Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Immunology ; 11(8): e1403, 2022.
Article in English | MEDLINE | ID: mdl-36016852

ABSTRACT

Objective: Despite the high vaccine efficacy of mRNA COVID-19 vaccines, there are individuals who developed excessive reactogenic and/or allergic responses after the first mRNA dose and were considered ineligible for further mRNA doses. CoronaVac, an inactivated SARS-CoV-2 vaccine, is recommended in Singapore as an alternative. Methods: Individuals, ineligible for further mRNA vaccines (BNT162b2 or mRNA-1273) because of excessive reactive responses to prime mRNA vaccination, were recruited and offered two doses of CoronaVac as booster vaccination 38-224 days post their mRNA vaccine dose. Individuals who did not develop any excessive reactive responses after the prime mRNA vaccination were also recruited and given another mRNA vaccine as booster vaccination. Blood samples were collected at days 0, 21 and 90 post first CoronaVac dose and mRNA dose, respectively, for analysis. Results: We showed that two CoronaVac booster doses induced specific immunity in these mRNA vaccine-primed individuals. Although the spike-specific antibody response was lower, their memory B cell response against the receptor-binding domain (RBD) of the spike protein was similar, compared with individuals who received two BNT162b2 injections. The spike-specific memory T cell response also increased following CoronaVac booster doses. However, specific immunity against the Omicron variant was low, similar to individuals with two BNT162b2 doses. Conclusion: Our findings showed that while mRNA vaccine-primed individuals can opt for two subsequent doses of CoronaVac, an additional dose may be necessary to achieve protection, especially against newly emerging immune escape variants such as Omicron.

2.
Clin Transl Immunology ; 11(5): e1384, 2022.
Article in English | MEDLINE | ID: mdl-35602886

ABSTRACT

Objectives: Immunopathology of ongoing COVID-19 global pandemic is not limited solely to pulmonary tissue, but is often associated with multi-organ complications, mechanisms of which are intensely being investigated. In this regard, the interplay between immune, stromal cells and cytokines in pulmonary and extrapulmonary infected tissues, especially in young adults (median age 46 years, range 30-53 years) without comorbidities, remains poorly characterised. Methods: We profiled lung, heart and intestinal autopsy samples from five SARS-CoV-2-infected cases for 18-20 targets to detect immune, cytokine and stromal cell status at subcellular resolution by a novel IHC-based deep-phenotyping technique, iSPOT (immunoSpatial histoPhenOmics using TSA-IHC), to assess spatial and functional patterns of immune response in situ, in lethal COVID-19 infection. Results: SARS-CoV-2-infected autopsy samples exhibit skewed counts of immune populations in all samples with organ-specific dysfunctions. Lung and ileal tissue reveal altered architecture with marked loss of tissue integrity, while lung and heart tissue show severe hyperinflammation marked by elevated TNF-α in heart tissue and additionally IL-6, IFN-γ and IL-10 cytokines in lung samples. Conclusion: With resurgence of infection in younger populations, single-cell cytokine localisation in immune and stromal structures provides important mechanistic insights into organ-specific immunopathology of naïve SARS-CoV-2 infection in the absence of other comorbidities.

3.
Clin Transl Immunology ; 10(2): e1241, 2021.
Article in English | MEDLINE | ID: mdl-33628442

ABSTRACT

OBJECTIVES: The emergence of a SARS-CoV-2 variant with a point mutation in the spike (S) protein, D614G, has taken precedence over the original Wuhan isolate by May 2020. With an increased infection and transmission rate, it is imperative to determine whether antibodies induced against the D614 isolate may cross-neutralise against the G614 variant. METHODS: Antibody profiling against the SARS-CoV-2 S protein of the D614 variant by flow cytometry and assessment of neutralising antibody titres using pseudotyped lentiviruses expressing the SARS-CoV-2 S protein of either the D614 or G614 variant tagged with a luciferase reporter were performed on plasma samples from COVID-19 patients with known D614G status (n = 44 infected with D614, n = 6 infected with G614, n = 7 containing all other clades: O, S, L, V, G, GH or GR). RESULTS: Profiling of the anti-SARS-CoV-2 humoral immunity reveals similar neutralisation profiles against both S protein variants, albeit waning neutralising antibody capacity at the later phase of infection. Of clinical importance, patients infected with either the D614 or G614 clade elicited a similar degree of neutralisation against both pseudoviruses, suggesting that the D614G mutation does not impact the neutralisation capacity of the elicited antibodies. CONCLUSIONS: Cross-reactivity occurs at the functional level of the humoral response on both the S protein variants, which suggests that existing serological assays will be able to detect both D614 and G614 clades of SARS-CoV-2. More importantly, there should be negligible impact towards the efficacy of antibody-based therapies and vaccines that are currently being developed.

5.
Euro Surveill ; 21(38)2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27684526

ABSTRACT

Zika virus (ZIKV) is an ongoing global public health emergency with 70 countries and territories reporting evidence of ZIKV transmission since 2015. On 27 August 2016, Singapore reported its first case of local ZIKV transmission and identified an ongoing cluster. Here, we report the genome sequences of ZIKV strains from two cases and find through phylogenetic analysis that these strains form an earlier branch distinct from the recent large outbreak in the Americas.


Subject(s)
Disease Outbreaks , Molecular Sequence Data , RNA, Viral/genetics , Zika Virus/classification , Zika Virus/isolation & purification , Asia, Southeastern/epidemiology , Cluster Analysis , Genotype , Humans , Molecular Epidemiology , Phylogeny , Phylogeography , Public Health , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Singapore , Zika Virus/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology
8.
PLoS Curr ; 2: RRN1162, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20535229

ABSTRACT

As the 2009 (H1N1) influenza A virus continues evolving, most mutations appear geographically and temporally confined. However, the latest surveillance data suggests emergence of a new prominent mutation, E391K, in the hemagglutinin (HA) that is globally on the rise. Interestingly, when modelled in the context of the available HA crystal structure, this mutation could alter salt bridge patterns and stability in a region of the HA oligomerization interface that is important for membrane fusion and also a known antigenic site. We discuss occurrence of HA-E391K in global surveillance data and associated clinical phenotypes from Singapore ranging from mostly mild to few severe symptoms, including sporadic vaccine failure. More clinical and experimental data are needed to determine if this mutation could alter the biology and fitness of the virus or if its increased occurrence is due to founder effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...