Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953975

ABSTRACT

PURPOSE: Eccentric quasi-isometric (EQI) resistance training is emerging as a promising option in sports medicine and rehabilitation. Despite prior research on EQI contractions in quadriceps and biceps brachii, their use in hamstring injury contexts is underexplored. Therefore, our study examines and contrasts the biomechanics and fatigue effects of EQI training on knee extensors and flexors. METHODS: Following familiarization, 16 healthy, active participants (9 men, 7 women; 23.5 ± 2.6 years, 72.1 ± 12.8 kg, 173.4 ± 10.7 cm) performed, in random order, four EQI contractions for knee extensions and flexions, respectively. EQI contractions were isotonically loaded to 70% of concentric (60°·s-1) maximal voluntary contraction. Rest between repetitions was set at three minutes, while four minutes separated each muscle group. Peak torque, mean torque, and optimal angle were evaluated pre- and post-bouts. Inter-repetition contraction time and angular velocity were also assessed. RESULTS: Average torque was 160.9 ± 44.2 and 71.5 ± 23.2 Nm for the extensors and flexors. Peak and mean torque significantly decreased for both extensors (p < 0.001, d = 0.70-0.71) and flexors (p ≤ 0.022, d = 0.36) after EQI contractions, respectively. However, the optimal angle increased for extensors (p < 0.001, d = 1.00) but not flexors (p = 0.811, d = 0.06). During EQI contractions, knee flexors exhibited greater intra-repetition velocity than extensors (p = 0.002; η2 = 0.50). Decreases in inter-repetition time and range of motion were more consistent for the extensors. CONCLUSIONS: Distinct responses exist when comparing EQI contractions of the knee extensors and flexors, particularly their effect on peak torque angles. These findings suggest knee flexors may require lower relative intensities to align more closely with extensor EQI contractions.

2.
Sensors (Basel) ; 22(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36236672

ABSTRACT

Shear-wave elastography is a method that is increasingly used to assess muscle stiffness in clinical practice and human health research. Recently, shear-wave elastography has been suggested and used to assess exercise-induced muscle damage. This review aimed to summarize the current knowledge of the utility of shear-wave elastography for assessment of muscle damage. In general, the literature supports the shear-wave elastography as a promising method for assessment of muscle damage. Increases in shear modulus are reported immediately and up to several days after eccentric exercise, while studies using shear-wave elastography during and after endurance events are showing mixed results. Moreover, it seems that shear modulus increases are related to the decline in voluntary strength loss. We recommend that shear modulus is measured at multiple muscles within a muscle group and preferably at longer muscle lengths. While further studies are needed to confirm this, the disruption of calcium homeostasis seems to be the primary candidate for the underlying mechanism explaining the increases in shear modulus observed after eccentric exercise. It remains to be investigated how well the changes in shear modulus correlate with directly assessed amount of muscle damage (biopsy).


Subject(s)
Elasticity Imaging Techniques , Calcium , Elastic Modulus/physiology , Elasticity Imaging Techniques/methods , Exercise , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Muscles
SELECTION OF CITATIONS
SEARCH DETAIL
...