Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Int J Biol Macromol ; : 135999, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326614

ABSTRACT

In situ bioprinting may be preferred over standard in vitro bioprinting in specific cases when de novo tissues are to be created directly on the appropriate anatomical region in the live organism, employing the body as a bioreactor. So far, few efforts have been made to create in situ tissues that can be safely halted and immobilized during printing in preclinical live animals. However, the technique has to be improved significantly in order to manufacture complex tissues in situ, which may be attainable in the future thanks to multidisciplinary advances in tissue engineering. Thanks to the biological macromolecules, natural and synthetic hydrogels and polymers are among the most used biomaterials in in situ bioprinting procedure. Bioprinters, which encounter multiple challenges, including cross-linking the printed structure, adjusting the rheology parameters, and printing various constructs. The introduction of handheld 3D and 4D bioprinters might potentially overcome the difficulties and problems associated with using traditional bioprinters. Studies showed that this technique could be efficient in wound healing and skin tissue regeneration. This study aims to analyze the benefits and difficulties associated with materials in situ 4D printing via handheld bioprinters.

2.
Article in English | MEDLINE | ID: mdl-39327303

ABSTRACT

Impulsivity and emotion impairments have been noted in individuals with gambling disorder (GD). However, little research has investigated the influence of impulsivity and emotions on the severity of gambling in clinical populations. This study aimed to examine: (i) differences in emotions and impulsivity traits according to the severity of gambling in individuals with GD, (ii) the mediating effects of emotion in the relationship between impulsivity traits and gambling severity, and (iii) the predictive effects of emotion and impulsivity traits on GD severity. The study included 214 participants seeking treatment for GD who completed assessments for emotions (Patient Health Questionnaire-9 [PHQ-9], 7-item Generalized Anxiety [GAD-7]), impulsivity traits (Barratt Impulsiveness Scale [BIS], Self-control Scale [SCS]), and GD severity (DSM-5). Participants were categorized into mild (n = 78), moderate (n = 63), and severe (n = 73) gambling severity groups. Significant differences in emotions and impulsivity traits were observed across these groups. The severe GD group exhibited higher levels of depression, anxiety, and impulsivity traits, along with lower self-control, compared to the moderate and mild groups. Mediation analyses demonstrated that negative emotions mediated the association between impulsivity traits and the severity of gambling. More specifically, the indirect effects of impulsivity traits through PHQ-9 and GAD-7 were found to be significant, indicating a mediating role of emotions. Moreover, a predictive model incorporating emotion and impulsivity traits showed moderate accuracy in predicting the severity of gambling, with an area under the receiver operating characteristic curve of 0.714. This study highlights the distinct pathways through which impulsivity traits operate and emphasizes the need for prevention and treatment strategies that consider impulsivity traits and emotions for different levels of gambling severity.

3.
J Gastrointest Oncol ; 15(4): 1836-1846, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39279959

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal, aggressive cancer due to limited response chemotherapy. The tumor microenvironment (TME) has emerged as a key player in the development of chemoresistance and in malignant progression. In this study, we hypothesized that chemotherapy response is predictable by chemotherapy-related cell types and their differentially expressed genes (DEGs). Methods: DEGs of chemoresistance cell types were identified via single cell analysis and Wilcoxon test. A chemotherapy response signature was established using a random forest model and validated with public datasets. Bulk cell fraction was analyzed using BayesPrism algorithms. Log-rank test was used to analyze survival of PDAC patients. Results: We found that natural killer (NK) cells, myeloid cells, and erythroid cells were highly infiltrated in chemo-resistant TME. A total of 36 chemoresistance-related DEGs of chemo-resistant cells were identified in chemo-resistant PDAC. Functional enrichment analysis showed that chemoresistance upregulated various inflammation-related pathways, including TGF-ß signaling. Based on these features, we constructed a random forest model to predict the response and survival for PDAC patients, which accurately distinguished high-risk and chemoresistant patients with significantly poorer prognosis in both the training and independent validation datasets. Cox regression analysis indicated that predicted labels were an independent prognostic factor in PDAC. Moreover, deconvolution of TME confirmed higher infiltration levels of M2 macrophage and NK cells in predicted chemoresistance. When combined with chemotherapy response related tumor mutations, the model showed excellent ability in predicting chemotherapy response and survival. Conclusions: The TME was closely associated with the chemotherapy response and prognosis of PDAC. Our TME-based random forest model predicted chemotherapy response with complementary knowledge to the response-related genetic mutations.

4.
Sci Rep ; 14(1): 22090, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333705

ABSTRACT

Retinitis pigmentosa (RP) is a progressive and degenerative retinal disease resulting in severe vision loss. RP have been extensively studied for pathogenetic mechanisms and treatments. Yet there is little information about alterations of RP associated proteins in phosphodiesterase 6 beta (Pde6b) mutated model. To explore the roles of RP causing proteins, we performed a label free quantitative mass spectrometry based proteomic analysis in rd10 mouse retinas. 3737 proteins were identified at the degenerative time points in rd10 mice. 222 and 289 differentially expressed proteins (DEPs) (fold change, FC > 2, p < 0.05) were detected at 5 and 8 weeks. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, visual perception and phototransduction were severely affected. The downregulated DEPs were significantly enriched in cilium assembly and protein localization. 25 decreased DEPs causing autosomal recessive/dominant retinitis pigmentosa were visualized by heatmaps. Protein-protein interaction network represented 13 DEPs interacted directly with Pde6b protein. 25 DEPs causing RP were involved in phototransduction, visual perception, response to stimulus, protein localization and cilium assembly pathways. The significantly reduced expressions of DEPs were further validated by quantitative reverse transcription polymerase chain reaction (qPCR), Western blots (WB) and immunohistochemistry (IHC). This study revealed the molecular mechanisms underlying early and late stage of RP, as well as changes of RP-causing proteins.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6 , Disease Models, Animal , Mutation , Proteomics , Retinitis Pigmentosa , Animals , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Proteomics/methods , Mice , Eye Proteins/metabolism , Eye Proteins/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retina/metabolism , Retina/pathology , Protein Interaction Maps , Proteome/metabolism
6.
Theranostics ; 14(11): 4278-4296, 2024.
Article in English | MEDLINE | ID: mdl-39113800

ABSTRACT

Background: Ulcerative colitis (UC) is an intestinal inflammatory disease that is strongly associated with mitochondrial damage and dysfunction as well as mitophagy and lacks of satisfactory treatments. Hair follicle mesenchymal stem cell (HF-MSC)-derived exosomes owe benefit effectiveness on inflammatory therapies. Hypoxia-preconditioned HF-MSCs exhibit enhanced proliferation and migration abilities, and their exosomes exert stronger effects than normal exosomes. However, the therapeutic function of Hy-Exos in UC is unknown. Methods: The inflammation model was established with LPS-treated MODE-K cells, and the mouse UC model was established by dextran sulfate sodium (DSS) administration. The therapeutic effects of HF-MSC-derived exosomes (Exos) and hypoxia-preconditioned HF-MSC-derived exosomes (Hy-Exos) were compared in vitro and in vivo. Immunofluorescence staining and western blotting were used to explore the effects of Hy-Exos on mitochondrial function, mitochondrial fission and fusion and mitophagy. MiRNA sequencing analysis was applied to investigate the differences in components between Exos and Hy-Exos. Results: Hy-Exos had a better therapeutic effect on LPS-treated MODE-K cells and DSS-induced UC mice. Hy-Exos promoted colonic tight junction proteins expression, suppressed the oxidative stress response, and reduced UC-related inflammatory injury. Hy-Exos may exert these effects via miR-214-3p-mediated inhibition of the PI3K/AKT/mTOR signaling pathway, maintenance of mitochondrial dynamic stability, alleviation of mitochondrial dysfunction and enhancement of mitophagy. Conclusion: This study revealed a vital role for Hy-Exos in suppressing inflammatory progression in UC and suggested that miR-214-3p is a potential critical target for Hy-Exos in alleviating UC.


Subject(s)
Colitis, Ulcerative , Disease Models, Animal , Exosomes , Hair Follicle , Mesenchymal Stem Cells , Mitophagy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/therapy , Colitis, Ulcerative/pathology , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Hair Follicle/metabolism , Dextran Sulfate , Male , Mitochondria/metabolism , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , Humans
7.
Turk J Gastroenterol ; 35(7): 577-586, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-39114737

ABSTRACT

Hepatocellular carcinoma (HCC) represents a common neoplasm that presents a substantial worldwide health challenge. Nevertheless, the involvement of HPN-AS1 in HCC remains unknown. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was utilized to measure HPN-AS1 expression in HCC. The GABPA effects on the HPN-AS1 promoter were analyzed through chromatin immunoprecipitation and luciferase reporter assays. Cell proliferation potential was determined by deploying CCK-8 assay, Ki-67 immunofluorescence staining, and colony formation assay. Cell apoptosis was detected using acridine orange/ethidium bromide staining and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Western blotting was utilized to measure the protein levels of proliferation factors and apoptosis regulators. HPN-AS1 binding to eIF4A3 was accessed by RNA-binding protein immunoprecipitation assay. HPN-AS1 was significantly downregulated in both HCC cells and tissues. Lower HPN-AS1 levels indicate a poorer HCC prognosis. Moreover, we found that GABPA functions as a transcription factor for HPN-AS1. Functional studies revealed that HPN-AS1 displayed inhibitory effects on HCC cell proliferation and promoted apoptosis. Mechanically, HPN-AS1 bound to and facilitated translation initiation factor eIF4A3 degradation. Loss of HPN-AS1 augmented eIF4A3 protein levels rather than eIF4A3 mRNA levels. Exogenous expression of eIF4A3 could restore eIF4A3 protein levels and reverse HPN-AS1 overexpression-induced cell proliferation inhibition and cell apoptosis. Our study elucidated that HPN-AS1 downregulation was mediated by GABPA. HPN-AS acted as a tumor suppressor within HCC through binding and facilitating eIF4A3 degradation. The study provides a novel insight into the biological function of HPN-AS1 in HCC, suggesting that HPN-AS1 could be a promising biomarker and a potential target for HCC diagnosis and treatment.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , Eukaryotic Initiation Factor-4A , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Proliferation/genetics , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Down-Regulation , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , DEAD-box RNA Helicases
8.
Int J Pharm ; 664: 124582, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39142466

ABSTRACT

Chemotherapy agents for lung cancer often cause apoptotic resistance in cells, leading to suboptimal therapeutic outcomes. FIN56 can be a potential treatment for lung cancer as it induces non-apoptotic cell death, namely ferroptosis. However, a bottleneck exists in FIN56-induced ferroptosis treatment; specifically, FIN56 fails to induce sufficient oxidative stress and may even trigger the defense system against ferroptosis, resulting in poor therapeutic efficacy. To overcome this, this study proposed a strategy of co-delivering FIN56 and piperlongumine to enhance the ferroptosis treatment effect by increasing oxidative stress and connecting with the autophagy pathway. FIN56 and piperlongumine were encapsulated into silk fibroin-based nano-disruptors, named FP@SFN. Characterization results showed that the particle size of FP@SFN was in the nanometer range and the distribution was uniform. Both in vivo and in vitro studies demonstrated that FP@SFN could effectively eliminate A549 cells and inhibit subcutaneous lung cancer tumors. Notably, ferroptosis and autophagy were identified as the main cell death pathways through which the nano-disruptors increased oxidative stress and facilitated cell membrane rupture. In conclusion, nano-disruptors can effectively enhance the therapeutic effect of ferroptosis treatment for lung cancer through the ferroptosis-autophagy synergy mechanism, providing a reference for the development of related therapeutics.


Subject(s)
Autophagy , Ferroptosis , Fibroins , Lung Neoplasms , Nanoparticles , Oxidative Stress , Ferroptosis/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Humans , Autophagy/drug effects , Animals , Fibroins/chemistry , Fibroins/pharmacology , A549 Cells , Nanoparticles/chemistry , Oxidative Stress/drug effects , Dioxolanes/pharmacology , Dioxolanes/chemistry , Dioxolanes/administration & dosage , Mice , Mice, Nude , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Xenograft Model Antitumor Assays , Drug Synergism , Piperidones
9.
J Neural Eng ; 21(4)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39029495

ABSTRACT

Objective. Previous preclinical and clinical studies have demonstrated that pudendal nerve is a promising target for restoring bladder control. The spatial proximity between the pudendal nerve and its accompanying blood vessels in the pudendal canal provides an opportunity for endovascular neurostimulation, which is a less invasive approach compared to conventional chronically implanted electrodes. In this study, we investigated the feasibility of excitatory stimulation and kilohertz-frequency block of the compound pudendal nerve in sheep using a stent-mounted electrode array.Approach. In a set of acute animal experiments, a commercially available hexapolar electrode catheter was introduced in the unilateral internal pudendal artery to deliver bipolar electrical stimulation of the adjacent compound pudendal nerve. The catheter electrode was replaced with a custom-made stent-mounted electrode array and the stimulation sessions were repeated. Global electromyogram activity of the pelvic floor and related sphincter muscles was recorded with a monopolar electrode placed within the urethra concurrently.Main results. We demonstrated the feasibility of endovascular stimulation of the pudendal nerve with both electrode types. The threshold current of endovascular stimulation was influenced by electrode-nerve distance and electrode orientation. Increasing the axial inter-electrode distance significantly decreased threshold current. Endovascular kilohertz-frequency nerve block was possible with the electrode catheter.Significance. The present study demonstrated that endovascular stimulation of the pudendal nerve with the stent-mounted electrode array may be a promising less invasive alternative to conventional implantable electrodes, which has important clinical implications in the treatment of urinary incontinence. Endovascular blocking of pudendal nerve may provide an alternative solution to the bladder-sphincter dyssynergia problem in bladder management for people with spinal cord injury.


Subject(s)
Electrodes, Implanted , Endovascular Procedures , Pudendal Nerve , Stents , Animals , Pudendal Nerve/physiology , Sheep , Endovascular Procedures/methods , Endovascular Procedures/instrumentation , Female , Electric Stimulation Therapy/methods , Electric Stimulation Therapy/instrumentation , Electric Stimulation/methods , Electric Stimulation/instrumentation , Electromyography/methods
10.
J Neural Eng ; 21(3)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38776894

ABSTRACT

Objective.Electrical stimulation of peripheral nerves has long been a treatment option to restore impaired neural functions that cannot be restored by conventional pharmacological therapies. Endovascular neurostimulation with stent-mounted electrode arrays is a promising and less invasive alternative to traditional implanted electrodes, which typically require invasive implantation surgery. In this study, we investigated the feasibility of endovascular stimulation of the femoral nerve using a stent-mounted electrode array and compared its performance to that of a commercially available pacing catheter.Approach.In acute animal experiments, a pacing catheter was implanted unilaterally in the femoral artery to stimulate the femoral nerve in a bipolar configuration. Electromyogram of the quadriceps and electroneurogram of a distal branch of the femoral nerve were recorded. After retrieval of the pacing catheter, a bipolar stent-mounted electrode array was implanted in the same artery and the recording sessions were repeated.Main Results.Stimulation of the femoral nerve was feasible with the stent-electrode array. Although the threshold stimulus intensities required with the stent-mounted electrode array (at 100-500µs increasing pulse width, 2.17 ± 0.87 mA-1.00 ± 0.11 mA) were more than two times higher than the pacing catheter electrodes (1.05 ± 0.48 mA-0.57 ± 0.28 mA), we demonstrated that, by reducing the stimulus pulse width to 100µs, the threshold charge per phase and charge density can be reduced to 0.22 ± 0.09µC and 24.62 ± 9.81µC cm-2, which were below the tissue-damaging limit, as defined by the Shannon criteria.Significance.The present study is the first to reportin vivofeasibility and efficiency of peripheral nerve stimulation using an endovascular stent-mounted electrode array.


Subject(s)
Electrodes, Implanted , Feasibility Studies , Femoral Nerve , Stents , Femoral Nerve/physiology , Animals , Endovascular Procedures/instrumentation , Endovascular Procedures/methods , Electric Stimulation/methods , Electric Stimulation/instrumentation , Male , Electromyography/methods
11.
Biomed Pharmacother ; 176: 116783, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796970

ABSTRACT

During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.


Subject(s)
Neoplasms , Neovascularization, Pathologic , Tumor Hypoxia , Tumor Microenvironment , Humans , Neovascularization, Pathologic/pathology , Animals , Neoplasms/pathology , Neoplasms/blood supply , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Angiogenesis
12.
J Med Internet Res ; 26: e49848, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728685

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases and is associated with a high risk of in-hospital mortality. However, the current deep learning models for in-hospital mortality prediction lack interpretability. OBJECTIVE: This study aims to establish an explainable deep learning model to provide individualized in-hospital mortality prediction and risk factor assessment for patients with AMI. METHODS: In this retrospective multicenter study, we used data for consecutive patients hospitalized with AMI from the Chongqing University Central Hospital between July 2016 and December 2022 and the Electronic Intensive Care Unit Collaborative Research Database. These patients were randomly divided into training (7668/10,955, 70%) and internal test (3287/10,955, 30%) data sets. In addition, data of patients with AMI from the Medical Information Mart for Intensive Care database were used for external validation. Deep learning models were used to predict in-hospital mortality in patients with AMI, and they were compared with linear and tree-based models. The Shapley Additive Explanations method was used to explain the model with the highest area under the receiver operating characteristic curve in both the internal test and external validation data sets to quantify and visualize the features that drive predictions. RESULTS: A total of 10,955 patients with AMI who were admitted to Chongqing University Central Hospital or included in the Electronic Intensive Care Unit Collaborative Research Database were randomly divided into a training data set of 7668 (70%) patients and an internal test data set of 3287 (30%) patients. A total of 9355 patients from the Medical Information Mart for Intensive Care database were included for independent external validation. In-hospital mortality occurred in 8.74% (670/7668), 8.73% (287/3287), and 9.12% (853/9355) of the patients in the training, internal test, and external validation cohorts, respectively. The Self-Attention and Intersample Attention Transformer model performed best in both the internal test data set and the external validation data set among the 9 prediction models, with the highest area under the receiver operating characteristic curve of 0.86 (95% CI 0.84-0.88) and 0.85 (95% CI 0.84-0.87), respectively. Older age, high heart rate, and low body temperature were the 3 most important predictors of increased mortality, according to the explanations of the Self-Attention and Intersample Attention Transformer model. CONCLUSIONS: The explainable deep learning model that we developed could provide estimates of mortality and visual contribution of the features to the prediction for a patient with AMI. The explanations suggested that older age, unstable vital signs, and metabolic disorders may increase the risk of mortality in patients with AMI.


Subject(s)
Deep Learning , Hospital Mortality , Myocardial Infarction , Humans , Myocardial Infarction/mortality , Female , Male , Retrospective Studies , Middle Aged , Aged , Algorithms , Risk Factors , ROC Curve
13.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542145

ABSTRACT

Setaria italica is an important crop in China that plays a vital role in the Chinese dietary structure. In the last several decades, high temperature has become the most severe climate issue in the world, which causes great harm to the yield and quality formation of millet. In this study, two main cultivated varieties (ZG2 and AI88) were used to explore the photosynthesis and yield index of the whole plant under heat stress. Results implied that photosynthesis was not inhibited during the heat stress, and that the imbalance in sugar transport between different tissues may be the main factor that affects yield formation. In addition, the expression levels of seven SiSUT and twenty-four SiSWEET members were explored. Sugar transporters were heavily affected during the heat stress. The expression of SiSWEET13a was inhibited by heat stress in the stems, which may play a vital role in sugar transport between different tissues. These results provide new insights into the yield formation of crops under heat stress, which will provide guidance to crop breeding and cultivation.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Plant Breeding , Gene Expression Profiling , Heat-Shock Response/genetics , Sugars/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
14.
Heliyon ; 10(6): e27356, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38500978

ABSTRACT

Background: Circadian rhythm is an internal timing system generated by circadian-related genes (CRGs). Disruption in this rhythm has been associated with a heightened risk of breast cancer (BC) and regulation of the immune microenvironment of tumors. This study aimed to investigate the clinical significance of CRGs in BC and the immune microenvironment. Methods: CRGs were identified using the GeneCards and MSigDB databases. Through unsupervised clustering, we identified two circadian-related subtypes in patients with BC. We constructed a prognostic model and nomogram for circadian-related risk scores using LASSO and Cox regression analyses. Using multi-omics analysis, the mutation profile and immunological microenvironment of tumors were investigated, and the immunotherapy response in different groups of patients was predicted based on their risk strata. Results: The two circadian-related subtypes of BC that were identified differed significantly in their prognoses, clinical characteristics, and tumor immune microenvironments. Subsequently, we constructed a circadian-related risk score (CRRS) model containing eight signatures (SIAH2, EZR, GSN, TAGLN2, PRDX1, MCM4, EIF4EBP1, and CD248) and a nomogram. High-risk individuals had a greater burden of tumor mutations, richer immune cell infiltration, and higher expression of immune checkpoint genes, than low-risk individuals, indicating a "hot tumor" immune phenotype and a more favorable treatment outcome. Conclusions: Two circadian-related subtypes of BC were identified and used to establish a CRRS prognostic model and nomogram. These will be valuable in providing guidance for forecasting prognosis and developing personalized treatment plans for BC.

15.
Sci Total Environ ; 919: 170555, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38336067

ABSTRACT

China is the largest industrial and pharmaceutical country in the world. The pharmaceutical industry, being a highly polluting sector, is the primary target of environmental regulation in the industry. The rapid development of pharmaceutical industry has posed a severe challenge to the environmental protection strategy of "carbon reduction and carbon neutrality" and the goal of "synergizing the reduction of pollution and carbon emissions" in China's "14th Five-Year Plan". Therefore, this paper starts from the whole industry, takes the life cycle of the whole production process of the pharmaceutical industry as the guidance, and selects a pharmaceutical company in Tianjin as the research object. Then using Life Cycle Assessment (LCA) to Characterization, Standardization, and Weighting the environmental impact of the waste gas treatment process before and after improvement based on waste gas emission characteristics from the pharmaceutical factory. LCA results show that GWP and AP are the most important environmental impact types, which account for >85 % of the total characterization value. I and II - Chemical Pharmaceutical Stage is the critical life cycle stage, accounting for over 80 % of the total characteristic values. This research proposes emission reduction countermeasures based on LCA results and simulates Emission reduction scenarios and economic evolution. If effectively implementing emission reduction countermeasures, reducing the environmental characterization value by 80 to 90 %, and generating economic benefit of 2.66 × 108 RMB/year. This research could guide improvement plans and emission reduction countermeasures of waste gas treatment in the pharmaceutical industry, which realizes collaborative management about efficient reduction of pollution and carbon and generates significant environmental, technological, economic, and social benefits.


Subject(s)
Carbon , Conservation of Natural Resources , Animals , China , Technology , Pharmaceutical Preparations , Life Cycle Stages , Carbon Dioxide/analysis , Economic Development
16.
Meat Sci ; 212: 109453, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38412752

ABSTRACT

Magnetic field combined with calcium chloride (CaCl2,) treatment is a highly promising technique for reducing sodium chloride (NaCl) in meat. Therefore, this paper investigated the effect of reducing NaCl addition (0-10%) by CaCl2 in combination with a magnetic field (3.8 mT) on the edible quality of low-salt pork mince. It is desired to drive the application of magnetic field and CaCl2 in low-sodium meat processing in this way. Results showed that the cooking yield, color, hardness, elasticity, mouthfeel, apparent texture, and orderliness of protein conformation of all minced pork were improved as compared to the control group, while the electron nose response values of their volatile sulfides and nitrogen oxides were decreased. In particular, the best edible quality and perceived salty intensity of minced pork gel was obtained by using CaCl2 in place of 5% NaCl under magnetic field mediation. In addition, energy dispersive X-ray spectroscopy scans showed that the reduced NaCl treatment by magnetic field combined with CaCl2 could increase the signal intensity of sodium in minced pork matrices to some extent. Magnetic field-mediated substitution of NaCl for CaCl2 treatment was also found to be favorable for inducing the transition of the protein secondary structure from an irregularly coiled to a ß-folded structure (demonstrated by infrared spectroscopy). In short, magnetic fields combined with CaCl2 instead of NaCl was a highly promising method of producing low-NaCl meats.


Subject(s)
Meat Products , Pork Meat , Red Meat , Animals , Swine , Sodium Chloride/chemistry , Calcium Chloride/chemistry , Meat Products/analysis , Proteins , Sodium , Gels/chemistry
17.
Sensors (Basel) ; 24(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38400480

ABSTRACT

Visual-inertial odometry (VIO) algorithms, fusing various features such as points and lines, are able to improve their performance in challenging scenes while the running time severely increases. In this paper, we propose a novel lightweight point-line visual-inertial odometry algorithm to solve this problem, called LRPL-VIO. Firstly, a fast line matching method is proposed based on the assumption that the photometric values of endpoints and midpoints are invariant between consecutive frames, which greatly reduces the time consumption of the front end. Then, an efficient filter-based state estimation framework is designed to finish information fusion (point, line, and inertial). Fresh measurements of line features with good tracking quality are selected for state estimation using a unique feature selection scheme, which improves the efficiency of the proposed algorithm. Finally, validation experiments are conducted on public datasets and in real-world tests to evaluate the performance of LRPL-VIO and the results show that we outperform other state-of-the-art algorithms especially in terms of speed and robustness.

18.
J Sci Food Agric ; 104(4): 2284-2293, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37950529

ABSTRACT

BACKGROUND: Natural myofibrillar protein (MP) is sensitive to changes in the microenvironment, such as pH and ionic strength, and therefore can adversely affect the final quality of meat products. The aim of this study was to modify natural MP as well as to improve its functional properties. Therefore, the quality improvement effect of konjac polysaccharides with different concentrations (0, 1.5, 3, 4.5 and 6 g kg-1 protein) on MP gels was investigated. RESULTS: With a concentration of konjac polysaccharides of 6 g kg-1 protein, the composite gel obtained exhibited a significant improvement of water binding (water holding capacity increased by 7.71%) and textural performance (strength increased from 29.12 to 37.55 N mm, an increase of 8.43 N mm). Meanwhile, konjac polysaccharides could help to form more disulfide bonds and non-disulfide covalent bonds, which enhanced the crosslinking of MP and maintained the MP gel network structure. Then, with the preservation of α-helix structure (a significant increase of 8.11%), slower protein aggregation and formation of small aggregates, this supported the formation of a fine and homogeneous network structure and allowed a reduction in water mobility. CONCLUSION: During the heating process, konjac polysaccharides could absorb the surrounding water and fill the gel system, which resulted in an increase in the water content of the gel network and enhanced the gel-forming ability of the gel. Meanwhile, konjac polysaccharides might inhibit irregular aggregation of proteins and promote the formation of small aggregates, which in turn form a homogeneous and continuous gel matrix by orderly arrangement. © 2023 Society of Chemical Industry.


Subject(s)
Amorphophallus , Pork Meat , Red Meat , Animals , Swine , Muscle Proteins/chemistry , Gels/chemistry , Polysaccharides/pharmacology , Water/chemistry , Rheology
19.
Heliyon ; 9(11): e21010, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37920508

ABSTRACT

Researchers have shown that bone mesenchymal stem cells (BMSCs) can alleviate the progression of liver cirrhosis; however, it is unclear how exactly BMSCs function to cure liver disease. In this study, we used bioinformatics methods to assess differentially expressed genes (DEGs) in liver cirrhosis and found a significantly upregulated gene, Fstl1, in liver cirrhosis. In vivo and in vitro experiments showed that compared with those in the disease model group, the mRNA, and protein expression levels of Fstl1 were significantly reduced after BMSCs treatment, and the ß-Catenin protein level was also significantly reduced after BMSCs treatment. Subsequently, we downregulated Fstl1 in activated hepatic stellate cells (HSCs) and found that Wnt and ß-Catenin protein expression levels also decreased. Finally, we found that in BMSCs-treated activated HSCs, overexpression of Fstl1 reversed the inhibitory effect of BMSCs on the Wnt/ß-Catenin signaling pathway to a certain extent. In summary, our results show that BMSCs can inhibit Wnt/ß-Catenin signaling pathway activation by downregulating the protein expression level of Fstl1, thus alleviating cirrhosis. Therefore, targeted regulation of Fstl1 may provide a new therapeutic strategy for the progression of liver cirrhosis.

20.
Biomed Pharmacother ; 166: 115414, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660651

ABSTRACT

Tumor-associated macrophages (TAMs) are the most critical effector cells of innate immunity and the most abundant tumor-infiltrating immune cells. They play a key role in the clearance of apoptotic bodies, regulation of inflammation, and tissue repair to maintain homeostasis in vivo. With the progression of triple-negative breast cancer(TNBC), TAMs are "subverted" from tumor-promoting immune cells to tumor-promoting immune suppressor cells, which play a significant role in tumor development and are considered potential targets for cancer therapy. Here, we explored how macrophages, as the most important part of the TNBC ecosystem, are "subverted" to drive cancer evolution and the uniqueness of TAMs in TNBC progression and metastasis. Similarly, we discuss the rationale and available evidence for TAMs as potential targets for TNBC therapy.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Ecosystem , Macrophages , Tumor-Associated Macrophages , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL