Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Res Sq ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39257983

ABSTRACT

The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.

2.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895238

ABSTRACT

Cognitive control involves allocating cognitive effort according to internal needs and task demands and the Anterior Cingulate Cortex (ACC) is hypothesized to play a central role in this process. We investigated the neural basis of cognitive control in the ACC of rats performing an adjusting-amount delay discounting task. Decision-making in this this task can be guided by using either a lever-value tracking strategy, requiring a 'resource-based' form of cognitive effort or a lever-biased strategy requiring a 'resistance-based' form of cognitive effort. We found that ACC ensembles always tightly tracked lever value on each trial, indicative of a resource-based control signal. These signals were prevalent in the neural recordings and were influenced by the delay. A shorter delay was associated with devaluing of the immediate option and a longer delay was associated with overvaluing of the immediate option. In addition, ACC theta (6-12Hz) oscillations were observed at the choice point of rats exhibiting a resistance-based strategy. These data provide candidates of neural activity patterns in the ACC that underlie the use of 'resource-based' and 'resistance-based' cognitive effort. Furthermore, these data illustrate how strategies can be engaged under different conditions in individual subjects.

3.
Neuropharmacology ; 257: 110044, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38878859

ABSTRACT

The timing, rate, and quantity of gestational alcohol consumption, collectively referred to here as Maternal Drinking Patterns (MDPs), are of known importance to fetal developmental outcomes. However, few studies have directly evaluated the impact of MDPs on offspring behavior. To do so, we used specialized equipment to record the precise amount and timing of alcohol consumption in pregnant dams, and then characterized MDPs using Principle Component Analysis (PCA). We next tested offspring on behaviors we have previously identified as impacted by prenatal alcohol exposure, and evaluated them where possible in the context of MDPs. Male alcohol exposed mice exhibited longer latencies to fall on the rotarod compared to their controls, which we attribute to a delayed decrease in body weight-gain. This effect was mediated by MDPs within the first 15 min of alcohol access (i.e. alcohol frontloading), where the highest performing male offspring came from dams exhibiting the highest rate of alcohol frontloading. Female alcohol exposed mice displayed reduced locomotor activity in the open field compared to controls, which was mediated by MDPs encompassing the entire drinking session. Surprisingly, total gestational alcohol exposure alone was not associated with any behavioral outcomes. Finally, we observed allodynia in alcohol exposed mice that developed more quickly in males compared to females, and which was not observed in controls. To our knowledge, this report represents the highest resolution assessment of alcohol drinking throughout gestation in mice, and one of few to have identified relationships between specific alcohol MDPs and neurobehavioral outcomes in offspring.


Subject(s)
Alcohol Drinking , Ethanol , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Alcohol Drinking/adverse effects , Alcohol Drinking/psychology , Male , Prenatal Exposure Delayed Effects/physiopathology , Mice , Ethanol/administration & dosage , Mice, Inbred C57BL , Behavior, Animal/drug effects , Behavior, Animal/physiology , Motor Activity/drug effects , Motor Activity/physiology
4.
Behav Neurosci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635177

ABSTRACT

Prenatal alcohol exposure can produce disruptions in a wide range of cognitive functions, but it is especially detrimental to spatial navigation. In open environments, rodents organize their spatial behaviors around centralized locations, termed home bases, from which they make circuitous and slow locomotor trips (progressions) into the rest of the environment. Open-field behaviors are organized even under darkened test conditions, suggesting a role for self-motion cues (vestibular, motor, etc.). The impact of moderate prenatal alcohol exposure (mPAE) on the organization of spontaneous open-field behaviors under darkened conditions has not been investigated. Here we tested adult female and male rats with mPAE or saccharin control exposure in a circular open field for 30 min in a testing room that was made completely dark. While general locomotion, as measured by reductions in travel distance and increased stop duration, decreased across the test session, the organization of these behaviors, as measured by stop duration, home base establishment, home base stability, progression accuracy, and scaling of peak speeds with progression length, did not differ between mPAE and saccharin control rats. Together, the findings strongly suggest that spontaneous movement organization in relation to self-motion cues remains intact in adult mPAE rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

5.
bioRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496601

ABSTRACT

Decreased functional connectivity between the striatum and frontal cortex is observed in individuals with alcohol use disorder (AUD), and predicts the probability of relapse in abstinent individuals with AUD. To further our understanding of how repeated alcohol (ethanol; EtOH) consumption impacts the corticostriatal circuit, extracellular electrophysiological recordings (local field potentials; LFPs) were gathered from the nucleus accumbens (NAc) and prefrontal cortex (PFC) of C57BL/6J mice voluntarily consuming EtOH or water using a 'drinking-in-the-dark' (DID) procedure. Following a three-day acclimation period wherein only water access was provided during DID, mice were given 15 consecutive days of access to EtOH. Each session consisted of a 30-minute baseline period where water was available and was followed immediately by a 2-hour period where sippers containing water were replaced with new sippers containing either unsweetened 20% (v/v) EtOH (days 4-18; DID) or water (days 1-3; acclimation). Our analyses focused primarily on theta coherence during bouts of drinking, as differences in this band are associated with several behavioral markers of AUD. Both sexes displayed decreases in theta coherence during the first day of binge EtOH consumption. However, only females displayed further decreases in theta coherence on the 14th day of EtOH access. No differences in theta coherence were observed between the first and final bout on any EtOH drinking days. These results provide additional support for decreases in the functional coupling of corticostriatal circuits as a consequence of alcohol consumption and suggests that female mice are uniquely vulnerable to these effects following repeated EtOH drinking.

6.
bioRxiv ; 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37398190

ABSTRACT

Determining how an agent decides between a small, immediate versus a larger, delayed reward has provided insight into the psychological and neural basis of decision-making. The tendency to excessively discount the value of delayed rewards is thought to reflect deficits in brain regions critical for impulse control such as the prefrontal cortex (PFC). This study tested the hypothesis that dorsomedial PFC (dmPFC) is critically involved in flexibly managing neural representations of strategies that limit impulsive choices. Optogenetic silencing of neurons in the rat dmPFC increased impulsive choices at an 8 sec, but not 4 sec, delay. Neural recordings from dmPFC ensembles revealed that, at the 8-sec delay, the encoding landscape transitions to reflect a deliberative-like process rather than the schema-like processes observed at the 4-sec delay. These findings show that changes in the encoding landscape reflect changes in task demands and that dmPFC is uniquely involved in decisions requiring deliberation.

7.
bioRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-36909568

ABSTRACT

Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (versus sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex versus tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in recovery and survival of peri-infarct tissues.

8.
Front Cell Neurosci ; 17: 1292661, 2023.
Article in English | MEDLINE | ID: mdl-38162001

ABSTRACT

Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (vs. sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex vs. tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in the recovery and survival of peri-infarct tissues.

9.
Nat Commun ; 13(1): 3990, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810193

ABSTRACT

A key feature of compulsive alcohol drinking is continuing to drink despite negative consequences. To examine the changes in neural activity that underlie this behavior, compulsive alcohol drinking was assessed in a validated rodent model of heritable risk for excessive drinking (alcohol preferring (P) rats). Neural activity was measured in dorsal medial prefrontal cortex (dmPFC-a brain region involved in maladaptive decision-making) and assessed via change point analyses and novel principal component analyses. Neural population representations of specific decision-making variables were measured to determine how they were altered in animals that drink alcohol compulsively. Compulsive animals showed weakened representations of behavioral control signals, but strengthened representations of alcohol seeking-related signals. Finally, chemogenetic-based excitation of dmPFC prevented escalation of compulsive alcohol drinking. Collectively, these data indicate that compulsive alcohol drinking in rats is associated with alterations in dmPFC neural activity that underlie diminished behavioral control and enhanced seeking.


Subject(s)
Behavior Control , Rodentia , Alcohol Drinking , Animals , Compulsive Behavior , Ethanol , Prefrontal Cortex , Rats
10.
Genes Brain Behav ; 21(6): e12816, 2022 07.
Article in English | MEDLINE | ID: mdl-35577358

ABSTRACT

The Neuron-specific gene family (NSG1-3) consists of small endolysosomal proteins that are critical for trafficking multiple receptors and signaling molecules in neurons. NSG1 has been shown to play a critical role in AMPAR recycling from endosomes to plasma membrane during synaptic plasticity. However, to date nothing is known about whether NSG1 is required for normal behavior at an organismal level. Here we performed a battery of behavioral tests to determine whether loss of NSG1 would affect motor, cognitive, and/or affective behaviors, as well as circadian-related activity. Consistent with unique cerebellar expression of NSG1 among family members, we found that NSG1 was obligatory for motor coordination but not for gross motor function or learning. NSG1 knockout (KO) also altered performance across other behavioral modalities including anxiety-related and diurnal activity paradigms. Surprisingly, NSG1 KO did not cause significant impairments across all tasks within a given modality, but had specific effects within each modality. For instance, we found increases in anxiety-related behaviors in tasks with multiple stressors (e.g., elevation and exposure), but not those with a single main stressor (e.g., exposure). Interestingly, NSG1 KO animals displayed a significant increase in locomotor activity during subjective daytime, suggesting a possible impact on diurnal activity rhythms or vigilance. Surprisingly, loss of NSG1 had no effect on hippocampal-dependent learning despite previous studies showing deficits in CA1 long-term potentiation. Together, these findings do not support a role of NSG1 in hippocampal-dependent learning, but support a role in mediating proper neuronal function across amygdalar and cerebellar circuits.


Subject(s)
Hippocampus , Neurons , Animals , Anxiety/genetics , Endosomes/metabolism , Hippocampus/metabolism , Male , Mice , Mice, Knockout , Neuronal Plasticity/physiology , Neurons/metabolism
11.
Alcohol Clin Exp Res ; 46(7): 1321-1330, 2022 07.
Article in English | MEDLINE | ID: mdl-35633038

ABSTRACT

BACKGROUND: Excessive alcohol (ethanol) consumption, such as binge drinking, is extremely commonplace and represents a major health concern. Through modeling excessive drinking in rodents, we are beginning to uncover the neurobiological and neurobehavioral causes and consequences of this pattern of ethanol intake. One important factor for modeling binge drinking in mice is that they reliably drink to blood ethanol concentrations (BECs) of 80 mg/dl or higher. Drinking-in-the-dark (DID) is a commonly used mouse model of binge drinking, and we have shown that this method reliably results in robust ethanol front-loading and binge-level BECs in C57BL/6J (B6) mice and other ethanol-preferring mouse strains/lines. However, establishing the DID model in a new vivarium space forced us to consider the use of rodent diet formulations that we had not previously used. METHODS: The current set of experiments were designed to investigate the role of two standard rodent diet formulations on binge drinking and the development of ethanol front-loading using DID. RESULTS: We found that BECs in animals maintained on LabDiet 5001 (LD01) were double those found in mice maintained on Teklad 2920x (TL20). Interestingly, this effect was paralleled by differences in the degree of front-loading, such that LD01-fed mice consumed approximately twice as much ethanol in the first 15 min of the 2-h DID sessions as the TL20-fed mice. Surprisingly, however, mice that developed front-loading during maintenance on the LD01 diet continued to display front-loading behavior after being switched to the TL20 diet. CONCLUSIONS: These data emphasize the importance of choosing and reporting diet formulations when conducting voluntary drinking studies and support the need for further investigation into the mechanisms behind diet-induced differences in binge drinking, particularly front-loading.


Subject(s)
Binge Drinking , Alcohol Drinking/metabolism , Animals , Blood Alcohol Content , Diet , Ethanol/pharmacology , Mice , Mice, Inbred C57BL , Rodentia
12.
Molecules ; 26(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064652

ABSTRACT

The neuronal Hu/ELAV-like proteins HuB, HuC and HuD are a class of RNA-binding proteins that are crucial for proper development and maintenance of the nervous system. These proteins bind to AU-rich elements (AREs) in the untranslated regions (3'-UTRs) of target mRNAs regulating mRNA stability, transport and translation. In addition to these cytoplasmic functions, Hu proteins have been implicated in alternative splicing and alternative polyadenylation in the nucleus. The purpose of this study was to identify transcriptome-wide effects of HuD deletion on both of these nuclear events using RNA sequencing data obtained from the neocortex of Elavl4-/- (HuD KO) mice. HuD KO affected alternative splicing of 310 genes, including 17 validated HuD targets such as Cbx3, Cspp1, Snap25 and Gria2. In addition, deletion of HuD affected polyadenylation of 53 genes, with the majority of significantly altered mRNAs shifting towards usage of proximal polyadenylation signals (PAS), resulting in shorter 3'-UTRs. None of these genes overlapped with those showing alternative splicing events. Overall, HuD KO had a greater effect on alternative splicing than polyadenylation, with many of the affected genes implicated in several neuronal functions and neuropsychiatric disorders.


Subject(s)
Alternative Splicing/genetics , ELAV-Like Protein 4/genetics , Neocortex/metabolism , Polyadenylation/genetics , Animals , ELAV-Like Protein 4/metabolism , Exons/genetics , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
Behav Brain Res ; 396: 112885, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32860829

ABSTRACT

Studies with human subjects indicate that ethanol exposure during fetal development causes long-lasting alterations in motor coordination that are, in part, a consequence of cerebellar damage. Studies with rats exposed to ethanol during the neonatal brain growth spurt have consistently recapitulated these deficits. However, studies with mice have yielded mixed results. We hypothesized that the use of highly sensitive motor function tests, such as the Catwalk test, would reliably detect motor function deficits in mice developmentally exposed to ethanol. Venus-vesicular GABA transporter transgenic mice were ethanol exposed during postnatal days 4-9 using vapor inhalation chambers and then subjected to the Catwalk test during adolescence. Catwalk data were rigorously analyzed using an innovative multistep statistical approach. For comparison, motor coordination and strength were assessed with the triple horizontal bar and rotarod tests. Unexpectedly, we found that out of 186 parameters analyzed in the Catwalk test, only one was affected by ethanol exposure (i.e., reduced coupling between left front paw and the right hind paw). In the triple horizontal bar test, ethanol-exposed mice were able to hold to the bars for less time than controls. Surprisingly, ethanol-exposed mice performed better in the rotarod test than controls. These data indicate that neonatal ethanol exposure of mice causes mixed effects on motor function during adolescence. The Catwalk test suggests that gait is generally preserved in these mice, whereas the triple horizontal bar test revealed deficits on motor strength and the rotarod test an increase in motor coordination.


Subject(s)
Alcohol-Induced Disorders, Nervous System/physiopathology , Central Nervous System Depressants/adverse effects , Ethanol/adverse effects , Motor Activity/physiology , Psychomotor Performance/physiology , Age Factors , Animals , Animals, Newborn , Behavior, Animal/physiology , Central Nervous System Depressants/administration & dosage , Disease Models, Animal , Ethanol/administration & dosage , Female , Male , Mice , Mice, Transgenic , Vesicular Inhibitory Amino Acid Transport Proteins
14.
Entropy (Basel) ; 22(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-33286352

ABSTRACT

Information theory is a powerful tool for analyzing complex systems. In many areas of neuroscience, it is now possible to gather data from large ensembles of neural variables (e.g., data from many neurons, genes, or voxels). The individual variables can be analyzed with information theory to provide estimates of information shared between variables (forming a network between variables), or between neural variables and other variables (e.g., behavior or sensory stimuli). However, it can be difficult to (1) evaluate if the ensemble is significantly different from what would be expected in a purely noisy system and (2) determine if two ensembles are different. Herein, we introduce relatively simple methods to address these problems by analyzing ensembles of information sources. We demonstrate how an ensemble built of mutual information connections can be compared to null surrogate data to determine if the ensemble is significantly different from noise. Next, we show how two ensembles can be compared using a randomization process to determine if the sources in one contain more information than the other. All code necessary to carry out these analyses and demonstrations are provided.

15.
Alcohol Clin Exp Res ; 44(11): 2225-2238, 2020 11.
Article in English | MEDLINE | ID: mdl-32966634

ABSTRACT

BACKGROUND: The medial prefrontal cortex (mPFC) is a brain region involved in the evaluation and selection of motivationally relevant outcomes. Neural activity in mPFC is altered following acute ethanol (EtOH) use and, in rodent models, doses as low as 0.75 g/kg yield cognitive deficits. Deficits in decision making following acute EtOH are thought to be mediated, at least in part, by decreases in mPFC firing rates (FRs). However, the data leading to this conclusion have been generated exclusively in anesthetized rodents. The present study characterizes the effects of acute EtOH injections on mPFC neural activity in awake-behaving rodents. METHODS: Awake-behaving and anesthetized in vivo electrophysiological recordings were performed. We utilized 3 groups: the first received 2 saline injections, the second received a saline injection followed by 1.0 g/kg EtOH, and the last received saline followed by 2 g/kg EtOH. One week later, an anesthetized recording occurred where a saline injection was followed by an injection of 1.0 g/kg EtOH. RESULTS: The anesthetized condition showed robust decreases in neural activity and differences in up-down states (UDS) dynamics. In the awake-behaving condition, FRs were grouped according to behavioral state: moving, not-moving, and sleep. The differences in median FRs were found for each treatment and behavioral state combination. A FR decrease was only found in the 2.0 g/kg EtOH treatment during not-moving states. However, robust decreases in FR variability were found across behavioral state in both the 1.0 and 2.0 g/kg EtOH treatment. Sleep was separately analyzed. EtOH modulated the UDS during sleep producing decreases in FRs. CONCLUSIONS: In conclusion, the changes in neural activity following EtOH administration in anesthetized animals are not conserved in awake-behaving animals. The most prominent difference following EtOH was a decrease in FR variability suggesting that acute EtOH may be affecting decision making via this mechanism.


Subject(s)
Ethanol/pharmacology , Prefrontal Cortex/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Animals , Arousal/drug effects , Arousal/physiology , Ethanol/blood , Male , Neurons/drug effects , Neurons/physiology , Prefrontal Cortex/physiology , Rats , Rats, Wistar , Wakefulness/drug effects , Wakefulness/physiology
16.
Alcohol Clin Exp Res ; 44(9): 1717-1727, 2020 09.
Article in English | MEDLINE | ID: mdl-32865852

ABSTRACT

BACKGROUND: Beyond yielding high blood ethanol (EtOH) concentrations (BECs), binge-drinking models allow examination of drinking patterns which may be associated with EtOH's rewarding effects, including front-loading and consummatory successive negative contrast (cSNC), a decrease in intake when only water is available to subjects expecting EtOH. The goals of the current study were to broaden our understanding of these reward-related behaviors during binge EtOH access in high alcohol-preferring (HAP) replicate lines (HAP2 and HAP3) of mice selectively bred to prefer alcohol. We hypothesized that both lines would show evidence of front-loading during binge EtOH access and that we would find a cSNC effect in groups where EtOH was replaced with water, as these results have been shown previously in HAP1 mice. METHODS: HAP replicate 2 and replicate 3 female and male mice were given 2 hours of EtOH or water access in the home cage for 15 consecutive days using "drinking in the dark" (DID) procedures. Mice received the same fluid (either 20% unsweetened EtOH or water) for the first 14 days. However, on the 15th day, half of the mice from these 2 groups were provided with the opposite assigned fluid (EtOH groups received water and vice versa). Intake was measured in 1-minute bins using specialized sipper tubes, which allowed within-session analyses of binge-drinking patterns. RESULTS: EtOH front-loading was observed in both replicates. HAP3 mice displayed front-loading on the first day of EtOH access, whereas front-loading developed following alcohol experience in HAP2 mice, which may suggest differences in initial sensitivity to EtOH reward. Consummatory SNC, which manifests as lower water intake in mice expecting EtOH as compared to mice expecting water, was observed in both replicates. CONCLUSIONS: These findings increase confidence that defined changes in home cage consummatory behavior are driven by the incentive value of EtOH. The presence of cSNC across HAP replicates indicates that this reaction to loss of reward is genetically mediated, which suggests that there is a biological mechanism that might be targeted.


Subject(s)
Alcohol Drinking/physiopathology , Behavior, Animal , Binge Drinking/physiopathology , Central Nervous System Depressants/administration & dosage , Drinking Behavior , Ethanol/administration & dosage , Reward , Animals , Drinking Water , Female , Male , Mice , Mice, Inbred Strains , Self Administration
17.
Alcohol ; 83: 47-56, 2020 03.
Article in English | MEDLINE | ID: mdl-31542609

ABSTRACT

Understanding why some people continue to drink alcohol despite negative consequences and others do not is a central problem in the study of alcohol use disorder (AUD). In this study, we used alcohol-preferring P rats (a strain bred to prefer to drink alcohol, a model for genetic risk for AUD) and Wistar rats (control) to examine drinking despite negative consequences in the form of an aversive bitter taste stimulus produced by quinine. Animals were trained to consume 10% ethanol in a simple Pavlovian conditioning task that paired alcohol access with an auditory stimulus. When the alcohol was adulterated with quinine (0.1 g/L), P rats continued to consume alcohol + quinine at the same rate as unadulterated alcohol, despite a demonstrated aversion to quinine-adulterated alcohol when given a choice between adulterated and unadulterated alcohol in the home cage. Conversely, Wistar rats decreased consumption of quinine-adulterated alcohol in the task, but continued to try the alcohol + quinine solution at similar rates to unadulterated alcohol. These results indicate that following about 8 weeks of alcohol consumption, P rats exhibit aversion-resistant drinking. This model could be used in future work to explore how the biological basis of alcohol consumption and genetic risk for excessive drinking lead to drinking that is resistant to devaluation.


Subject(s)
Alcoholism/physiopathology , Avoidance Learning/physiology , Ethanol/administration & dosage , Quinine/administration & dosage , Alcohol Drinking/physiopathology , Alcoholism/genetics , Animals , Conditioning, Classical , Ethanol/blood , Male , Motivation/physiology , Rats , Rats, Wistar
18.
eNeuro ; 6(4)2019.
Article in English | MEDLINE | ID: mdl-31358511

ABSTRACT

The prefrontal cortex (PFC) plays a central role in guiding decision making, and its function is altered by alcohol use and an individual's innate risk for excessive alcohol drinking. The primary goal of this work was to determine how neural activity in the PFC guides the decision to drink. Towards this goal, the within-session changes in neural activity were measured from medial PFC (mPFC) of rats performing a drinking procedure that allowed them to consume or abstain from alcohol in a self-paced manner. Recordings were obtained from rats that either lacked or expressed an innate risk for excessive alcohol intake, Wistar or alcohol-preferring (P) rats, respectively. Wistar rats exhibited patterns of neural activity consistent with the intention to drink or abstain from drinking, whereas these patterns were blunted or absent in P rats. Collectively, these data indicate that neural activity patterns in mPFC associated with the intention to drink alcohol are influenced by innate risk for excessive alcohol drinking. This observation may indicate a lack of control over the decision to drink by this otherwise well-validated supervisory brain region.


Subject(s)
Alcohol Drinking/physiopathology , Decision Making/physiology , Intention , Neurons/physiology , Prefrontal Cortex/physiology , Animals , Behavior, Animal/drug effects , Conditioning, Classical , Cues , Decision Making/drug effects , Ethanol/administration & dosage , Male , Neurons/drug effects , Prefrontal Cortex/drug effects , Rats, Wistar
19.
eNeuro ; 4(6)2017.
Article in English | MEDLINE | ID: mdl-29302616

ABSTRACT

The ability to flexibly switch between goal-directed actions and habits is critical for adaptive behavior. The infralimbic prefrontal cortex (IfL-C) has been consistently identified as a crucial structure for the regulation of response strategies. To investigate the role of the IfL-C, the present study employed two validated reinforcement schedules that either promote habits or goal-directed actions in mice. The results reveal that information about action-outcome relationships is differentially encoded in the IfL-C during actions and habits as evidenced by encoding of behavioral outcomes during goal-directed actions that is lost during habits. Optogenetic inhibition of the IfL-C selectively at press during habitual behavior (when firing rates are reduced during unreinforced goal-directed actions) resulted in restoration of sensitivity to change of action-outcome contingency. These results reveal a novel functional mechanism by which IfL-C promotes habitual behavior, and provide insight into strategies for the treatment and prevention of pathological, inflexible behavior common in neuropsychiatric illness.


Subject(s)
Cerebral Cortex/physiology , Habits , Neurons/physiology , Action Potentials , Animals , Appetitive Behavior/physiology , Conditioning, Operant/physiology , Electrodes, Implanted , Goals , Male , Mice, Inbred C57BL , Optogenetics , Reinforcement Schedule , Reward
20.
Cogn Affect Behav Neurosci ; 17(2): 235-251, 2017 04.
Article in English | MEDLINE | ID: mdl-28000083

ABSTRACT

Increasing evidence supports the hypothesis that impulsive decision-making is a heritable risk factor for an alcohol use disorder (AUD). Clearly identifying a link between impulsivity and AUD risk, however, is complicated by the fact that both AUDs and impulsivity are heterogeneous constructs. Understanding the link between the two requires identifying the underlying cognitive factors that lead to impulsive choices. Rodent models have established that a family history of excessive drinking can lead to the expression of a transgenerational impulsive phenotype, suggesting heritable alterations in the decision-making process. In the present study, we explored the cognitive processes underlying impulsive choice in a validated, selectively bred rodent model of excessive drinking-the alcohol-preferring ("P") rat. Impulsivity was measured via delay discounting (DD), and P rats exhibited an impulsive phenotype as compared to their outbred foundation strain-Wistar rats. Steeper discounting in P rats was associated with a lack of a prospective behavioral strategy, which was observed in Wistar rats and was directly related to DD. To further explore the underlying cognitive factors mediating these observations, a drift diffusion model of DD was constructed. These simulations supported the hypothesis that prospective memory of the delayed reward guided choice decisions, slowed discounting, and optimized the fit of the model to the experimental data. Collectively, these data suggest that a deficit in forming or maintaining a prospective behavioral plan is a critical intermediary to delaying reward, and by extension, may underlie the inability to delay reward in those with increased AUD risk.


Subject(s)
Alcohol Drinking/psychology , Alcoholism/psychology , Delay Discounting , Impulsive Behavior , Memory, Episodic , Alcohol Drinking/genetics , Alcoholism/genetics , Animals , Computer Simulation , Conditioning, Operant , Disease Models, Animal , Executive Function , Genetic Predisposition to Disease , Habituation, Psychophysiologic , Male , Models, Psychological , Motor Activity , Phenotype , Rats, Wistar , Reaction Time , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL