Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Res Bull ; 215: 111018, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908759

ABSTRACT

PURPOSE: To explore the utility of high frequency oscillations (HFO) and long-range temporal correlations (LRTCs) in preoperative assessment of epilepsy. METHODS: MEG ripples were detected in 59 drug-resistant epilepsy patients, comprising 5 with parietal lobe epilepsy (PLE), 21 with frontal lobe epilepsy (FLE), 14 with lateral temporal lobe epilepsy (LTLE), and 19 with mesial temporal lobe epilepsy (MTLE) to identify the epileptogenic zone (EZ). The results were compared with clinical MEG reports and resection area. Subsequently, LRTCs were quantified at the source-level by detrended fluctuation analysis (DFA) and life/waiting -time at 5 bands for 90 cerebral cortex regions. The brain regions with larger DFA exponents and standardized life-waiting biomarkers were compared with the resection results. RESULTS: Compared to MEG sensor-level data, ripple sources were more frequently localized within the resection area. Moreover, source-level analysis revealed a higher proportion of DFA exponents and life-waiting biomarkers with relatively higher rankings, primarily distributed within the resection area (p<0.01). Moreover, these two LRCT indices across five distinct frequency bands correlated with EZ. CONCLUSION: HFO and source-level LRTCs are correlated with EZ. Integrating HFO and LRTCs may be an effective approach for presurgical evaluation of epilepsy.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Magnetoencephalography , Humans , Magnetoencephalography/methods , Female , Adult , Male , Epilepsies, Partial/surgery , Epilepsies, Partial/physiopathology , Young Adult , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/physiopathology , Adolescent , Middle Aged , Electroencephalography/methods , Cerebral Cortex/physiopathology , Cerebral Cortex/surgery , Preoperative Care/methods , Brain Waves/physiology
2.
CNS Neurosci Ther ; 29(5): 1423-1433, 2023 05.
Article in English | MEDLINE | ID: mdl-36815318

ABSTRACT

OBJECTIVE: To explore the association between high-frequency oscillations (HFOs) and epilepsy types and to improve the accuracy of source localization. METHODS: Magnetoencephalography (MEG) ripples of 63 drug-resistant epilepsy patients were detected. Ripple rates, distribution, spatial complexity, and the clustering coefficient of ripple channels were used for the preliminary classification of lateral temporal lobe epilepsy (LTLE), mesial temporal lobe epilepsy (MTLE), and nontemporal lobe epilepsy (NTLE), mainly frontal lobe epilepsy (FLE). Furthermore, the seizure site identification was improved using the Tucker LCMV method and source-level betweenness centrality. RESULTS: Ripple rates were significantly higher in MTLE than in LTLE and NTLE (p < 0.05). The LTLE and MTLE were mainly distributed in the temporal lobe, followed by the parietal lobe, occipital lobe, and frontal lobe, whereas MTLE ripples were mainly distributed in the frontal lobe, then parietal lobe and occipital lobe. Nevertheless, the NTLE ripples were primarily in the frontal lobe and partially in the occipital lobe (p < 0.05). Meanwhile, the spatial complexity of NTLE was significantly higher than that of LTLE and MTLE and was lowest in MTLE (p < 0.01). However, an opposite trend was observed for the standardized clustering coefficient compared with spatial complexity (p < 0.01). Finally, the tucker algorithm showed a higher percentage of ripples at the surgical site when the betweenness centrality was added (p < 0.01). CONCLUSION: This study demonstrated that HFO rates, distribution, spatial complexity, and clustering coefficient of ripple channels varied considerably among the three epilepsy types. Additionally, tucker MEG estimation combined with ripple rates based on the source-level functional connectivity is a promising approach for presurgical epilepsy evaluation.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Humans , Epilepsy, Temporal Lobe/surgery , Magnetoencephalography , Temporal Lobe , Epilepsy/surgery , Seizures , Electroencephalography
3.
J Psychiatry Neurosci ; 47(2): E153-E161, 2022.
Article in English | MEDLINE | ID: mdl-35477683

ABSTRACT

BACKGROUND: At present, the use of repetitive transcranial magnetic stimulation (rTMS) for generalized anxiety disorder (GAD) is limited to single-site interventions. We investigated whether dual-site frontoparietal stimulation delivered using cortical-cortical paired associative stimulation (ccPAS) had stronger clinical efficacy than single-site stimulation in patients with GAD. METHODS: We randomized 50 patients with GAD to 1 Hz rTMS (10 sessions) using 1 of the following protocols: single-site stimulation over the right dorsolateral prefrontal cortex (dlPFC; 1500 pulses per session); single-site stimulation over the right posterior parietal cortex (PPC; 1500 pulses per session); repetitive dual-site ccPAS (rds-ccPAS) over the right dlPFC and right PPC with 1500 pulses per session (rd-ccPAS-1500); or rds-ccPAS over the right dlPFC and right PPC with 750 pulses per session (rd-ccPAS-750). Both rds-ccPAS treatments used a between-site interval of 100 ms. RESULTS: Clinical scores for anxiety, depression and insomnia were reduced in all 4 groups after treatment. We found greater improvements in anxiety symptoms in the rds-ccPAS-1500 group compared to the rds-ccPAS-750 and single-site groups. We found greater improvements in depression symptoms and insomnia in the rds-PAS-1500 group compared to the single-site groups. The rds-ccPAS-1500 group also showed significant or trend-level improvements in anxiety symptoms and insomnia at 10-day and 1-month followup. More patients responded to treatment with rds-ccPAS-1500 than with single-site stimulation. The between-group differences in response rates persisted to the 3-month follow-up. Treatment using rds-ccPAS with a between-site interval of 100 ms induced a more significant improvement than the between-site interval of 50 ms we evaluated in a previous study. LIMITATIONS: These results need to be replicated in a larger sample using sham control and equal-pulse single-site stimulation. CONCLUSION: Frontoparietal rds-ccPAS may be a better treatment option for GAD.


Subject(s)
Anxiety Disorders , Transcranial Magnetic Stimulation , Anxiety Disorders/therapy , Humans , Parietal Lobe/physiology , Pilot Projects , Sleep Initiation and Maintenance Disorders , Transcranial Magnetic Stimulation/methods , Treatment Outcome
4.
CNS Neurosci Ther ; 27(7): 820-830, 2021 07.
Article in English | MEDLINE | ID: mdl-33942534

ABSTRACT

AIMS: To improve the Magnetoencephalography (MEG) spatial localization precision of focal epileptic. METHODS: 306-channel simulated or real clinical MEG is estimated as a lower-dimensional tensor by Tucker decomposition based on Higher-order orthogonal iteration (HOOI) before the inverse problem using linearly constraint minimum variance (LCMV). For simulated MEG data, the proposed method is compared with dynamic imaging of coherent sources (DICS), multiple signal classification (MUSIC), and LCMV. For clinical real MEG of 31 epileptic patients, the ripples (80-250 Hz) were detected to compare the source location precision with spikes using the proposed method or the dipole-fitting method. RESULTS: The experimental results showed that the positional accuracy of the proposed method was higher than that of LCMV, DICS, and MUSIC for simulation data. For clinical real MEG data, the positional accuracy of the proposed method was higher than that of dipole-fitting regardless of whether the time window was ripple window or spike window. Also, the positional accuracy of the ripple window was higher than that of the spike window regardless of whether the source location method was the proposed method or the dipole-fitting method. For both shallow and deep sources, the proposed method provided effective performance. CONCLUSION: Tucker estimation of MEG for source imaging by ripple window is a promising approach toward the presurgical evaluation of epileptics.


Subject(s)
Action Potentials/physiology , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/therapy , Magnetoencephalography/instrumentation , Magnetoencephalography/methods , Adolescent , Adult , Epilepsies, Partial/physiopathology , Female , Humans , Magnetoencephalography/standards , Male , Middle Aged , Young Adult
6.
Chin Med J (Engl) ; 128(13): 1728-31, 2015 Jul 05.
Article in English | MEDLINE | ID: mdl-26112711

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique used to alter cortex excitability that has been proposed as an efficient method for treating brain hyperexcitability or hypoexcitability disorders. The aim of this study was to investigate whether high-frequency rTMS could have any beneficial effects in restless legs syndrome (RLS). METHODS: Fourteen patients with RLS were given high-frequency rTMS (15 Hz, 100% motor threshold) to the leg representation motor cortex area of the frontal lobe for 14 sessions over 18 days. Patients were diagnosed according to the international criteria proposed by the International Restless Legs Syndrome Study Group in 2003. The International RLS Rating Scale (IRLS-RS), Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Scale (HAMA) and Hamilton Depression Scale were used to evaluate the severity of RLS, sleep quality, anxiety and depression, respectively. The scale scores were evaluated at four-time points (baseline, end of the 14 th session, and at 1- and 2-month posttreatment). One-way analysis of variance was used to compare scale scores at different time points. RESULTS: There was significant improvement in the IRLS-RS (from 23.86 ± 5.88 to 11.21 ± 7.23, P < 0.05), PSQI (from 15.00 ± 4.88 to 9.29 ± 3.91, P < 0.05), and HAMA (from 17.93 ± 7.11 to 10.36 ± 7.13, P < 0.05) scale scores at the end of 14 th session, with ongoing effects lasting for at least 2 months. CONCLUSIONS: High-frequency rTMS can markedly alleviate the motor system symptoms, sleep disturbances, and anxiety in RLS patients. These results suggest that rTMS might be an option for treating RLS.


Subject(s)
Restless Legs Syndrome/therapy , Transcranial Magnetic Stimulation/methods , Aged , Anxiety/therapy , Depression/therapy , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL