic carbons support the persistence and increase of uncultivated bacteria. Acetogenesis is an additional important microbial process alongside organic carbon degradation. Video Abstract.


Subject(s)
Carbon , Cellulase , Carbon/metabolism , Lignin/metabolism , Anaerobiosis , Caseins/genetics , Caseins/metabolism , Cellulase/genetics , Cellulase/metabolism , Bacteria/genetics , Bacteria/metabolism , Peptide Hydrolases/genetics , Geologic Sediments/microbiology , Phylogeny
2.
Opt Express ; 28(21): 31330-31344, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115108

ABSTRACT

Hot electron photodetectors based on a planar structure of metal-insulator /semiconductor-metal (MIM/MSM) have attracted much attention due to the easy and cheap fabrication process and the possibility of detecting light with energy lower than the semiconductor band gap. For this type of device, however, hot electron photocurrent is restricted by the trade-off between the light absorption and the internal quantum efficiency (IQE) since high absorption usually occurs within thick metals and the IQE in this case is usually low. The trade-off is circumvented in this paper by proposing a new type of hot electron photodetector based on planar MIM structure and coupled dual Tamm plasmons (TPs), which has a structure of one-dimensional photonic crystals (1DPCs)/Au/TiO2/Au/1DPCs. The coupled modes of the dual TPs at the two 1DPCs/Au interfaces can lead to a high absorption of 98% in a 5 nm-thick Au layer. As a result, the responsivity of the conventional device with two Schottky junctions in series configuration reaches a high value of 9.78 mA/W at the wavelength of 800 nm. To further improve the device performance, devices with four Schottky junctions in parallel configuration are proposed to circumvent the hot electrons loss at the interface of the Au layer and the first TiO2 layer of the 1DPCs. Correspondingly, the hot electrons photocurrent doubles and reaches a higher value of 21.87 mA/W. Moreover, the bandwidth of the responsivity is less than 0.4 nm, the narrowest one when compared with that for the hot electron photodetectors reported so far in the published papers.

3.
ACS Appl Mater Interfaces ; 11(51): 47992-48001, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31789018

ABSTRACT

Microcavity is an efficient approach to manufacture colorful semitransparent organic solar cells (ST-OSCs) with high color purity by tailoring the transmission spectrum to narrow peaks. However, in this type of colorful semitransparent devices, high power conversion efficiency (PCE) and high peak transmittance are not yet simultaneously achieved. This paper proposes a new type of microcavity structure to achieve colorful ST-OSCs with both high PCE and high peak transmittance, in which a hybrid Au/Ag electrode is used as a mirror and WO3 is used as a spacer layer. First, it is demonstrated that the hybrid Au/Ag electrode mirror brings about an improvement of 7.7 and 5.5% for PCE and peak transmittance, respectively, when compared with those of the reference devices using the Ag electrode mirror. Specifically, the PCE of the optimized devices reaches the satisfactory value of over 9%, and the peak transmittance is over 25%. This value of PCE is the highest one reported so far for the microcavity-based ST-OSCs with the same peak transmittance. Second, it is demonstrated that the second-order resonance of the microcavity can be used to improve the color purity of green ST-OSCs by narrowing the transmission peak, and the combination of the second-order and third-order resonance can be used to construct colorful ST-OSCs with mixed colors. Thus, a novel approach is developed to tune the color of ST-OSCs, which is based on high-order resonance modes of the microcavity.

4.
Proc Natl Acad Sci U S A ; 115(23): 6022-6027, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29773709

ABSTRACT

Members of the archaeal phylum Bathyarchaeota are among the most abundant microorganisms on Earth. Although versatile metabolic capabilities such as acetogenesis, methanogenesis, and fermentation have been suggested for bathyarchaeotal members, no direct confirmation of these metabolic functions has been achieved through growth of Bathyarchaeota in the laboratory. Here we demonstrate, on the basis of gene-copy numbers and probing of archaeal lipids, the growth of Bathyarchaeota subgroup Bathy-8 in enrichments of estuarine sediments with the biopolymer lignin. Other organic substrates (casein, oleic acid, cellulose, and phenol) did not significantly stimulate growth of Bathyarchaeota Meanwhile, putative bathyarchaeotal tetraether lipids incorporated 13C from 13C-bicarbonate only when added in concert with lignin. Our results are consistent with organoautotrophic growth of a bathyarchaeotal group with lignin as an energy source and bicarbonate as a carbon source and shed light into the cycling of one of Earth's most abundant biopolymers in anoxic marine sediment.


Subject(s)
Geologic Sediments/chemistry , Geologic Sediments/microbiology , Lignin/metabolism , Archaea/metabolism , Carbon/metabolism , Chemoautotrophic Growth/physiology , DNA, Archaeal/metabolism , Energy-Generating Resources , Lignin/chemistry , Methane/metabolism , RNA, Ribosomal, 16S/metabolism
5.
Appl Microbiol Biotechnol ; 102(1): 447-459, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29098412

ABSTRACT

In marine sediments, microorganisms are known to play important roles in nitrogen cycling; however, the composition and quantity of microbes taking part in each process of nitrogen cycling are currently unclear. In this study, two different types of marine sediment samples (shallow bay and deep-sea sediments) in the South China Sea (SCS) were selected to investigate the microbial community involved in nitrogen cycling. The abundance and composition of prokaryotes and seven key functional genes involved in five processes of the nitrogen cycle [nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox)] were presented. The results showed that a higher abundance of denitrifiers was detected in shallow bay sediments, while a higher abundance of microbes involved in ammonia oxidation, anammox, and DNRA was found in the deep-sea sediments. Moreover, phylogenetic differentiation of bacterial amoA, nirS, nosZ, and nrfA sequences between the two types of sediments was also presented, suggesting environmental selection of microbes with the same geochemical functions but varying physiological properties.


Subject(s)
Archaea/classification , Bacteria/classification , Geologic Sediments/microbiology , Nitrogen Cycle , Phylogeny , Seawater/microbiology , Archaea/genetics , Archaea/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Bays , China , Denitrification , Microbial Consortia/genetics , Microbial Consortia/physiology , Nitrates/metabolism , Nitrification , Nitrogen Fixation , Oxidation-Reduction , Oxidoreductases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL