Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37765251

ABSTRACT

Berberine, an isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been gaining interest due to anti-inflammatory and antioxidant activities, as well as neuro and cardiovascular protective effects in animal models. Recently, photodynamic therapy demonstrated successful application in many fields of medicine. This innovative, non-invasive treatment modality requires a photosensitizer, light, and oxygen. In particular, the photosensitizer can selectively accumulate in diseased tissues without damaging healthy cells. Berberine's physicochemical properties allow its use as a photosensitising agent for photodynamic therapy, enabling reactive oxygen species production and thus potentiating treatment efficacy. However, berberine exhibits poor aqueous solubility, low oral bioavailability, poor cellular permeability, and poor gastrointestinal absorption that hamper its therapeutic and photodynamic efficacy. Nanotechnology has been used to minimize berberine's limitations with the design of drug delivery systems. Different nanoparticulate delivery systems for berberine have been used, as lipid-, inorganic- and polymeric-based nanoparticles. These berberine nanocarriers improve its therapeutic properties and photodynamic potential. More specifically, they extend its half-life, increase solubility, and allow a high permeation and targeted delivery. This review describes different nano strategies designed for berberine delivery as well as berberine's potential as a photosensitizer for photodynamic therapy. To benefit from berberine's overall potential, nanotechnology has been applied for berberine-mediated photodynamic therapy.

2.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373056

ABSTRACT

Understanding how nanoparticles' properties influence their cellular interactions is a bottleneck for improving the design of carriers. Macrophage polarization governs their active role in solving infections or tissue repair. To unravel the effect of carbohydrate-targeting mannose receptors on the macrophage surface, drug-free fucoidan/chitosan nanoparticles were functionalized using mannose (M) and mannan (Mn). Polyelectrolyte complex nanoparticles were obtained upon chitosan self-assembly using fucoidan. The functionalized nanoparticles were characterized in terms of their physicochemical characteristics, chemical profile, and carbohydrate orientation. The nanoparticles varied in size from 200 to 400 nm, were monodisperse, and had a stable negative zeta potential with a low aggregation tendency. The nonfunctionalized and functionalized nanoparticles retained their properties for up to 12 weeks. Cell viability and internalization studies were performed for all the designed nanoparticles in the THP-1 monocytes and THP-1-differentiated macrophages. The expression of the mannose receptor was verified in both immune cells. The carbohydrate-functionalized nanoparticles led to their activation and the production of pro-inflammatory cytokines interleukin (IL)-1ß, IL-6, and tumour necrosis factor (TNF)-α. Both M- and Mn-coated nanoparticles modulate macrophages toward an M1-polarized state. These findings demonstrate the tailoring of these nanoplatforms to interact and alter the macrophage phenotype in vitro and represent their therapeutic potential either alone or in combination with a loaded drug for future studies.


Subject(s)
Chitosan , Nanoparticles , Mannose Receptor , Chitosan/pharmacology , Chitosan/metabolism , Macrophages/metabolism , Nanoparticles/chemistry , Mannose/metabolism
3.
Pharmaceutics ; 15(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678818

ABSTRACT

Marine polysaccharides are recognized for their biological properties and their application in the drug delivery field, favoring hydrogel-forming capacities for cutaneous application towards several dermatological conditions. Essential oils have been widely used in skin, not only for their remarkable biological properties, but also for their capacity to enhance permeation through the skin layers and to confer a pleasant scent to the formulation. In this study, menthol, L-linalool, bergamot oil, and ß-pinene were incorporated in alginate/fucoidan hydrogels to evaluate their skin permeation enhancement profile and assess their influence on the skin organization. The combinations of different essential oils with the marine-based fucoidan/alginate hydrogel matrix were characterized, resulting in formulations with pseudoplastic rheological properties favorable for a uniform application in the skin. The ex vivo Franz diffusion permeation assays revealed that calcein loaded in bergamot-alginate/fucoidan hydrogel permeated more than 15 mg out of the initial 75 mg than when in linalool-alginate/fucoidan, alginate/fucoidan or hydrogel without any incorporated oil. Skin calcein retention for menthol- and pinene-alginate/fucoidan hydrogels was 15% higher than in the other conditions. Infrared micro-spectroscopic analysis through synchrotron-based Fourier Transform Infrared Microspectroscopy evidenced a symmetric shift in CH3 groups towards higher wavenumber, indicating lipids' fluidization and less lateral packing, characterized by a band at 1468 cm-1, with the bergamot-alginate/fucoidan, which contributes to enhancing skin permeation. The study highlights the effect of the composition in the design of formulations for topical or transdermal delivery systems.

4.
Biochim Biophys Acta Biomembr ; 1865(3): 184115, 2023 03.
Article in English | MEDLINE | ID: mdl-36603803

ABSTRACT

There is a growing need for alternatives to target and treat bacterial infection. Thus, the present work aims to develop and optimize the production of PEGylated magnetoliposomes (MLPs@PEG), by encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) within fusogenic liposomes. A Box-Behnken design was applied to modulate size distribution variables, using lipid concentration, SPIONs amount and ultrasonication time as independent variables. As a result of the optimization, it was possible to obtain MLPs@PEG with a mean size of 182 nm, with polydispersity index (PDI) of 0.19, and SPIONs encapsulation efficiency (%EE) around 76%. Cytocompatibility assays showed that no toxicity was observed in fibroblasts, for iron concentrations up to 400µg/ml. Also, for safe lipid and iron concentrations, no hemolytic effect was detected. The fusogenicity of the nanosystems was first evaluated through lipid mixing assays, based on Förster resonance energy transfer (FRET), using liposomal membrane models, mimicking bacterial cytoplasmic membrane and eukaryotic plasma membrane. It was shown that the hybrid nanosystems preferentially interact with the bacterial membrane model. Confocal microscopy and fluorescence lifetime measurements, using giant unilamellar vesicles (GUVs), validated these results. Overall, the developed hybrid nanosystem may represent an efficient drug delivery system with improved targetability for bacterial membrane.


Subject(s)
Drug Delivery Systems , Unilamellar Liposomes , Iron , Lipids
5.
Methods Protoc ; 4(4)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34842773

ABSTRACT

Stratum corneum (SC) represents the outermost layer of the skin, being an effective barrier against the entry of molecules and pathogens. Skin research has given particular focus to SC as it hampers effective drug delivery for cosmetical and therapeutical purposes. Following recommendations to develop alternative models to animals, the SC isolated from skin obtained from medical procedures or from pigs has gained extensive attention. Yet, there is still missing a standard and simple procedure accepted within the scientific community to avoid application of different isolated SC methodologies, a fact that may hamper progress in skin research. Considering this challenge, the present study evaluated different experimental conditions aiming to establish a useful and sustainable solvent-free procedure for the obtention of a realistic SC model. The studied trypsin digestion parameters included concentration, incubation period and temperature. Isolated SC was characterized using histological analysis and calcein's permeability, after the procedure and during a 6-week storage period. Data recommend trypsin digestion at 4 °C for 20 h as the most effective procedure to isolate SC from pig ear skin. This work contributes to standardize the SC isolation procedure, and to obtain a valuable and reliable SC mimetic model for skin drug development.

6.
Pharmaceutics ; 13(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34834383

ABSTRACT

Niacinamide (NIA) has been widely used in halting the features of ageing by acting as an antioxidant and preventing dehydration. NIA's physicochemical properties suggest difficulties in surpassing the barrier imposed by the stratum corneum layer to reach the target in the skin. To improve cutaneous delivery of NIA, a hybrid nanogel was designed using carrageenan and polyvinylpyrrolidone polymers combined with jojoba oil as a permeation enhancer. Three different types of transethosomes were prepared by the thin-film hydration method, made distinct by the presence of either an edge activator or a permeation enhancer, to allow for a controlled delivery of NIA. Formulations were characterized by measurements of size, polydispersity index, zeta potential, encapsulation efficiency, and loading capacity, and by evaluating their chemical interactions and morphology. Skin permeation assays were performed using Franz diffusion cells. The hybrid hydrogels exhibited robust, porous, and highly aligned macrostructures, and when present, jojoba oil changed their morphology. Skin permeation studies with transethosomes-loaded hydrogels showed that nanogels per se exhibit a more controlled and enhanced permeation, in particular when jojoba oil was present in the transethosomes. These promising nanogels protected the human keratinocytes from UV radiation, and thus can be added to sunscreens or after-sun lotions to improve skin protection.

7.
Materials (Basel) ; 14(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34771946

ABSTRACT

Cutaneous melanoma is the deadliest type of skin cancer and current treatment is still inadequate, with low patient survival rates. The polyphenol xanthohumol has been shown to inhibit tumourigenesis and metastasization, however its physicochemical properties restrict its application. In this work, we developed PLGA nanoparticles encapsulating xanthohumol and tested its antiproliferative, antitumour, and migration effect on B16F10, malignant cutaneous melanoma, and RAW 264.7, macrophagic, mouse cell lines. PLGA nanoparticles had a size of 312 ± 41 nm and a PdI of 0.259, while achieving a xanthohumol loading of about 90%. The viability study showed similar cytoxicity between the xanthohumol and xanthohumol-loaded PLGA nanoparticles at 48 h with the IC50 established at 10 µM. Similar antimigration effects were observed for free and the encapsulated xanthohumol. It was also observed that the M1 antitumor phenotype was stimulated on macrophages. The ultimate anti-melanoma effect emerges from an association between the viability, migration and macrophagic phenotype modulation. These results display the remarkable antitumour effect of the xanthohumol-loaded PLGA nanoparticles and are the first advance towards the application of a nanoformulation to deliver xanthohumol to reduce adverse effects by currently employed chemotherapeutics.

8.
Polymers (Basel) ; 13(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924580

ABSTRACT

Polymeric carriers play a key role in modern biomedical and nanomedicine applications [...].

9.
Polymers (Basel) ; 13(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379389

ABSTRACT

Exploiting surface endocytosis receptors using carbohydrate-conjugated nanocarriers brings outstanding approaches to an efficient delivery towards a specific target. Macrophages are cells of innate immunity found throughout the body. Plasticity of macrophages is evidenced by alterations in phenotypic polarization in response to stimuli, and is associated with changes in effector molecules, receptor expression, and cytokine profile. M1-polarized macrophages are involved in pro-inflammatory responses while M2 macrophages are capable of anti-inflammatory response and tissue repair. Modulation of macrophages' activation state is an effective approach for several disease therapies, mediated by carbohydrate-coated nanocarriers. In this review, polymeric nanocarriers targeting macrophages are described in terms of production methods and conjugation strategies, highlighting the role of mannose receptor in the polarization of macrophages, and targeting approaches for infectious diseases, cancer immunotherapy, and prevention. Translation of this nanomedicine approach still requires further elucidation of the interaction mechanism between nanocarriers and macrophages towards clinical applications.

10.
Pharmaceutics ; 12(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322356

ABSTRACT

Leprosy disease remains an important public health issue as it is still endemic in several countries. Mycobacterium leprae, the causative agent of leprosy, presents tropism for cells of the reticuloendothelial and peripheral nervous system. Current multidrug therapy consists of clofazimine, dapsone and rifampicin. Despite significant improvements in leprosy treatment, in most programs, successful completion of the therapy is still sub-optimal. Drug resistance has emerged in some countries. This review discusses the status of leprosy disease worldwide, providing information regarding infectious agents, clinical manifestations, diagnosis, actual treatment and future perspectives and strategies on targets for an efficient targeted delivery therapy.

11.
Nanomaterials (Basel) ; 9(9)2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31461853

ABSTRACT

Cyclosporine A (CsA) is an immunosuppressant frequently used in the therapy of autoimmune disorders, including skin-related diseases. Aiming towards topical delivery, CsA was successfully incorporated into lipid nanoparticles of Lipocire DM and Pluronic F-127 using the hot homogenization method. Two different nanocarriers were optimized: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) where oleic acid was the liquid lipid. The developed nanoparticles showed mean sizes around 200 nm, a negative surface charge, and drug entrapment efficiencies around 85% and 70% for SLNs and NLCs, respectively. The spherical CsA-loaded lipid nanoparticles were stable for 9 weeks when stored at room temperature, and exhibited in vitro pH-dependent release under skin mimetic conditions, following the Peppas-Korsmeyer model. CsA, when loaded in SLNs, was safe to be used up to 140 µg mL-1 in fibroblasts and keratinocytes, while CsA-loaded NLCs and free drug exhibited IC50 values of 55 and 95 µg mL-1 (fibroblasts) and 28 and 30 µg mL-1 (keratinocytes), respectively. The developed SLNs were able to retain the drug in pork skin with a reduced permeation rate in relation to NLCs. These findings suggest that SLNs are a potential alternative to produce stable and safe CsA nanocarriers for topical administration.

12.
Int J Nanomedicine ; 14: 2781-2795, 2019.
Article in English | MEDLINE | ID: mdl-31114195

ABSTRACT

PURPOSE: Amoxicillin is a commonly used antibiotic, although degraded by the acidic pH of the stomach. This is an important limitation for the treatment of Helicobacter pylori infections. The purpose of this work was to encapsulate amoxicillin in lipid nanoparticles, increasing the retention time at the site of infection (gastric mucosa), while protecting the drug from the harsh conditions of the stomach lumen. MATERIALS AND METHODS: The nanoparticles were produced by the double emulsion technique and optimized by a three-level Box-Behnken design. Tween 80 and linolenic acid were used as potential therapeutic adjuvants and dioleoylphosphatidylethanolamine as a targeting agent to Helicobacter pylori. Nanoparticles were characterized regarding their physico-chemical features, their storage stability, and their usability for oral administration (assessment of in vitro release, in vitro cell viability, permeability, and interaction with mucins). RESULTS: The nanoparticles were stable for at least 6 months at 4°C. In vitro release studies revealed a high resistance to harsh conditions, including acidic pH and physiologic temperature. The nanoparticles have a low cytotoxicity effect in both fibroblasts and gastric cell lines, and they have the potential to be retained at the gastric mucosa. CONCLUSION: Overall, the designed formulations present suitable physico-chemical features for being henceforward used by oral administration to treat Helicobacter pylori infections.


Subject(s)
Amoxicillin/administration & dosage , Amoxicillin/therapeutic use , Helicobacter Infections/drug therapy , Lipids/chemistry , Nanoparticles/chemistry , Amoxicillin/pharmacology , Animals , Cell Line , Cell Membrane Permeability/drug effects , Cell Survival , Chitosan/chemistry , Drug Carriers/chemistry , Drug Liberation , Helicobacter pylori/drug effects , Humans , Mice , Mucins/metabolism , Nanoparticles/ultrastructure , Particle Size
13.
Artif Cells Nanomed Biotechnol ; 46(sup1): 653-663, 2018.
Article in English | MEDLINE | ID: mdl-29433346

ABSTRACT

Tuberculosis (TB) is still a devastating disease and more people have died of TB than any other infectious diseases throughout the history. The current therapy consists of a multidrug combination in a long-term treatment, being associated with the appearance of several adverse effects. Thus, solid lipid nanoparticles (SLNs) were developed using mannose as a lectin receptor ligand conjugate for macrophage targeting and to increase the therapeutic index of rifampicin (RIF). The developed SLNs were studied in terms of diameter, polydispersity index, zeta potential, encapsulation efficiency (EE) and loading capacity (LC). Morphology, in vitro drug release and differential scanning calorimetry studies, macrophage uptake studies, cell viability and storage stability studies were also performed. The diameter of the SLNs obtained was within the range of 160-250 nm and drug EE was above 75%. The biocompatibility of M-SLNs was verified and the internalization in macrophages was improved with the mannosylation. The overall results suggested that the developed mannosylated formulations are safe and a promising tool for TB therapy targeted for macrophages.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Macrophages/metabolism , Mannose/chemistry , Nanoparticles/chemistry , Rifampin/chemistry , Biological Transport , Cell Survival/drug effects , Drug Carriers/toxicity , Drug Liberation , Humans , Hydrogen-Ion Concentration , Intracellular Space/metabolism , Lipids/toxicity , Rifampin/metabolism
14.
Colloids Surf B Biointerfaces ; 161: 35-41, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29040832

ABSTRACT

Magnetic nanoparticles offer multiple possibilities for biomedical applications. Besides their physico-chemical properties, nanoparticle-cellular interactions are determinant for biological safety. In this work, magnetic nanoparticles were synthesized by one-shot precipitation or two-step reaction and coated with biocompatible polymers, such as poly(l-lysine) and poly(N,N-dimethylacrylamide-co-acrylic acid), and carbohydrates, like l-ascorbic acid, d-galactose, d-mannose, and sucrose. The resulting magnetic nanoparticles were characterized by dynamic light scattering, FT-Raman spectroscopy, transmission electron microscopy, SQUID magnetometry, and Mössbauer spectroscopy. Ability of the nanoparticles to be used in theranostic applications was also evaluated, showing that coating with biocompatible polymers increased the heating efficiency. Nanoparticles synthesized by one-shot precipitation were 50% larger (∼13nm) than those obtained by a two-step reaction (∼8nm). Magnetic nanoparticles at concentrations up to 500µgmL-1 were non-cytotoxic to L929 fibroblasts. Particles synthesized by one-shot precipitation had little effect on viability, cell cycle and apoptosis of the three human colon cancer cell lines used: Caco-2, HT-29, and SW-480. At the same concentration (500µgmL-1), magnetic particles prepared by a two-step reaction reduced colon cancer cell viability by 20%, affecting cell cycle and inducing cell apoptosis. Uptake of surface-coated magnetic nanoparticles by colon cancer cells was dependent on particle synthesis, surface coating and incubation time.


Subject(s)
Coated Materials, Biocompatible/chemistry , Magnetics , Magnetite Nanoparticles/chemistry , Polymers/chemistry , Animals , Apoptosis/drug effects , Caco-2 Cells , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Coated Materials, Biocompatible/pharmacokinetics , Coated Materials, Biocompatible/pharmacology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HT29 Cells , Humans , Mice , Surface Properties , Theranostic Nanomedicine/methods
15.
Bioconjug Chem ; 28(4): 995-1004, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28355061

ABSTRACT

Several strategies have been implemented to enhance brain drug delivery, and herein solid lipid nanoparticles functionalized with apolipoprotein E were tested in hCMEC/D3 cell monolayers. The mean diameter of 160 nm, negative charge of -12 mV, and their lipophilic characteristics make these nanosystems suitable for brain delivery. Confocal images and flow cytometry data showed a cellular uptake increase of 1.8-fold for SLN-Palmitate-ApoE and 1.9-fold for SLN-DSPE-ApoE when compared with the non-functionalized SLNs. Clathrin-mediated endocytosis was distinguished as the preferential internalization pathway involved in cellular uptake and nanoparticles could cross the blood-brain barrier predominantly by a transcellular pathway. The understanding of the mechanisms involved in the transport of these nanosystems through the blood-brain barrier may potentiate their application on brain drug delivery.


Subject(s)
Apolipoproteins E/metabolism , Blood-Brain Barrier/metabolism , Drug Carriers/metabolism , Nanoparticles/metabolism , Brain/metabolism , Cell Line , Drug Delivery Systems , Humans , Lipid Metabolism , Lipids/chemistry , Palmitates/metabolism , Phosphatidylethanolamines/metabolism
16.
J Biomed Nanotechnol ; 11(10): 1701-21, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26502635

ABSTRACT

Rheumatoid arthritis is a common chronic inflammatory disease characterized by progressive bone and cartilage destruction causing severe functional limitations, increased morbidity and mortality rate, which results in a strong negative socioeconomic impact. Current therapies only slow the progression of the disease and try to enhance quality of life. Furthermore, such therapies present several drawbacks due to the adverse effects caused by the lack of selectively of the drugs and frequent and long-term dosing that lead to patient non-compliance. Drug delivery systems based on nanocarriers represent a promising approach to overcome the current therapeutic limitations because they can selectively carry drugs to inflamed synovium allowing for improved drug efficacy, thereby reducing the biodistribution of anti-rheumatic drugs. Additionally, controlled drug release can lead to the reduction of drug dosages. The increasing interest and confidence that nanocarriers can revolutionize the treatment of rheumatoid arthritis has led to an increased number of investigations in this field. In this context, the present review focuses on drug delivery system strategies for non-biological drugs developed for the treatment of rheumatoid arthritis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antirheumatic Agents/administration & dosage , Arthritis, Rheumatoid/drug therapy , Delayed-Action Preparations/chemical synthesis , Nanocapsules/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antirheumatic Agents/chemistry , Biological Products/administration & dosage , Biological Products/chemistry , Delayed-Action Preparations/administration & dosage , Diffusion , Humans , Nanocapsules/ultrastructure
17.
Int J Pharm ; 492(1-2): 65-72, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26169145

ABSTRACT

The aim of this study was to optimize and assess the potential of nanostructured lipid carriers (NLC), prepared by the hot ultrasonication method, as carrier for methotrexate (MTX), highlighting the application of factorial design. Preliminary screening drug/lipid solubility, allowed us to select Witepsol(®) E85 as the solid lipid and Mygliol(®) 812 as liquid lipid for the NLC loaded with MTX. Then, a 3-level, 3-factor Box-Behnken design and validated by ANOVA analysis; the correspondence between the predicted values and those measured experimentally confirmed the robustness of the design. Properties of optimized MTX-loaded NLCs such as morphology, size, zeta potential, entrapment efficiency, storage stability, in vitro drug release and cytotoxicity were investigated. NLCs loaded with MTX exhibited spherical shape with 252-nm, a polydispersity of 0.06±0.02, zeta potential of -14 mV and an entrapment efficiency of 87%. In vitro release studies revealed a fast initial release followed by a prolonged release of MTX from the NLC up to 24-h. The release kinetics of the optimized NLC best fitted the Peppas-Korsmeyer model for physiological and inflammatory environments and the Hixson-Crowell model skin simulation conditions. No toxicity was observed in fibroblasts. Thus, the optimized MTX-loaded NLC have the potential to be exploited as delivery system.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antimetabolites, Antineoplastic/administration & dosage , Drug Carriers/administration & dosage , Methotrexate/administration & dosage , Nanostructures/administration & dosage , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Cell Line , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Liberation , Drug Stability , Methotrexate/chemistry , Methotrexate/pharmacology , Mice , Nanostructures/chemistry , Triglycerides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...