Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Med ; 8(2): 617-628, 2019 02.
Article in English | MEDLINE | ID: mdl-30652422

ABSTRACT

It has been previously reported that ursodeoxycholic acid (UDCA), a therapeutic bile acid, reduced risk for advanced colorectal adenoma in men but not women. Interactions between the gut microbiome and fecal bile acid composition as a factor in colorectal cancer neoplasia have been postulated but evidence is limited to small cohorts and animal studies. Using banked stool samples collected as part of a phase III randomized clinical trial of UDCA for the prevention of colorectal adenomatous polyps, we compared change in the microbiome composition after a 3-year intervention in a subset of participants randomized to oral UDCA at 8-10 mg/kg of body weight per day (n = 198) or placebo (n = 203). Study participants randomized to UDCA experienced compositional changes in their microbiome that were statistically more similar to other individuals in the UDCA arm than to those in the placebo arm. This reflected a UDCA-associated shift in microbial community composition (P < 0.001), independent of sex, with no evidence of a UDCA effect on microbial richness (P > 0.05). These UDCA-associated shifts in microbial community distance metrics from baseline to end-of-study were not associated with risk of any or advanced adenoma (all P > 0.05) in men or women. Separate analyses of microbial networks revealed an overrepresentation of Faecalibacterium prausnitzii in the post-UDCA arm and an inverse relationship between F prausnitzii and Ruminococcus gnavus. In men who received UDCA, the overrepresentation of F prausnitzii and underrepresentation of R gnavus were more prominent in those with no adenoma recurrence at follow-up compared to men with recurrence. This relationship was not observed in women. Daily UDCA use modestly influences the relative abundance of microbial species in stool and affects the microbial network composition with suggestive evidence for sex-specific effects of UDCA on stool microbial community composition as a modifier of colorectal adenoma risk.


Subject(s)
Adenoma/microbiology , Colorectal Neoplasms/microbiology , Gastrointestinal Microbiome/drug effects , Ursodeoxycholic Acid/pharmacology , Aged , Feces/microbiology , Female , Humans , Male , Middle Aged , Risk Factors
2.
PLoS One ; 11(3): e0151842, 2016.
Article in English | MEDLINE | ID: mdl-26986483

ABSTRACT

It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR--a fusion of MPER and the B-subunit of cholera toxin) were investigated in BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were elicited when systemically primed with VLPs. These responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenicity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.


Subject(s)
AIDS Vaccines/immunology , HIV Envelope Protein gp41/immunology , HIV-1/immunology , Nicotiana/metabolism , Plants, Genetically Modified/metabolism , Vaccines, Virus-Like Particle/immunology , gag Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibody Formation/drug effects , Antibody Formation/immunology , Female , HIV Infections/immunology , HIV Infections/prevention & control , Mice , Mice, Inbred BALB C
3.
Plant Biotechnol J ; 11(6): 681-90, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23506331

ABSTRACT

The transmembrane HIV-1 envelope protein gp41 has been shown to play critical roles in the viral mucosal transmission and infection of CD4⁺ cells. Gag is a structural protein configuring the enveloped viral particles and has been suggested to constitute a target of the cellular immunity that may control viral load. We hypothesized that HIV enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the membrane proximal external, transmembrane and cytoplasmic domains (dgp41) could be expressed in plants. To this end, plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a Tobamovirus-based expression system or a combination of both. Our results of biophysical, biochemical and electron microscopy characterization demonstrates that plant cells could support not only the formation of enveloped HIV-1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These findings provide further impetus for the journey towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.


Subject(s)
HIV Envelope Protein gp41/metabolism , HIV-1/metabolism , Nicotiana/virology , gag Gene Products, Human Immunodeficiency Virus/metabolism , Gene Expression Regulation, Plant , Genes, Synthetic , Plant Leaves/ultrastructure , Plant Leaves/virology , Plants, Genetically Modified , Nicotiana/genetics , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL