Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203304

ABSTRACT

Carburized steel shafts are commonly used in industry due to their good wear resistance and fatigue life. If the surface of carburized shafts exhibits an undesired tensile stress, shot peening treatment may be required to alter the stress condition on the surface. In the present study, the effects of shot peening pressure (3-5 kg/cm2), time (32-64 s), and material (stainless steel, carbon steel, and glass) on the residual stress, retained austenite, microhardness, and surface roughness of the carburized shafts were investigated. The experimental results showed that the surface residual tensile stress was changed into compressive stress after the shot peening treatment. The shot peening effects increased with the increasing peening pressure and time. In addition, a significant decrease in the amount of retained austenite in the subsurface region was observed. Peening with different materials can affect the peening effect. Using glass pellets exhibited the best shot peening effect but suffered massive pellet fracture during processing. In overall consideration, the optimal peening parameters for carburized steel shafts for practical industrial applications involved using the stainless-steel pellets with a peening pressure of 5 kg/cm2 and a peening time of 64 s. The maximum residual stress was -779 MPa at a depth of 0.02 mm, while the highest surface microhardness was 827 HV0.1.

2.
Materials (Basel) ; 17(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893964

ABSTRACT

Barium titanate (BaTiO3, BTO), conventionally used for dielectric and ferroelectric applications, has been assessed for biomedical applications, such as its utilization as a radiopacifier in mineral trioxide aggregates (MTA) for endodontic treatment. In the present study, BTO powders were prepared using the sol-gel process, followed by calcination at 400-1100 °C. The X-ray diffraction technique was then used to examine the as-prepared powders to elucidate the effect of calcination on the phase composition and crystalline size of BTO. Calcined BTO powders were then used as radiopacifiers for MTA. MTA-like cements were investigated to determine the optimal calcination temperature based on the radiopacity and diametral tensile strength (DTS). The experimental results showed that the formation of BTO phase was observed after calcination at temperatures of 600 °C and above. The calcined powders were a mixture of BaTiO3 phase with residual BaCO3 and/or Ba2TiO4 phases. The performance of MTA-like cements with BTO addition increased with increasing calcination temperature up to 1000 °C. The radiopacity, however, decreased after 7 days of simulated oral environmental storage, whereas an increase in DTS was observed. Optimal MTA-like cement was obtained by adding 40 wt.% 1000 °C-calcined BTO powder, with its resulting radiopacity and DTS at 4.83 ± 0.61 mmAl and 2.86 ± 0.33 MPa, respectively. After 7 days, the radiopacity decreased slightly to 4.69 ± 0.51 mmAl, accompanied by an increase in DTS to 3.13 ± 0.70 MPa. The optimal cement was biocompatible and verified using MG 63 and L929 cell lines, which exhibited cell viability higher than 95%.

3.
Materials (Basel) ; 17(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930384

ABSTRACT

Barium zirconate (BaZrO3, BZO), which exhibits superior mechanical, thermal, and chemical stability, has been widely used in many applications. In dentistry, BZO is used as a radiopacifier in mineral trioxide aggregates (MTAs) for endodontic filling applications. In the present study, BZO was prepared using the sol-gel process, followed by calcination at 700-1000 °C. The calcined BZO powders were investigated using X-ray diffraction and scanning electron microscopy. Thereafter, MTA-like cements with the addition of calcined BZO powder were evaluated to determine the optimal composition based on radiopacity, diametral tensile strength (DTS), and setting times. The experimental results showed that calcined BZO exhibited a majority BZO phase with minor zirconia crystals. The crystallinity, the percentage, and the average crystalline size of BZO increased with the increasing calcination temperature. The optimal MTA-like cement was obtained by adding 20% of the 700 °C-calcined BZO powder. The initial and final setting times were 25 and 32 min, respectively. They were significantly shorter than those (70 and 56 min, respectively) prepared with commercial BZO powder. It exhibited a radiopacity of 3.60 ± 0.22 mmAl and a DTS of 3.02 ± 0.18 MPa. After 28 days of simulated oral environment storage, the radiopacity and DTS decreased to 3.36 ± 0.53 mmAl and 2.84 ± 0.27 MPa, respectively. This suggests that 700 °C-calcined BZO powder has potential as a novel radiopacifier for MTAs.

4.
Nanomaterials (Basel) ; 14(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38251127

ABSTRACT

Global energy sources are limited, and energy requirements are ever-increasing due to the demand for developments in human life and technology. The environmentally friendly direct formic acid fuel cell (DFAFC) is an attractive electronic device due to its clean energy. In a DFAFC, an anodic catalyst plays an important role concerning the oxidation pathway and activity. In the present study, palladium (Pd) was synthesized by synchrotron X-ray photoreduction using various irradiation times (0.5-4 min) to control the particle size. An acid-treated carbon nanotube (A-CNT) was used as the template for Pd deposition. The A-CNT and Pd/A-CNT were examined using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy to reveal the microstructural characteristics. Electrochemical evaluation, electrocatalytic activity, and the DFAFC performance of so-obtained Pd/A-CNT catalysts were investigated. The experiment's results showed that the Pd/A-CNT-2 (i.e., synchrotron photoreduction for 2 min) underwent a direct formic acid oxidation pathway and possessed a high ECSA value of 62.59 m2/gPd and superior electrocatalytic activity of 417.7 mA/mgPd. In a single DFAFC examination, the anodic Pd/A-CNT-2 catalyst had a power density of 106.2 mW/mgPd and a relatively long lifetime of 2.91 h. Pd/A-CNT-2 anodic catalysts synthesized by surfactant-free synchrotron X-ray photoreduction with a rapid processing time (2 min) are potential candidates for DFAFC applications.

5.
Materials (Basel) ; 16(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068014

ABSTRACT

Mineral trioxide aggregates (MTA) are commonly used as endodontic filling materials but suffer from a long setting time and tooth discoloration. In the present study, the feasibility of using barium titanate (BTO) for discoloration and a calcium chloride (CaCl2) solution to shorten the setting time was investigated. BTO powder was prepared using high-energy ball milling for 3 h, followed by sintering at 700-1300 °C for 2 h. X-ray diffraction was used to examine the crystallinity and crystalline size of the as-milled and heat-treated powders. MTA-like cements were then prepared using 20-40 wt.% BTO as a radiopacifier and solidified using a 0-30% CaCl2 solution. The corresponding radiopacity, diametral tensile strength (DTS), initial and final setting times, and discoloration performance were examined. The experimental results showed that for the BTO powder prepared using a combination of mechanical milling and heat treatment, the crystallinity and crystalline size increased with the increasing sintering temperature. The BTO sintered at 1300 °C (i.e., BTO-13) exhibited the best radiopacity and DTS. The MTA-like cement supplemented with 30% BTO-13 and solidified with a 10% CaCl2 solution exhibited a radiopacity of 3.68 ± 0.24 mmAl and a DTS of 2.54 ± 0.28 MPa, respectively. In the accelerated discoloration examination using UV irradiation, the color difference was less than 1.6 and significantly lower than the clinically perceptible level (3.7). This novel MTA exhibiting a superior color stability, shortened setting time, and excellent biocompatibility has potential for use in endodontic applications.

7.
Nanomaterials (Basel) ; 13(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36985994

ABSTRACT

The one-pot process, which combines the polymerization of polyaniline (i.e., PANI) with subsequent reduction of iron nanowire (i.e., Fe NW) under a magnetic field, was developed to produce Fe@PANI core-shell nanowires. The synthesized nanowires with various PANI additions (0-30 wt.%) were characterized and used as microwave absorbers. Epoxy composites with 10 wt.% absorbers were prepared and examined using the coaxial method to reveal their microwave absorbing performance. Experimental results showed that the Fe NWs with PANI additions (0-30 wt.%) had average diameters ranging from 124.72 to 309.73 nm. As PANI addition increases, the α-Fe phase content and the grain size decrease, while the specific surface area increases. The nanowire-added composites exhibited superior microwave absorption performance with wide effective absorption bandwidths. Among them, Fe@PANI-90/10 exhibits the best overall microwave absorption performance. With a thickness of 2.3 mm, effective absorption bandwidth was the widest and reached 3.73 GHz, ranging from 9.73 to 13.46 GHz. Whereas with a thickness of 5.4 mm, Fe@PANI-90/10 reached the best reflection loss of -31.87 dB at 4.53 GHz.

8.
Materials (Basel) ; 15(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431419

ABSTRACT

Mineral trioxide aggregates (MTA) have been widely used in endodontic treatments, but after some time, patients suffer tooth discoloration due to the use of bismuth oxide (Bi2O3) as a radiopacifier. Replacement of Bi2O3 with high energy ball-milled single (zirconia ZrO2; hafnia, HfO2; or tantalum pentoxide, Ta2O5) or binary oxide powder was attempted, and corresponding discoloration improvement was investigated in the present study. Bi2O3-free MTA is expected to exhibit superior discoloration. The radiopacity, diametral tensile strength, and discoloration of MTA-like cements prepared from the as-milled powder were investigated. Experimental results showed that MTA-like cements prepared using Ta2O5 exhibited a slightly higher radiopacity than that of HfO2 but had a much higher radiopacity than ZrO2. Milling treatment (30 min to 3 h) did not affect the radiopacities significantly. These MTA-like cements exhibited superior color stability (all measured ΔE00 < 1.0) without any perceptible differences after UV irradiation. MTA-like cements prepared using ZrO2 exhibited the best color stability but the lowest radiopacity, which can be improved by introducing binary oxide. Among the investigated samples, MTA-like cement using (ZrO2)50(Ta2O5)50 exhibited excellent color stability and the best overall performance with a radiopacity of 3.25 mmAl and a diametral tensile strength of 4.39 MPa.

9.
Patient Educ Couns ; 105(7): 2151-2157, 2022 07.
Article in English | MEDLINE | ID: mdl-34785078

ABSTRACT

OBJECTIVE: Surgery for head and neck cancers are associated with significant preoperative stress. We investigated the effects of progressive muscle relaxation (PMR) on postoperative pain, fatigue, and vital signs in patients with head and neck cancers. METHODS: All patients were hospitalized and randomly assigned to intervention or usual care groups. A generalized estimating equation was used to evaluate the PMR effects on pain and symptoms across the preoperative day to postoperative day 10. RESULTS: The PMR group displayed significantly lower overall pain and muscle tightness than control group along with the timeline of multiple measurements (p < 0.01). PMR significantly reduces sleep disturbances and levels of fatigue, anxiety, and depression compared with the control group with time trend (p < 0.01). PMR also lowered the respiratory rates and diastolic blood pressure (p < 0.01). CONCLUSIONS: PMR can reduce sleep disturbances and levels of pain, fatigue, muscle tightness, anxiety, and depression in patients with head and neck cancer undergoing major surgeries. Future study should focus on improving the effectiveness of the exercise and standardization of the application. PRACTICAL IMPLICATIONS: progressive muscle relaxation help relieve discomforts in patients with head and neck cancers with minimal costs and efforts.


Subject(s)
Autogenic Training , Head and Neck Neoplasms , Fatigue/etiology , Head and Neck Neoplasms/surgery , Humans , Pain, Postoperative/therapy , Vital Signs
10.
Materials (Basel) ; 14(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34885606

ABSTRACT

Among the various phases of bismuth oxide, the high temperature metastable face-centered cubic δ phase attracts great attention due to its unique properties. It can be used as an ionic conductor or an endodontic radiopacifying material. However, no reports concerning tantalum and bismuth binary oxide prepared by high energy ball milling and serving as a dental radiopacifier can be found. In the present study, Ta2O5-added Bi2O3 composite powders were mechanically milled to investigate the formation of these metastable phases. The as-milled powders were examined by X-ray diffraction and scanning electron microscopy to reveal the structural evolution. The as-milled composite powders then served as the radiopacifier within mineral trioxide aggregates (i.e., MTA). Radiopacity performance, diametral tensile strength, setting times, and biocompatibility of MTA-like cements solidified by deionized water, saline, or 10% calcium chloride solution were investigated. The experimental results showed that subsequent formation of high temperature metastable ß-Bi7.8Ta0.2O12.2, δ-Bi2O3, and δ-Bi3TaO7 phases can be observed after mechanical milling of (Bi2O3)95(Ta2O5)5 or (Bi2O3)80(Ta2O5)20 powder mixtures. Compared to its pristine Bi2O3 counterpart with a radiopacity of 4.42 mmAl, long setting times (60 and 120 min for initial and final setting times) and 84% MG-63 cell viability, MTA-like cement prepared from (Bi2O3)95(Ta2O5)5 powder exhibited superior performance with a radiopacity of 5.92 mmAl (the highest in the present work), accelerated setting times (the initial and final setting time can be shortened to 25 and 40 min, respectively), and biocompatibility (94% cell viability).

11.
Materials (Basel) ; 14(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206939

ABSTRACT

In this paper, we used two mass-produced industrial technologies, namely, thermal spraying and anodization methods, to enhance the surface characteristics of AISI 1045 medium carbon steel for use in special environments or products. The anodic film can effectively improve the surface properties of carbon steel. A sequence of treatments of the carbon steel substrate surface that consist of sandblasting, spraying the aluminum film, annealing, hot rolling, cleaning, grinding, and polishing can increase the quality of the anodized film. This paper proposes an anodization process for the surface of carbon steel to increase the corrosion resistance, hardness, color diversification, and electrical resistance. The resulting surface improves the hardness (from 170 HV to 524 HV), surface roughness (from 1.26 to 0.15 µm), coloring (from metal color to various colors), and corrosion resistance (from rusty to corrosion resistant). The electrochemical corrosion studies showed that the AISI 1045 steel surface with a hard anodized film had a lower corrosion current density of 10-5.9 A/cm2 and a higher impedance of 9000 ohm than those of naked AISI 1045 steel (10-4.2 A/cm2 and 150 ohm) in HCl gas.

12.
Polymers (Basel) ; 13(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673175

ABSTRACT

Poly(aryl-ether-ketone) materials (PAEKs) are gaining interest in everyday dental practices because of their natural properties. This study aims to analyze the bonding performance of PAEKs to a denture acrylic. Testing materials were pretreated by grinding, sandblasting, and priming prior to polymerization with the denture acrylic. The surface morphologies were observed using a scanning electron microscope and the surface roughness was measured using atomic force microscopy. The shear bond strength (SBS) values were determined after 0 and 2500 thermal cycles. The obtained data were analyzed using a paired samples t-test and Tukey's honestly significant difference (HSD) test (α = 0.05). The surface characteristics of testing materials after different surface pretreatments showed obvious differences. PAEKs showed lower surface roughness values (0.02-0.03 MPa) than Co-Cr (0.16 MPa) and zirconia (0.22 MPa) after priming and sandblasting treatments (p < 0.05). The SBS values of PAEKs (7.60-8.38 MPa) met the clinical requirements suggested by ISO 10477 (5 MPa). Moreover, PAEKs showed significantly lower SBS reductions (p < 0.05) after thermal cycling fatigue testing compared to Co-Cr and zirconia. Bonding performance is essential for denture materials, and our results demonstrated that PAEKs possess good resistance to thermal cycling fatigue, which is an advantage in clinical applications. The results imply that PAEKs are potential alternative materials for the removable of prosthetic frameworks.

13.
Polymers (Basel) ; 13(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670799

ABSTRACT

Mesoporous bioactive glass (MBG) has a high specific surface area, promoting the reaction area, thereby improving the bioactivity; thus, MBG is currently gaining popularity in the biomaterial field. Spray pyrolysis (SP) is a one-pot process that has the advantages of shorter process time and better particle bioactivity, therefore, MBG was prepared by SP process with various polyethylene glycol (PEG, molecular weight ranged from 2000-12,000) and acid (HCl and CH3COOH) additions. In vitro bioactivity and mesoporous properties of the so-obtained MBG were investigated. The experimental results showed that all the MBG exhibited amorphous and mesoporous structure. Increasing the molecular weight of PEG can improve the mesoporous structure and bioactivity of MBG. Whereas optimized MBG was prepared with suitable concentration of PEG and CH3COOH. In the present work, MBG synthesized via spray pyrolysis by adding 5 g of PEG with a molecular weight of 12,000 and 50 mL of CH3COOH exhibited the best in vitro bioactivity and mesoporous structure.

14.
Materials (Basel) ; 14(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477858

ABSTRACT

Mineral trioxide aggregates (MTA) have been developed as a dental root repair material for a range of endodontics procedures. They contain a small amount of bismuth oxide (Bi2O3) as a radiopacifier to differentiate adjacent bone tissue on radiographs for endodontic surgery. However, the addition of Bi2O3 to MTA will increase porosity and lead to the deterioration of MTA's mechanical properties. Besides, Bi2O3 can also increase the setting time of MTA. To improve upon the undesirable effects caused by Bi2O3 additives, we used zirconium ions (Zr) to substitute the bismuth ions (Bi) in the Bi2O3 compound. Here we demonstrate a new composition of Zr-doped Bi2O3 using spray pyrolysis, a technique for producing fine solid particles. The results showed that Zr ions were doped into the Bi2O3 compound, resulting in the phase of Bi7.38Zr0.62O12.31. The results of materials analysis showed Bi2O3 with 15 mol % of Zr doping increased its radiopacity (5.16 ± 0.2 mm Al) and mechanical strength, compared to Bi2O3 and other ratios of Zr-doped Bi2O3. To our knowledge, this is the first study of fabrication and analysis of Zr-doped Bi2O3 radiopacifiers through the spray pyrolysis procedure. The study reveals that spray pyrolysis can be a new technique for preparing Zr-doped Bi2O3 radiopacifiers for future dental applications.

15.
Nanomaterials (Basel) ; 10(3)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155885

ABSTRACT

Tremendous efforts have been made on the development of unique electrochemical capacitors or pseudocapacitors due to the overgrowing electrical energy demand. Here, the authors report a new and simple strategy for fabricating hybrid MnOx-coated ZnO nanorod arrays. First, the vertically aligned ZnO nanorods were prepared by chemical bath deposition (CBD) as a template providing a large surface area for active material deposition. The manganese oxide was subsequently coated onto the surface of the ZnO nanorods to form a hybrid MnOx-coated ZnO nanostructure by anodic deposition in a manganese acetate (MnA)-containing aqueous solution. The hybrid structure of MnOx-coated ZnO nanorod arrays exhibits a large surface area and high conductivity, essential for enhancing the faradaic processes across the interface and improving redox reactions at active MnOx sites. A certain concentration of the deposition solution was selected for the MnOx coating, which was studied as a function of deposition time. Cyclic voltammetry (CV) curves showed that the specific capacitance (SC) of the MnOx-coated ZnO nanostructure was 222 F/g for the deposition times at 10 s when the concentration of MnA solution was 0.25 M. The unique hybrid nanostructures also exhibit excellent cycling stability with >97.5% capacitance retention after 1200 CV cycles. The proposed simple and cost-effective method of fabricating hybrid nanostructures may pave the way for mass production of future intelligent and efficient electrochemical energy storage devices.

16.
Materials (Basel) ; 13(3)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991563

ABSTRACT

Mineral trioxide aggregate (MTA) typically consists of Portland cement (75 wt.%), bismuth oxide (20 wt.%), and gypsum (5 wt.%) and is commonly used as endodontic cement. Bismuth oxide serving as the radiopacifying material reveals the canal filling effect after clinical treatment. In the present study, bismuth/zirconium oxide composite powder was prepared by high energy ball milling of (Bi2O3)100-x (ZrO2)x (x = 5, 10, 15, and 20 wt.%) powder mixture and used as the radiopacifiers within MTA. The crystalline phases of the as-milled powders were examined by the X-ray diffraction technique. The radiopacities of MTA-like cements prepared by using as-milled composite powders (at various milling stages or different amount of zirconia addition) were examined. In addition, the stability of the as-milled powders stored in an ambient environment, an electronic dry box, or a glove box was investigated. The experimental results show that the as-milled powder exhibited the starting powder phases of Bi2O3 and ZrO2 and the newly formed δ-Bi7.38Zr0.62O2.31 phase. The longer the milling time or the larger the amount of the zirconia addition, the higher the percentage of the δ-Bi7.38Zr0.62O2.31 phase in the composite powder. All the MTA-like cements prepared by the as-milled powder exhibited a radiopacity higher than 4 mmAl that is better than the 3 mmAl ISO standard requirement. The 30 min as-milled (Bi2O3)95(ZrO2)5 composite powder exhibited a radiopacity of 5.82 ± 0.33 mmAl and degraded significantly in the ambient environment. However, storing under an oxygen- and humidity-controlled glove box can prolong a high radiopacity performance. The radiopacity was 5.76 ± 0.08 mmAl after 28 days in a glove box that was statistically the same as the original composite powder.

17.
Materials (Basel) ; 12(15)2019 Aug 03.
Article in English | MEDLINE | ID: mdl-31382641

ABSTRACT

MoO3/V2O5 hybrid nanobilayers are successfully prepared by the sol-gel method with a spin- coating technique followed by heat -treatment at 350 °C in order to achieve a good crystallinity. The composition, morphology, and microstructure of the nanobilayers are characterized by a scanning electron microscope (SEM) and X-ray diffractometer (XRD) that revealed the a grain size of around 20-30 nm, and belonging to the monoclinic phase. The samples show good reversibility in the cyclic voltammetry studies and exhibit an excellent response to the visible transmittance. The electrochromic (EC) window displayed an optical transmittance changes (ΔT) of 22.65% and 31.4% at 550 and 700 nm, respectively, with the rapid response time of about 8.2 s for coloration and 6.3 s for bleaching. The advantages, such as large optical transmittance changes, rapid electrochromism control speed, and excellent cycle durability, demonstrated in the electrochromic cell proves the potential application of MoO3/V2O5 hybrid nanobilayers in electrochromic devices.

18.
Materials (Basel) ; 12(12)2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31212915

ABSTRACT

High-temperature face-centered cubic bismuth oxide phase is a material of great interest given its unique properties. In the present study, α-Bi2O3 and tantalum powders were used as the starting powders for the formation of high-temperature bismuth oxide phase via mechanochemical synthesis by high energy ball milling. (Bi2O3)80(Ta)20 and (Bi2O3)95(Ta)5 in weight concentrations were milled in either an oxygen-free argon-filled glove box environment or an ambient atmosphere to investigate the effects of oxygen concentration and tantalum addition. The as-milled powders were examined using X-ray diffraction, scanning electron microscopy with energy-dispersive spectroscopy, and differential scanning calorimetry to reveal the structural evolution. The experimental results showed that for (Bi2O3)95(Ta)5 powder mixtures milled within the glove box, tantalum gradually reacted with the α-Bi2O3 phase and formed a ß-Bi7.8Ta0.2O12.2 phase. For (Bi2O3)80(Ta)20 milled under the same conditions, Ta and α-Bi2O3 mechanochemically reacted to form δ-Bi3TaO7 and bismuth after 10 min of high energy ball milling, whereas milling (Bi2O3)80(Ta)20 under the ambient atmosphere with a much higher oxygen concentration accelerated the mechanochemical reaction to less than five minutes of milling and resulted in the formation of high-temperature δ-Bi3TaO7 phase.

19.
Materials (Basel) ; 12(5)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823370

ABSTRACT

In the present study, spherical composite powder was successfully prepared via spray drying process using polymethyl methacrylate (PMMA) and hexagonal boron nitride (h-BN) powders. The pristine and as-prepared composite powders were examined using scanning electron microscopy, a particle size analyzer, oil absorption, and specific surface area analyses. These powders were then mixed with linseed oil to prepare samples for UV-Visible-Near Infrared spectroscopy investigation to determine their light absorption ability. Blank and powder-added blemish balm creams were examined using a sun protection factor tester and a thermal conductivity tester. In addition, transmittances of these creams were also evaluated. The experimental results show that spray-dried spherical composite powder exhibited good oil absorption ability. The blemish balm cream with 10 wt.% spray-dried composite powder not only exhibited superior sunscreen protection ability, but also good thermal conductivity.

20.
Materials (Basel) ; 11(10)2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30287747

ABSTRACT

Calcium phosphate ceramics used in dentistry and orthopedics are some of the most valuable biomaterials, owing to their excellent osteoconduction, osteoinduction, and osseointegration. Osteoconduction and osteoinduction are critical targets for bone regeneration, and osseointegration is essential for any dental implantations. In this study, a hydroxyapatite (HAp) hybrid coating layer with the sequential release of bone morphogenetic protein 2 (BMP-2) was deposited onto an etched titanium substrate by electrochemical deposition. The resulting release of BMP-2 from Ti⁻HAp was assessed by immersing samples in a simulated buffer fluid solution. Through coculture, human osteosarcoma cell proliferation and alkaline phosphatase activity were assessed. The characteristics and effect on cell proliferation of the hybrid coatings were investigated for their functionality through X-ray diffraction (XRD) and cell proliferation assays. Findings revealed that -0.8 V vs. Ag/AgCl (3 M KCl) exhibited the optimal HAp properties and a successfully coated HAp layer. XRD confirmed the crystallinity of the deposited HAp on the titanium surface. Ti-0.8 V Ti⁻HAp co-coating BMP sample exhibited the highest cell proliferation efficiency and was more favorable for cell growth. A successful biocompatible hybrid coating with optimized redox voltage enhanced the osseointegration process. The findings suggest that this technique could have promising clinical applications to enhance the healing times and success rates of dental implantation.

SELECTION OF CITATIONS
SEARCH DETAIL