Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
bioRxiv ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38903110

ABSTRACT

Background: Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. This UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. Methods: Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. Results: Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. Conclusions: There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.

2.
BMC Nurs ; 23(1): 329, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755582

ABSTRACT

BACKGROUND: Meeting people's needs is positively correlated with their recovery. However, recovery services rarely include nurse-led programs tailored to the needs of these people. This study aimed to evaluate the effectiveness of a new needs-tailored recovery program by using a cluster-randomized controlled trial design. METHODS: We conducted a parallel randomized controlled trial in two community psychiatric departments, employing nurse-level clustering for intervention delivery and selecting participants through convenience sampling. The participants were people diagnosed with schizophrenia that were receiving homecare services. The experimental group (n = 82) received needs-tailored recovery program for six months. The control group (n = 82) received traditional homecare. Data were collected at baseline, post-intervention, and the three-month follow-up (the study ran from February to December 2021). The outcomes were recovery, needs, hope, empowerment, psychotic symptoms, and medication adherence. We used repeated measures ANOVA tests to examine the effect of the group × time interaction. RESULTS: The participants in the experimental group demonstrated statistically significant improvements in recovery, hope, and medication adherence compared to the control group, both immediately post-intervention and at the three-month follow-up. Moreover, they exhibited statistically significant reductions in needs compared to the control group at the three-month follow-up (p < .05). While the interaction effect for psychotic symptoms was not significant, the time effect was significant (p < .05). No significant interaction or time effect was observed for empowerment. CONCLUSION: The findings increase our understanding of recovery-oriented care that prioritizes therapeutic alliance, integrated needs assessment, individual goals, hope, and empowerment. TRIAL REGISTRATION: The Clinicaltrials.gov identifier NCT05304780 retrospectively registered on 03/31/2022.

3.
Acta Neuropathol Commun ; 12(1): 25, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336940

ABSTRACT

Alzheimer's disease (AD), characterized by the deposition of amyloid-ß (Aß) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aß and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aß40, Aß42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aß40, Aß42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aß42 and pTau181 levels. Overall, our findings suggest that different patterns of Aß, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Tauopathies , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , tau Proteins , Tauopathies/pathology
4.
Nat Immunol ; 24(11): 1854-1866, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857825

ABSTRACT

Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Microglia/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Brain , Homeostasis , Mice, Transgenic
5.
J Alzheimers Dis ; 95(2): 399-405, 2023.
Article in English | MEDLINE | ID: mdl-37545238

ABSTRACT

The prevalence of Alzheimer's disease is greater in women, but the underlying mechanisms remain to be elucidated. We herein demonstrated that α-secretase ADAM10 was downregulated and ADAM10 inhibitor sFRP1 was upregulated in 5xFAD mice. While there were no sex effects on ADAM10 protein and sFRP1 mRNA levels, female 5xFAD and age-matched non-transgenic mice exhibited higher levels of sFRP1 protein than corresponding male mice. Importantly, female 5xFAD mice accumulated more Aß than males, and sFRP1 protein levels were positively associated with Aß42 levels in 5xFAD mice. Our study suggests that sFRP1 is associated with amyloid pathology in a sex-dependent manner.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Animals , Female , Male , Mice , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloidogenic Proteins/metabolism , Aspartic Acid Endopeptidases/metabolism , Brain/pathology , Disease Models, Animal , Mice, Transgenic , Up-Regulation
6.
Mol Neurodegener ; 18(1): 39, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340466

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive and age-associated neurodegenerative disorder that affects women disproportionally. However, the underlying mechanisms are poorly characterized. Moreover, while the interplay between sex and ApoE genotype in AD has been investigated, multi-omics studies to understand this interaction are limited. Therefore, we applied systems biology approaches to investigate sex-specific molecular networks of AD. METHODS: We integrated large-scale human postmortem brain transcriptomic data of AD from two cohorts (MSBB and ROSMAP) via multiscale network analysis and identified key drivers with sexually dimorphic expression patterns and/or different responses to APOE genotypes between sexes. The expression patterns and functional relevance of the top sex-specific network driver of AD were further investigated using postmortem human brain samples and gene perturbation experiments in AD mouse models. RESULTS: Gene expression changes in AD versus control were identified for each sex. Gene co-expression networks were constructed for each sex to identify AD-associated co-expressed gene modules shared by males and females or specific to each sex. Key network regulators were further identified as potential drivers of sex differences in AD development. LRP10 was identified as a top driver of the sex differences in AD pathogenesis and manifestation. Changes of LRP10 expression at the mRNA and protein levels were further validated in human AD brain samples. Gene perturbation experiments in EFAD mouse models demonstrated that LRP10 differentially affected cognitive function and AD pathology in sex- and APOE genotype-specific manners. A comprehensive mapping of brain cells in LRP10 over-expressed (OE) female E4FAD mice suggested neurons and microglia as the most affected cell populations. The female-specific targets of LRP10 identified from the single cell RNA-sequencing (scRNA-seq) data of the LRP10 OE E4FAD mouse brains were significantly enriched in the LRP10-centered subnetworks in female AD subjects, validating LRP10 as a key network regulator of AD in females. Eight LRP10 binding partners were identified by the yeast two-hybrid system screening, and LRP10 over-expression reduced the association of LRP10 with one binding partner CD34. CONCLUSIONS: These findings provide insights into key mechanisms mediating sex differences in AD pathogenesis and will facilitate the development of sex- and APOE genotype-specific therapies for AD.


Subject(s)
Alzheimer Disease , Female , Humans , Mice , Male , Animals , Alzheimer Disease/metabolism , Brain/metabolism , Transcriptome , Gene Regulatory Networks , Apolipoproteins E/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism
7.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: mdl-37036005

ABSTRACT

Cerebrovasculature is critical in maintaining brain homeostasis; its dysregulation often leads to vascular cognitive impairment and dementia (VCID) during aging. VCID is the second most prevalent cause of dementia in the elderly, after Alzheimer's disease (AD), with frequent cooccurrence of VCID and AD. While multiple factors are involved in the pathogenesis of AD and VCID, APOE4 increases the risk for both diseases. A major apolipoprotein E (apoE) receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in vascular mural cells (pericytes and smooth muscle cells). Here, we investigated how deficiency of vascular mural cell LRP1 affects the cerebrovascular system and cognitive performance using vascular mural cell-specific Lrp1-KO mice (smLrp1-/-) in a human APOE3 or APOE4 background. We found that spatial memory was impaired in the 13- to 16-month-old APOE4 smLrp1-/- mice but not in the APOE3 smLrp1-/- mice, compared with their respective littermate control mice. These disruptions in the APOE4 smLrp1-/- mice were accompanied with excess paravascular glial activation and reduced cerebrovascular collagen IV. In addition, blood-brain barrier (BBB) integrity was disrupted in the APOE4 smLrp1-/- mice. Together, our results suggest that vascular mural cell LRP1 modulates cerebrovasculature integrity and function in an APOE genotype-dependent manner.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Humans , Mice , Animals , Aged , Infant , Apolipoprotein E4/genetics , Apolipoprotein E3/metabolism , Apolipoproteins E/metabolism , Blood-Brain Barrier/metabolism , Alzheimer Disease/pathology , Low Density Lipoprotein Receptor-Related Protein-1/metabolism
9.
Mol Neurodegener ; 18(1): 8, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36721205

ABSTRACT

BACKGROUND: The rare p.H157Y variant of TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) was found to increase Alzheimer's disease (AD) risk. This mutation is located at the cleavage site of TREM2 extracellular domain. Ectopic expression of TREM2-H157Y in HEK293 cells resulted in increased TREM2 shedding. However, the physiological outcomes of the TREM2 H157Y mutation remain unknown in the absence and presence of AD related pathologies. METHODS: We generated a novel Trem2 H157Y knock-in mouse model through CRISPR/Cas9 technology and investigated the effects of Trem2 H157Y on TREM2 proteolytic processing, synaptic function, and AD-related amyloid pathologies by conducting biochemical assays, targeted mass spectrometry analysis of TREM2, hippocampal electrophysiology, immunofluorescent staining, in vivo micro-dialysis, and cortical bulk RNA sequencing. RESULTS: Consistent with previous in vitro findings, Trem2 H157Y increases TREM2 shedding with elevated soluble TREM2 levels in the brain and serum. Moreover, Trem2 H157Y enhances synaptic plasticity without affecting microglial density and morphology, or TREM2 signaling. In the presence of amyloid pathology, Trem2 H157Y accelerates amyloid-ß (Aß) clearance and reduces amyloid burden, dystrophic neurites, and gliosis in two independent founder lines. Targeted mass spectrometry analysis of TREM2 revealed higher ratios of soluble to full-length TREM2-H157Y compared to wild-type TREM2, indicating that the H157Y mutation promotes TREM2 shedding in the presence of Aß. TREM2 signaling was further found reduced in Trem2 H157Y homozygous mice. Transcriptomic profiling revealed that Trem2 H157Y downregulates neuroinflammation-related genes and an immune module correlated with the amyloid pathology. CONCLUSION: Taken together, our findings suggest beneficial effects of the Trem2 H157Y mutation in synaptic function and in mitigating amyloid pathology. Considering the genetic association of TREM2 p.H157Y with AD risk, we speculate TREM2 H157Y in humans might increase AD risk through an amyloid-independent pathway, such as its effects on tauopathy and neurodegeneration which merit further investigation.


Subject(s)
Amyloid beta-Peptides , Amyloidogenic Proteins , Humans , Animals , Mice , HEK293 Cells , Brain , Disease Models, Animal , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
10.
STAR Protoc ; 4(1): 101976, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36598853

ABSTRACT

Cholesterol is a structural component of cell membranes. Most cells are incapable of its catabolism, and intracellular cholesterol accumulation is linked to several disorders including cardiovascular and neurodegenerative diseases. Cholesterol efflux, essential to its metabolism, is dependent on acceptors such as apolipoproteins. Here, we describe an assay to evaluate the capacity of cholesterol acceptors. Cells are treated with an analog of cholesterol tagged with fluorescent BODIPY. Addition of an acceptor leads to BODIPY-cholesterol efflux, measured using a plate reader. For complete details on the use and execution of this protocol, please refer to Liu et al. (2021).1.


Subject(s)
Apolipoproteins , Cholesterol , Cholesterol/metabolism , Apolipoproteins/metabolism , Boron Compounds , Biological Transport
11.
Mol Neurodegener ; 18(1): 2, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36609403

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aß) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aß40, Aß42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS: Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS: We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS: Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Genome-Wide Association Study , Amyloid beta-Peptides/metabolism , Brain/metabolism , Plaque, Amyloid/pathology , Phenotype , Apolipoproteins E/metabolism , tau Proteins/metabolism
12.
Mol Neurobiol ; 60(1): 26-35, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36215026

ABSTRACT

Wnt and R-spondin (Rspo) proteins are two major types of endogenous Wnt/ß-catenin signaling agonists. While Wnt/ß-catenin signaling is greatly diminished in Alzheimer's disease (AD), it remains to be elucidated whether the inhibition of this pathway is associated with dysregulation of Wnt and Rspo proteins. By analyzing temporal cortex RNA-seq data of the human postmortem brain samples, we found that WNT1 and RRPO2 were significantly downregulated in human AD brains. In addition, the expression of Wnt acyltransferase porcupine (PORCN), which is essential for Wnt maturation and secretion, was greatly deceased in these human AD brains. Interestingly, the lowest levels of WNT1, PORCN, and RSPO2 expression were found in human AD brains carrying two copies of APOE4 allele, the strongest genetic risk factor of late-onset AD. Importantly, there were positive correlations among the levels of WNT1, PORCN, and RSPO2 expression in human AD brains. Supporting observations in humans, Wnt1, PORCN, and Rspo2 were downregulated and Wnt/ß-catenin signaling was diminished in the 5xFAD amyloid model mice. In human APOE-targeted replacement mice, downregulation of WNT1, PORCN, and RSPO2 expression was positively associated with aging and APOE4 genotype. Finally, WNT1 and PORCN expression and Wnt/ß-catenin signaling were inhibited in human APOE4 iPSC-derived astrocytes when compared to the isogenic APOE3 iPSC-derived astrocytes. Altogether, our findings suggest that the dysregulations of Wnt1, PORCN, and Rspo2 could be coordinated together to diminish Wnt/ß-catenin signaling in aging- and APOE4-dependent manners in the AD brain.


Subject(s)
Alzheimer Disease , Intercellular Signaling Peptides and Proteins , Membrane Proteins , Wnt Signaling Pathway , Animals , Humans , Mice , Acyltransferases/metabolism , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Down-Regulation , Membrane Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
13.
World J Clin Cases ; 10(34): 12559-12565, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36579113

ABSTRACT

BACKGROUND: There are difficulties in diagnosing nosocomial transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hospital settings. Furthermore, mortality of cases of nosocomial infection (NI) with SARS-CoV-2 is higher than that of the general infected population. In the early stage of the pandemic in Taiwan, as patients were not tested for SARS-CoV-2 at admission, NIs often go undetected. Strictly applying the systematic polymerase chain reaction (PCR) screening, as a standard infection control measure was subsequently implemented to reduce NI incidence. However, evidence on risk factors for SARS-CoV-2 NIs among healthcare workers (HCWs) and caregivers is limited. AIM: To assess NI incidence of SARS-CoV-2 among hospital staff, hospitalized patients, and caregivers, and the transmission routes of clusters of infection. METHODS: This descriptive retrospective analysis at our hospital from May 15 to August 15, 2021 included data on 132 SARS-CoV-2 NIs cases among hospital staff, inpatients, and caregivers who previously tested negative but subsequently identified with a positive SARS-CoV-2 reverse transcriptase-PCR (RT-PCR) test results, or a hospital staff who tested positive following routine SARS-CoV-2 RT-PCR test. Chi-square tests were performed to compare the differences between hospital staff and private caregivers, and between clusters and sporadic infections. RESULTS: Overall, 9149 patients and 2005 hospital staff members underwent routine SARS-CoV-2 RT-PCR testing, resulting in 12 confirmed cluster and 23 sporadic infections. Among the index cases of the clusters, three (25%) cases were among hospital staff and nine (75%) cases were among other contacts. Among sporadic infections, 21 (91%) cases were among hospital staff and two (9%) cases were among other contacts (P < 0.001). There was an average of 8.08 infections per cluster. The secondary cases of cluster infection were inpatients (45%), hospital staff (30%), and caregivers (25%). Private caregivers constituted 27% and 4% of the clusters and sporadic infections, respectively (P = 0.024); 92.3% of them were infected in the clusters. The mortality rate was 0.0%. CONCLUSION: The incidence of SARS-CoV-2 infection was relatively high among private caregivers, indicating a need for infection control education in this group, such as social distancing, frequent hand-washing, and wearing PPE.

14.
Mol Neurodegener ; 17(1): 72, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36348357

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-ß (Aß) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aß-related or Aß-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoprotein E4/genetics , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Alleles
15.
Mol Neurodegener ; 17(1): 75, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36419137

ABSTRACT

BACKGROUND: Abnormal lipid accumulation has been recognized as a key element of immune dysregulation in microglia whose dysfunction contributes to neurodegenerative diseases. Microglia play essential roles in the clearance of lipid-rich cellular debris upon myelin damage or demyelination, a common pathogenic event in neuronal disorders. Apolipoprotein E (apoE) plays a pivotal role in brain lipid homeostasis; however, the apoE isoform-dependent mechanisms regulating microglial response upon demyelination remain unclear. METHODS: To determine how apoE isoforms impact microglial response to myelin damage, 2-month-old apoE2-, apoE3-, and apoE4-targeted replacement (TR) mice were fed with normal diet (CTL) or 0.2% cuprizone (CPZ) diet for four weeks to induce demyelination in the brain. To examine the effects on subsequent remyelination, the cuprizone diet was switched back to regular chow for an additional two weeks. After treatment, brains were collected and subjected to immunohistochemical and biochemical analyses to assess the myelination status, microglial responses, and their capacity for myelin debris clearance. Bulk RNA sequencing was performed on the corpus callosum (CC) to address the molecular mechanisms underpinning apoE-mediated microglial activation upon demyelination. RESULTS: We demonstrate dramatic isoform-dependent differences in the activation and function of microglia upon cuprizone-induced demyelination. ApoE2 microglia were hyperactive and more efficient in clearing lipid-rich myelin debris, whereas apoE4 microglia displayed a less activated phenotype with reduced clearance efficiency, compared with apoE3 microglia. Transcriptomic profiling revealed that key molecules known to modulate microglial functions had differential expression patterns in an apoE isoform-dependent manner. Importantly, apoE4 microglia had excessive buildup of lipid droplets, consistent with an impairment in lipid metabolism, whereas apoE2 microglia displayed a superior ability to metabolize myelin enriched lipids. Further, apoE2-TR mice had a greater extent of remyelination; whereas remyelination was compromised in apoE4-TR mice. CONCLUSIONS: Our findings provide critical mechanistic insights into how apoE isoforms differentially regulate microglial function and the maintenance of myelin dynamics, which may inform novel therapeutic avenues for targeting microglial dysfunctions in neurodegenerative diseases.


Subject(s)
Apolipoprotein E4 , Demyelinating Diseases , Animals , Mice , Apolipoprotein E2 , Apolipoprotein E4/genetics , Microglia , Apolipoprotein E3 , Lipid Metabolism , Cuprizone/toxicity , Apolipoproteins E
16.
One Health ; 15: 100430, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36277106

ABSTRACT

Background: It is probable that humans can acquire H. pylori and non-H. pylori Helicobacter infections via domestic animals. The prevalence and risk factors of infections of Helicobacter species in canines of Taipei city were therefore analysed in this study. Materials and methods: A total of 95 canine faecal samples were collected from different animal shelters and hospitals in Taipei city. Total DNA was extracted for semi-nested PCR detection of Helicobacter species. The PCR products were sequenced for further comparative database and phylogenetic analyses. Results: The overall prevalence of Helicobacter species in canines of Taipei city was 75.79% (72/95). Two gastric, seven enterohepatic and two unclassified Helicobacter species were identified, all of which have been implicated in the aetiology of human diseases. The predominant species detected included H. canis (27.78%), H. pylori (26.39%), H. canicola (18.06%), and H. bilis (13.89%) in decreasing order, while H. canadensis and H. typhlonius were identified for the first time in canines. The genotypes in H. pylori and H. canicola clusters grouped together, with their respective reference strains, showed a close evolutionary distance in the phylogenetic tree, indicating a common ancestry may have existed in these clusters respectively. The residential region of canines, dog living status (pet or stray) and breed (purebred or mixed-breed) are the risk factors associated with Helicobacter infections in the canines examined. Conclusion: The high prevalence of Helicobacter infections in canines highlights a potential public health risk of zoonotic transmission among dogs, humans and other animals, and therefore, the need for proper methods in controlling the transmission routes. In addition, the 16S rRNA gene amplification method was found to be useful for bacterial identification and phylogenetic analysis.

17.
Mol Biol Rep ; 49(12): 12007-12015, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36273336

ABSTRACT

BACKGROUND: Interferon-gamma (IFN-γ) is an immune-derived cytokines in the innate and adaptive immune responses, and functions as a major pro-inflammatory cytokine. IFNγ has previously been reported involving in the regulation of bone metabolism. However, contradictory results about the roles of IFN-γ in bone formation or bone resorption have been reported. It is possible that the functions of IFN-γ in bone formation is dose-dependent or time-dependent. In this study we examined the effect of IFN-γ on different stages of osteoblastogenesis and bone formation. MATERIALS AND METHODS: Cell proliferation, gene expression and protein levels of the critical effectors involving in different stages of differentiation were compared between differentiating preosteoblast MC3T3-E1 treated with or without IFN-γ at different stages. Cell proliferation were determined by MTT assay. Expression levels of osteoblast differentiation markers was performed by quantitative PCR assay. Also, western blot was conducted to investigate the protein levels in those effectors. CONCLUSION: IFN-γ regulates osteoblast and bone formation in a stage-dependent manner. IFN-γ did not alter and the expression of critical osteogenic transcription factors, such as Runx2 and Cbfb, suggesting that the differentiation was not disrupted by IFN-γ. The cell number and the levels of matrix proteins, including COL1A and BSP, at both early and late stage of osteoblastogenesis were downregulated by IFN-γ, indicating its negative regulating roles in early stages. In contrast, the mineralization protein ALP and OCN was upregulated at late stages. The results suggested that IFN-γ might act as a negative regulator in osteoblast differentiation and bone formation at early stages but switch into positive regulator at late stage. Our data revealed the complex features of the effects of IFN-γ on osteoblast differentiation. The detailed mechanisms of how IFN-γ influence on the bone formation and balance of bone remodeling will be further studied.


Subject(s)
Bone Resorption , Osteogenesis , Humans , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Osteoblasts , Bone Resorption/metabolism , Bone Remodeling , Cell Differentiation
18.
J Acute Med ; 12(3): 122-125, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36313605

ABSTRACT

Japanese encephalitis (JE) is critical epidemic encephalitis caused by the JE virus (JEV) in Southeast Asia. The World Health Organization defined "acute encephalitis syndrome" (AES) as an acute onset of fever with a change of mental status and/or new-onset seizure, mainly for the surveillance of JE. The key clues for the diagnosis include the patient age group of unvaccinated era or waning vaccine-induced immunity and the history of possible mosquito bites in epidemic areas. We report a 47-year old man who is in an unvaccinated era with potential waning immunity. The patient presented with fever and altered mental status for 2 days. He was speechless and could not follow commands. The patient had gone camping in the countryside a week before the visit. At the emergency department, neck stiffness was noted. There was a leukocytosis with a left shift by blood cell count. The brain computed tomography was essentially normal. The cerebrospinal fluid (CSF) sample via lumbar puncture showed leukocytosis, a high protein level, and a low sugar level in comparison to serum tests. Further antibody test of CSF confirmed the diagnosis. Magnetic resonance imaging (MRI) of the brain revealed a high signal in the right thalamus and a mildly swollen left caudate nucleus 4 days after admission. He was extubated and finally discharged with partial dependency on activities of daily living. This case reminds us of the JE in AES. Emergency physicians should be aware of the suspicious case of unvaccinated age or waning immunity and possible mosquito bites in epidemic areas. The role of MRI on JE was also discussed in this article.

19.
J Exp Med ; 219(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36107206

ABSTRACT

TREM2 is exclusively expressed by microglia in the brain and is strongly linked to the risk for Alzheimer's disease (AD). As microglial responses modulated by TREM2 are central to AD pathogenesis, enhancing TREM2 signaling has been explored as an AD therapeutic strategy. However, the effective therapeutic window targeting TREM2 is unclear. Here, by using microglia-specific inducible mouse models overexpressing human wild-type TREM2 (TREM2-WT) or R47H risk variant (TREM2-R47H), we show that TREM2-WT expression reduces amyloid deposition and neuritic dystrophy only during the early amyloid seeding stage, whereas TREM2-R47H exacerbates amyloid burden during the middle amyloid rapid growth stage. Single-cell RNA sequencing reveals suppressed disease-associated microglia (DAM) signature and reduced DAM population upon TREM2-WT expression in the early stage, whereas upregulated antigen presentation pathway is detected with TREM2-R47H expression in the middle stage. Together, our findings highlight the dynamic effects of TREM2 in modulating AD pathogenesis and emphasize the beneficial effect of enhancing TREM2 function in the early stage of AD development.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloidosis/pathology , Animals , Brain/pathology , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Microglia/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
20.
Mol Neurodegener ; 17(1): 57, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056345

ABSTRACT

BACKGROUND: The aggregation and spread of α-synuclein (α-Syn) protein and related neuronal toxicity are the key pathological features of Parkinson's disease (PD) and Lewy body dementia (LBD). Studies have shown that pathological species of α-Syn and tau can spread in a prion-like manner between neurons, although these two proteins have distinct pathological roles and contribute to different neurodegenerative diseases. It is reported that the low-density lipoprotein receptor-related protein 1 (LRP1) regulates the spread of tau proteins; however, the molecular regulatory mechanisms of α-Syn uptake and spread, and whether it is also regulated by LRP1, remain poorly understood. METHODS: We established LRP1 knockout (LRP1-KO) human induced pluripotent stem cells (iPSCs) isogenic lines using a CRISPR/Cas9 strategy and generated iPSC-derived neurons (iPSNs) to test the role of LRP1 in α-Syn uptake. We treated the iPSNs with fluorescently labeled α-Syn protein and measured the internalization of α-Syn using flow cytometry. Three forms of α-Syn species were tested: monomers, oligomers, and pre-formed fibrils (PFFs). To examine whether the lysine residues of α-Syn are involved in LRP1-mediated uptake, we capped the amines of lysines on α-Syn with sulfo-NHS acetate and then measured the internalization. We also tested whether the N-terminus of α-Syn is critical for LRP1-mediated internalization. Lastly, we investigated the role of Lrp1 in regulating α-Syn spread with a neuronal Lrp1 conditional knockout (Lrp1-nKO) mouse model. We generated adeno-associated viruses (AAVs) that allowed for distinguishing the α-Syn expression versus spread and injected them into the hippocampus of six-month-old Lrp1-nKO mice and the littermate wild type (WT) controls. The spread of α-Syn was evaluated three months after the injection. RESULTS: We found that the uptake of both monomeric and oligomeric α-Syn was significantly reduced in iPSNs with LRP1-KO compared with the WT controls. The uptake of α-Syn PFFs was also inhibited in LRP1-KO iPSNs, albeit to a much lesser extent compared to α-Syn monomers and oligomers. The blocking of lysine residues on α-Syn effectively decreased the uptake of α-Syn in iPSNs and the N-terminus of α-Syn was critical for LRP1-mediated α-Syn uptake. Finally, in the Lrp1-nKO mice, the spread of α-Syn was significantly reduced compared with the WT littermates. CONCLUSIONS: We identified LRP1 as a key regulator of α-Syn neuronal uptake, as well as an important mediator of α-Syn spread in the brain. This study provides new knowledge on the physiological and pathological role of LRP1 in α-Syn trafficking and pathology, offering insight for the treatment of synucleinopathies.


Subject(s)
Induced Pluripotent Stem Cells , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , alpha-Synuclein/metabolism , Animals , Humans , Induced Pluripotent Stem Cells/metabolism , Infant , Mice , Parkinson Disease/metabolism , Synapsins , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...