Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Sci Immunol ; 9(97): eadl1903, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028828

ABSTRACT

Regulatory T cells (Tregs) control adaptive immunity and restrain type 2 inflammation in allergic disease. Interleukin-33 promotes the expansion of tissue-resident Tregs and group 2 innate lymphoid cells (ILC2s); however, how Tregs locally coordinate their function within the inflammatory niche is not understood. Here, we show that ILC2s are critical orchestrators of Treg function. Using spatial, cellular, and molecular profiling of the type 2 inflamed niche, we found that ILC2s and Tregs engage in a direct (OX40L-OX40) and chemotaxis-dependent (CCL1-CCR8) cellular dialogue that enforces the local accumulation of Gata3high Tregs, which are transcriptionally and functionally adapted to the type 2 environment. Genetic interruption of ILC2-Treg communication resulted in uncontrolled type 2 lung inflammation after allergen exposure. Mechanistically, we found that Gata3high Tregs can modulate the local bioavailability of the costimulatory molecule OX40L, which subsequently controlled effector memory T helper 2 cell numbers. Hence, ILC2-Treg interactions represent a critical feedback mechanism to control adaptive type 2 immunity.


Subject(s)
Adaptive Immunity , GATA3 Transcription Factor , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Mice , Adaptive Immunity/immunology , Lymphocytes/immunology , Immunity, Innate/immunology , Mice, Knockout , Th2 Cells/immunology , Female
2.
3.
J Neuroinflammation ; 21(1): 183, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069631

ABSTRACT

Therapeutics for traumatic brains injuries constitute a global unmet medical need. Despite the advances in neurocritical care, which have dramatically improved the survival rate for the ~ 70 million patients annually, few treatments have been developed to counter the long-term neuroinflammatory processes and accompanying cognitive impairments, frequent among patients. This review looks at gene delivery as a potential therapeutic development avenue for traumatic brain injury. We discuss the capacity of gene delivery to function in traumatic brain injury, by producing beneficial biologics within the brain. Gene delivery modalities, promising vectors and key delivery routes are discussed, along with the pathways that biological cargos could target to improve long-term outcomes for patients. Coupling blood-brain barrier crossing with sustained local production, gene delivery has the potential to convert proteins with useful biological properties, but poor pharmacodynamics, into effective therapeutics. Finally, we review the limitations and health economics of traumatic brain injury, and whether future gene delivery approaches will be viable for patients and health care systems.


Subject(s)
Brain Injuries, Traumatic , Gene Transfer Techniques , Genetic Therapy , Humans , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/genetics , Gene Transfer Techniques/trends , Animals , Genetic Therapy/methods , Genetic Therapy/trends , Blood-Brain Barrier/metabolism
4.
Front Microbiol ; 15: 1324403, 2024.
Article in English | MEDLINE | ID: mdl-38903788

ABSTRACT

Microbiome research has gained much attention in recent years as the importance of gut microbiota in regulating host health becomes increasingly evident. However, the impact of radiation on the microbiota in the murine bone marrow transplantation model is still poorly understood. In this paper, we present key findings from our study on how radiation, followed by bone marrow transplantation with or without T cell depletion, impacts the microbiota in the ileum and caecum. Our findings show that radiation has different effects on the microbiota of the two intestinal regions, with the caecum showing increased interindividual variation, suggesting an impaired ability of the host to regulate microbial symbionts, consistent with the Anna Karenina principle. Additionally, we observed changes in the ileum composition, including an increase in bacterial taxa that are important modulators of host health, such as Akkermansia and Faecalibaculum. In contrast, radiation in the caecum was associated with an increased abundance of several common commensal taxa in the gut, including Lachnospiraceae and Bacteroides. Finally, we found that high doses of radiation had more substantial effects on the caecal microbiota of the T-cell-depleted group than that of the non-T-cell-depleted group. Overall, our results contribute to a better understanding of the complex relationship between radiation and the gut microbiota in the context of bone marrow transplantation and highlight the importance of considering different intestinal regions when studying microbiome responses to environmental stressors.

5.
Immunity ; 57(7): 1586-1602.e10, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38897202

ABSTRACT

The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3+ regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared T cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.


Subject(s)
Cell Movement , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Animals , Mice , Cell Movement/immunology , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Forkhead Transcription Factors/metabolism , Organ Specificity/immunology , Homeostasis/immunology
7.
Front Immunol ; 15: 983686, 2024.
Article in English | MEDLINE | ID: mdl-38827742

ABSTRACT

Recently, OTULIN haploinsufficiency was linked to enhanced susceptibility to Staphylococcus aureus infections accompanied by local necrosis and systemic inflammation. The pathogenesis observed in haploinsufficient patients differs from the hyperinflammation seen in classical OTULIN-related autoinflammatory syndrome (ORAS) patients and is characterized by increased susceptibility of dermal fibroblasts to S. aureus alpha toxin-inflicted cytotoxic damage. Immunological abnormalities were not observed in OTULIN haploinsufficient patients, suggesting a non-hematopoietic basis. In this research report, we investigated an Otulin+/- mouse model after in vivo provocation with lipopolysaccharide (LPS) to explore the potential role of hematopoietic-driven inflammation in OTULIN haploinsufficiency. We observed a hyperinflammatory signature in LPS-provoked Otulin+/- mice, which was driven by CD64+ monocytes and macrophages. Bone marrow-derived macrophages (BMDMs) of Otulin+/- mice demonstrated higher proinflammatory cytokine secretion after in vitro stimulation with LPS or polyinosinic:polycytidylic acid (Poly(I:C)). Our experiments in full and mixed bone marrow chimeric mice suggest that, in contrast to humans, the observed inflammation was mainly driven by the hematopoietic compartment with cell-extrinsic effects likely contributing to inflammatory outcomes. Using an OTULIN haploinsufficient mouse model, we validated the role of OTULIN in the regulation of environmentally directed inflammation.


Subject(s)
Haploinsufficiency , Inflammation , Lipopolysaccharides , Macrophages , Animals , Mice , Inflammation/genetics , Macrophages/immunology , Macrophages/metabolism , Disease Models, Animal , Cytokines/metabolism , Poly I-C , Mice, Inbred C57BL , Mice, Knockout , Humans
8.
Immunol Cell Biol ; 102(7): 538-547, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871636

ABSTRACT

Positive research cultures provide the environment for scientists to explore ideas, grow as individuals, develop team science and create a positive impact on those around them. While positive research cultures need to grow from the kindness and integrity of team members, organization policy can either help or hinder this organic positive behavior. A focus on policies to enhance positive research culture can benefit even high-functioning organizations, by expanding and extending the benefits. Here we focus on key actionable areas to create and reinforce a positive research culture in your organization. We discuss the role of aligning staff recognition to the organization's missions, the influence of the organization unit and career structure on the research culture, the pyramid of building respectful interactions, the value of openness and transparency and the overarching goal of equality, diversity and inclusivity within the organization.


Subject(s)
Organizational Culture , Humans , Biomedical Research , Research Personnel , Research
9.
Immunol Cell Biol ; 102(6): 422-424, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38695211

ABSTRACT

In this article for the Highlights of the 2023 Series, we discuss recent discoveries on regulatory T cells in the lungs and their multifaceted roles in various contexts. Key advancements in Treg immunology have broadened our understanding of lung tissue homeostasis and the potential role of Tregs in pathological processes.


Subject(s)
Lung , T-Lymphocytes, Regulatory , Animals , Humans , Homeostasis , Lung/immunology , T-Lymphocytes, Regulatory/immunology
10.
Immunol Cell Biol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815998

ABSTRACT

Asking the right questions during a job interview helps you find the best person for your team. A well-crafted question will allow the applicants to shed light on their skills and their passion for science. Just as importantly, good interview questions can let you know about the applicants' support expectations and needs, and their approach to lab citizenship and research culture. Here we crowd-sourced the #ImmunologyFutures community for their go-to job interview questions, to help you find the right candidate for your position.

11.
Immunol Cell Biol ; 102(6): 456-459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38651261

ABSTRACT

The field of neuroimmunology is quickly expanding and, as the primary immune cell of the brain, microglia are truly in the spotlight. In 2023, the number of microglia related articles published on PubMed rose to 5152. This number has consistently increased year on year and has more than doubled since 2013, as we begin to appreciate the role of microglia in brain development, health and disease. The year 2023 continued to bring new important discoveries, extending our knowledge of microglia biology. This image was created in BioRender.com.


Subject(s)
Brain , Microglia , Animals , Humans , Brain/immunology , Microglia/immunology , Neuroimmunomodulation
12.
Nat Rev Immunol ; 24(6): 375-376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658707

Subject(s)
Communication , Humans , Science
13.
Mol Neurodegener ; 19(1): 32, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581053

ABSTRACT

BACKGROUND: Ageing is the principal risk factor for retinal degenerative diseases, which are the commonest cause of blindness in the developed countries. These conditions include age-related macular degeneration or diabetic retinopathy. Regulatory T cells play a vital role in immunoregulation of the nervous system by limiting inflammation and tissue damage in health and disease. Because the retina was long-considered an immunoprivileged site, the precise contribution of regulatory T cells in retinal homeostasis and in age-related retinal diseases remains unknown. METHODS: Regulatory T cells were selectively depleted in both young (2-4 months) and aged (18-23 months) FoxP3-DTR mice. We evaluated neuroretinal degeneration, gliosis, subretinal space phagocyte infiltration, and retinal pigmented epithelium morphology through immunofluorescence analysis. Subsequently, aged Treg depleted animals underwent adoptive transfer of both young and aged regulatory T cells from wild-type mice, and the resulting impact on neurodegeneration was assessed. Statistical analyses employed included the U-Mann Whitney test, and for comparisons involving more than two groups, 1-way ANOVA analysis followed by Bonferroni's post hoc test. RESULTS: Our study shows that regulatory T cell elimination leads to retinal pigment epithelium cell dysmorphology and accumulation of phagocytes in the subretinal space of young and aged mice. However, only aged mice experience retinal neurodegeneration and gliosis. Surprisingly, adoptive transfer of young but not aged regulatory T cells reverse these changes. CONCLUSION: Our findings demonstrate an essential role for regulatory T cells in maintaining age retinal homeostasis and preventing age-related neurodegeneration. This previously undescribed role of regulatory T cells in limiting retinal inflammation, RPE/choroid epithelium damage and subsequently photoreceptor loss with age, opens novel avenues to explore regulatory T cell neuroprotective and anti-inflammatory properties as potential therapeutic approaches for age-related retinal diseases.


Subject(s)
Macular Degeneration , T-Lymphocytes, Regulatory , Mice , Animals , Gliosis , Retina , Inflammation
14.
Sci Immunol ; 9(93): eadd4818, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427718

ABSTRACT

T follicular helper (TFH) cells are essential for effective antibody responses, but deciphering the intrinsic wiring of mouse TFH cells has long been hampered by the lack of a reliable protocol for their generation in vitro. We report that transforming growth factor-ß (TGF-ß) induces robust expression of TFH hallmark molecules CXCR5 and Bcl6 in activated mouse CD4+ T cells in vitro. TGF-ß-induced mouse CXCR5+ TFH cells are phenotypically, transcriptionally, and functionally similar to in vivo-generated TFH cells and provide critical help to B cells. The study further reveals that TGF-ß-induced CXCR5 expression is independent of Bcl6 but requires the transcription factor c-Maf. Classical TGF-ß-containing T helper 17 (TH17)-inducing conditions also yield separate CXCR5+ and IL-17A-producing cells, highlighting shared and distinct cell fate trajectories of TFH and TH17 cells. We demonstrate that excess IL-2 in high-density T cell cultures interferes with the TGF-ß-induced TFH cell program, that TFH and TH17 cells share a common developmental stage, and that c-Maf acts as a switch factor for TFH versus TH17 cell fates in TGF-ß-rich environments in vitro and in vivo.


Subject(s)
T-Lymphocytes, Helper-Inducer , Transforming Growth Factor beta , Animals , Mice , Transforming Growth Factor beta/metabolism , B-Lymphocytes , CD4-Positive T-Lymphocytes , Cell Differentiation , Proto-Oncogene Proteins c-maf/metabolism
15.
Nat Commun ; 15(1): 1870, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467607

ABSTRACT

Myelin regeneration (remyelination) is essential to prevent neurodegeneration in demyelinating diseases such as Multiple Sclerosis, however, its efficiency declines with age. Regulatory T cells (Treg) recently emerged as critical players in tissue regeneration, including remyelination. However, the effect of ageing on Treg-mediated regenerative processes is poorly understood. Here, we show that expansion of aged Treg does not rescue age-associated remyelination impairment due to an intrinsically diminished capacity of aged Treg to promote oligodendrocyte differentiation and myelination in male and female mice. This decline in regenerative Treg functions can be rescued by a young environment. We identified Melanoma Cell Adhesion Molecule 1 (MCAM1) and Integrin alpha 2 (ITGA2) as candidates of Treg-mediated oligodendrocyte differentiation that decrease with age. Our findings demonstrate that ageing limits the neuroregenerative capacity of Treg, likely limiting their remyelinating therapeutic potential in aged patients, and describe two mechanisms implicated in Treg-driven remyelination that may be targetable to overcome this limitation.


Subject(s)
Remyelination , Humans , Male , Female , Mice , Animals , Aged , Remyelination/physiology , T-Lymphocytes, Regulatory/metabolism , Oligodendroglia/physiology , Cell Differentiation/physiology , Myelin Sheath/metabolism , Aging , Central Nervous System
16.
Immunol Cell Biol ; 102(2): 75-78, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212948

ABSTRACT

Immunology & Cell Biology celebrated its 100-year birthday as a journal with an editorial workshop focused on how we can improve the author experience. In our renewed editorial policies, we articulate our editorial focus on the quality of the scientific question and the robustness of the conclusions, including a new "scoop protection" policy to live our values. The journal is dedicated to maintaining its relationship with reviewers, enabling rapid quality peer review, but is also opening new lines of submission with expedited cross-platform assessment of reviews and incorporation into the Review Commons submission pipeline. In 2024 we will expand our social media promotion of articles and build on the career development resource of Immunology Futures. Here we lay out the ethos, numbers and rationale behind ICB's renewed author-centric publication policies for 2024.

17.
Am J Pathol ; 194(2): 195-208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37981221

ABSTRACT

miRNAs are small noncoding RNAs that regulate mRNA targets in a cell-specific manner. miR-29 is expressed in murine and human skin, where it may regulate functions in skin repair. Cutaneous wound healing model in miR-29a/b1 gene knockout mice was used to identify miR-29 targets in the wound matrix, where angiogenesis and maturation of provisional granulation tissue was enhanced in response to genetic deletion of miR-29. Consistently, antisense-mediated inhibition of miR-29 promoted angiogenesis in vitro by autocrine and paracrine mechanisms. These processes are likely mediated by miR-29 target mRNAs released upon removal of miR-29 to improve cell-matrix adhesion. One of these, laminin (Lam)-c2 (also known as laminin γ2), was strongly up-regulated during skin repair in the wound matrix of knockout mice. Unexpectedly, Lamc2 was deposited in the basal membrane of endothelial cells in blood vessels forming in the granulation tissue of knockout mice. New blood vessels showed punctate interactions between Lamc2 and integrin α6 (Itga6) along the length of the proto-vessels, suggesting that greater levels of Lamc2 may contribute to the adhesion of endothelial cells, thus assisting angiogenesis within the wound. These findings may be of translational relevance, as LAMC2 was deposited at the leading edge in human wounds, where it formed a basal membrane for endothelial cells and assisted neovascularization. These results suggest a link between LAMC2, improved angiogenesis, and re-epithelialization.


Subject(s)
Laminin , MicroRNAs , Humans , Animals , Mice , Laminin/genetics , Endothelial Cells , Signal Transduction/physiology , MicroRNAs/genetics , Skin , Mice, Knockout
18.
Nat Rev Immunol ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040953

ABSTRACT

The brain, long thought to be isolated from the peripheral immune system, is increasingly recognized to be integrated into a systemic immunological network. These conduits of immune-brain interaction and immunosurveillance processes necessitate the presence of complementary immunoregulatory mechanisms, of which brain regulatory T cells (Treg cells) are likely a key facet. Treg cells represent a dynamic population in the brain, with continual influx, specialization to a brain-residency phenotype and relatively rapid displacement by newly incoming cells. In addition to their functions in suppressing adaptive immunity, an emerging view is that Treg cells in the brain dampen down glial reactivity in response to a range of neurological insults, and directly assist in multiple regenerative and reparative processes during tissue pathology. The utility and malleability of the brain Treg cell population make it an attractive therapeutic target across the full spectrum of neurological conditions, ranging from neuroinflammatory to neurodegenerative and even psychiatric diseases. Therapeutic modalities currently under intense development include Treg cell therapy, IL-2 therapy to boost Treg cell numbers and multiple innovative approaches to couple these therapeutics to brain delivery mechanisms for enhanced potency. Here we review the state of the art of brain Treg cell knowledge together with the potential avenues for future integration into medical practice.

19.
Sci Immunol ; 8(90): eabo5558, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100544

ABSTRACT

Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Mice , Humans , Animals , Interleukin-10/metabolism , Neoplasms/therapy , Neoplasms/metabolism , Immunotherapy , Forkhead Transcription Factors/metabolism
20.
Immunol Cell Biol ; 101(10): 880-881, 2023.
Article in English | MEDLINE | ID: mdl-37909124
SELECTION OF CITATIONS
SEARCH DETAIL