Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Rice (N Y) ; 17(1): 52, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152344

ABSTRACT

Plants NADP-malic enzymes (NADP-MEs) act as a class of oxidative decarboxylase to mediate malic acid metabolism in organisms. Despite NADP-MEs have been demonstrated to play pivotal roles in regulating diverse biological processes, the role of NADP-MEs involving in plant growth and development remains rarely known. Here, we characterized the function of rice cytosolic OsNADP-ME2 in regulating plant height. The results showed that RNAi silencing and knock-out of OsNADP-ME2 in rice results in a dwarf plant structure, associating with significant expression inhibition of genes involving in phytohormone Gibberellin (GA) biosynthesis and signaling transduction, but with up-regulation for the expression of GA signaling suppressor SLR1. The accumulation of major bioactive GA1, GA4 and GA7 are evidently altered in RNAi lines, and exogenous GA treatment compromises the dwarf phenotype of OsNADP-ME2 RNAi lines. RNAi silencing of OsNADP-ME2 also causes the reduction of NADP-ME activity associating with decreased production of pyruvate. Thus, our data revealed a novel function of plant NADP-MEs in modulation of rice plant height through regulating bioactive GAs accumulation and GA signaling, and provided a valuable gene resource for rice plant architecture improvement.

2.
Int J Cancer ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129048

ABSTRACT

Bacteria are ideal anticancer agents and carriers due to their unique capabilities that are convenient in genetic manipulation, tumor-specific targeting, and deep-tissue penetration. However, the specific molecular mechanisms of bacteria-mediated cancer therapy (BMCT) have not been clarified. In this study, we found that TLR4 signaling pathway is critical for Salmonella-mediated tumor targeting, tumor suppression, and liver and spleen protection. TLR4 knockout in mice decreased the levels of cytokines and chemokines, such as S100a8, S100a9, TNF-α, and IL-1ß, in tumor microenvironments (TMEs) after Salmonella treatment, which inhibited tumor cell death and nutrient release, led to reduced bacterial contents in tumors and attenuated antitumor efficacy in a negative feedback manner. Importantly, we found that S100a8 and S100a9 played a leading role in Salmonella-mediated cancer therapy (SMCT). The antitumor efficacy was abrogated and liver damage was prominent when blocked with a specific inhibitor. These findings elucidated the mechanism of Salmonella-mediated tumor targeting, suppression, and host antibacterial defense, providing insights into clinical cancer therapeutics.

3.
Chem Biodivers ; : e202401801, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39211952

ABSTRACT

Three undescribed pregnane steroids, 12ß-O-4-hydroxybenzoyl tenacigenin D (1), 12ß-O-4-hydroxybenzoyl tenacigenin A (2), and 11α-nicotinoyl-17ß-marsdenin (3), along with two known analogues (4 and 5), were isolated from the roots of Marsdenia tenacissima. Their structures were elucidated using one- and two-dimensional NMR, high-resolution electron ionization-mass spectrometry, single-crystal X-ray diffraction data, and experimental and density-functional-theory-calculated electronic circular dichroism measurements. All isolated compounds were evaluated for their cytotoxic activities against human lung cancer cells (A549), ovarian carcinoma cells (SKOV-3), gastric cancer cells (MGC 803) and breast cancer cells (MCF-7). Notably, 3 exhibited significant cytotoxic activity against both A549 (median inhibitory concentration (IC50) = 16.79 µM) and SKOV-3 (IC50 = 12.30 µM) cells while exhibiting moderate cytotoxicity on MGC803 and MCF-7 cells.

4.
Appl Microbiol Biotechnol ; 108(1): 448, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190037

ABSTRACT

Chemical synthesis of phosphoromonothioate oligonucleotides (PS-ONs) is not stereo-specific and produces a mixture of Rp and Sp diastereomers, whose disparate reactivity can complicate applications. Although the current methods to separate these diastereomers which rely on chromatography are constantly improving, many Rp and Sp diastereomers are still co-eluted. Here, based on sulfur-binding domains that specifically recognize phosphorothioated DNA and RNA in Rp configuration, we developed a universal separation system for phosphorothioate oligonucleotide isomers using immobilized SBD (SPOIS). With the scalable SPOIS, His-tagged SBD is immobilized onto Ni-nitrilotriacetic acid-coated magnetic beads to form a beads/SBD complex, Rp isomers of the mixture can be completely bound by SBD and separated from Sp isomers unbound in liquid phase, then recovered through suitable elution approach. Using the phosphoromonothioate single-stranded DNA as a model, SPOIS separated PS-ON diastereomers of 4 nt to 50 nt in length at yields of 60-90% of the starting Rp isomers, with PS linkage not locating at 5' or 3' end. Within this length range, PS-ON diastereomers that co-eluted in HPLC could be separated by SPOIS at yields of 84% and 89% for Rp and Sp stereoisomers, respectively. Furthermore, as each Rp phosphorothioate linkage can be bound by SBD, SPOIS allowed the separation of stereoisomers with multiple uniform Sp configurations for multiple phosphorothioate modifications. A second generation of SPOIS was developed using the thermolabile and non-sequence-specific SBDPed, enabling fast and high-yield recovery of PS substrate stereoisomers for the DNAzyme Cd16 and further demonstrating the efficiency of this method. KEY POINTS: • SPOIS allows isomer separations of the Rp and Sp isomers co-eluted on HPLC. • SPOIS can obtain Sp isomers with 5 min and Rp in 20 min from PS-ON diastereomers. • SPOIS was successfully applied to separate isomers of PS substrates of DNAzyme.


Subject(s)
Phosphorothioate Oligonucleotides , Sulfur , Phosphorothioate Oligonucleotides/chemistry , Phosphorothioate Oligonucleotides/metabolism , Phosphorothioate Oligonucleotides/isolation & purification , Sulfur/chemistry , Sulfur/metabolism , Isomerism , Stereoisomerism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Chromatography, High Pressure Liquid
5.
Front Oncol ; 14: 1427404, 2024.
Article in English | MEDLINE | ID: mdl-39015490

ABSTRACT

Objectives: This study aimed to explore the value of radiomics nomogram based on computed tomography (CT) on the diagnosis of benign and malignant solitary indeterminate smoothly marginated solid pulmonary nodules (SMSPNs). Methods: This study retrospectively reviewed 205 cases with solitary indeterminate SMSPNs on CT, including 112 cases of benign nodules and 93 cases of malignant nodules. They were divided into training (n=143) and validation (n=62) cohorts based on different CT scanners. Radiomics features of the nodules were extracted from the lung window CT images. The variance threshold method, SelectKBest, and least absolute shrinkage and selection operator were used to select the key radiomics features to construct the rad-score. Through multivariate logistic regression analysis, a nomogram was built by combining rad-score, clinical factors, and CT features. The nomogram performance was evaluated by the area under the receiver operating characteristic curve (AUC). Results: A total of 19 radiomics features were selected to construct the rad-score, and the nomogram was constructed by the rad-score, one clinical factor (history of malignant tumor), and three CT features (including calcification, pleural retraction, and lobulation). The nomogram performed better than the radiomics model, clinical model, and experienced radiologists who specialized in thoracic radiology for nodule diagnosis. The AUC values of the nomogram were 0.942 in the training cohort and 0.933 in the validation cohort. The calibration curve and decision curve showed that the nomogram demonstrated good consistency and clinical applicability. Conclusion: The CT-based radiomics nomogram achieved high efficiency in the preoperative diagnosis of solitary indeterminate SMSPNs, and it is of great significance in guiding clinical decision-making.

6.
Life Sci ; 352: 122897, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38971366

ABSTRACT

The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.


Subject(s)
Bacteria , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/therapy , Neoplasms/immunology , Animals , Bacteria/genetics , Immunotherapy/methods
7.
Plant Cell ; 36(9): 3770-3786, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38963880

ABSTRACT

Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here, we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the endoplasmic reticulum (ER) exit sites and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12, and Sec24, and participates in coat protein complex II vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway.


Subject(s)
Chloroplasts , Endoplasmic Reticulum , Protein Transport , Secretory Pathway , Chloroplasts/metabolism , Endoplasmic Reticulum/metabolism , Medicago truncatula/metabolism , Medicago truncatula/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Chloroplast Proteins/metabolism , Chloroplast Proteins/genetics , Golgi Apparatus/metabolism , Mutation , Arabidopsis/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant
8.
Animals (Basel) ; 14(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891594

ABSTRACT

Poultry studies conducted on Clostridium perfringens (CP) mainly focus on the effects of intestinal health and productive performance. Notably, the probiotic Bacillus amyloliquefaciens SC06 (BaSC06) is known to play a role in preventing bacterial infection. However, whether CP could induce the changes in brain function and behaviors and whether BaSC06 could play roles in these parameters is yet to be reported. The aim of this study was to evaluate the effects of BaSC06 on stress-related behaviors and gene expression, as well as the brain morphology and mRNA sequence of the hypothalamus in broiler chickens. A total of 288 one-day-old chicks were randomly divided into four groups: (1) a control group with no treatment administered or infection; (2) birds treated with the BaSC06 group; (3) a CP group; and (4) a BaSC06 plus CP (Ba_CP) group. The results showed that stress and fear-related behaviors were significantly induced by a CP infection and decreased due to the treatment of BaSC06. CP infection caused pathological damage to the pia and cortex of the brain, while BaSC06 showed a protective effect. CP significantly inhibited hypothalamic GABA and promoted HTR1A gene expression, while BaSC06 promoted GABA and decreased HTR1A gene expression. The different genes were nearly found between the comparisons of control vs. Ba group and Ba vs. CP group, while there were a great number of different genes between the comparisons of control vs. Ba_CP as well as CP vs. Ba_CP. Several different gene expression pathways were found that were related to disease, energy metabolism, and nervous system development. Our results will help to promote poultry welfare and health, as well as provide insights into probiotics to replace antibiotics and reduce resistance in the chicken industry.

9.
Sci Rep ; 14(1): 11961, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796571

ABSTRACT

Tibetan-speaking patients seeking care in predominantly Mandarin-speaking healthcare settings frequently face communication barriers, leading to potential disparities and difficulties in accessing care. To address this issue, we translated, culturally adapted, and validated the Numerical Pain Rating Scale (NPRS) and the Global Rating of Change (GRoC) into Tibetan (NPRS-Tib and GRoC-Tib), aiming to facilitate cross-linguistic and cross-cultural interactions while examining potential challenges in the adaptation process. Using standard translation-backward translation methods, expert review, pilot testing, and validation through a cross-sectional study with a short-term longitudinal component, we engaged 100 Tibetan patients with musculoskeletal trauma for psychometric validation, including 37 women (aged 22-60 years, mean age 39.1 years). The NPRS-Tib and GRoC-Tib exhibited outstanding psychometric properties, with an Intraclass Correlation Coefficient (ICC) of 0.983 for NPRS-Tib indicating superb test-retest reliability, and expert review confirming good content validity for both instruments. A Spearman's correlation coefficient (Rho) of -0.261 (P = 0.0087) revealed a significant, albeit weak, correlation between changes in NPRS-Tib scores and GRoC-Tib scores. The adaptation process also presented notable challenges, including translation discrepancies from translators' diverse backgrounds and levels of expertise, ambiguity in scale options, and the lack of established tools for criterion validity assessment in Tibetan.


Subject(s)
Pain Measurement , Psychometrics , Humans , Female , Adult , Tibet , Middle Aged , Male , Psychometrics/methods , Pain Measurement/methods , Cross-Sectional Studies , Young Adult , Reproducibility of Results , Translations , Translating , Surveys and Questionnaires , Musculoskeletal Pain
10.
Sci Rep ; 14(1): 9903, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688964

ABSTRACT

The edible fungus industry is one of the pillar industries in the Yunnan-Guizhou Plateau, China. The expansion of the planting scale has led to the release of various mushroom residues, such as mushroom feet, and other wastes, which are not treated adequately, resulting in environmental pollution. This study investigated the ability of black soldier fly (Hermetia illucens L.) larvae (BSFL) to degrade mushroom waste. Moreover, this study analyzed changes in the intestinal bacterial community and gene expression of BSFL after feeding on mushroom waste. Under identical feeding conditions, the remaining amount of mushroom waste in Pleurotus ostreatus treatment group was reduced by 18.66%, whereas that in Flammulina velutipes treatment group was increased by 31.08%. Regarding gut microbial diversity, compared with wheat bran-treated control group, Dysgonomonas, Providencia, Enterococcus, Pseudochrobactrum, Actinomyces, Morganella, Ochrobactrum, Raoultella, and Ignatzschineria were the most abundant bacteria in the midgut of BSFL in F. velutipes treatment group. Furthermore, Dysgonomonas, Campylobacter, Providencia, Ignatzschineria, Actinomyces, Enterococcus, Morganella, Raoultella, and Pseudochrobactrum were the most abundant bacteria in the midgut of BSFL in P. ostreatus treatment group. Compared with wheat bran-treated control group, 501 upregulated and 285 downregulated genes were identified in F. velutipes treatment group, whereas 211 upregulated and 43 downregulated genes were identified in P. ostreatus treatment group. Using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses, we identified 14 differentially expressed genes (DEGs) related to amino sugar and nucleotide sugar metabolism in F. velutipes treatment group, followed by 12 DEGs related to protein digestion and absorption. Moreover, in P. ostreatus treatment group, two DEGs were detected for fructose and mannose metabolism, and two were noted for fatty acid metabolism. These results indicate that feeding on edible mushroom waste can alter the intestinal microbial community structure of BSFL; moreover, the larval intestine can generate a corresponding feedback. These changes contribute to the degradation of edible mushroom waste by BSFL and provide a reference for treating edible mushroom waste using BSFL.


Subject(s)
Agaricales , Gastrointestinal Microbiome , Larva , Pleurotus , Animals , Larva/microbiology , Pleurotus/metabolism , Agaricales/metabolism , Agaricales/genetics , Biodegradation, Environmental , Diptera/microbiology , Diptera/metabolism , Flammulina/metabolism , Flammulina/genetics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
11.
Plant Physiol Biochem ; 210: 108651, 2024 May.
Article in English | MEDLINE | ID: mdl-38653098

ABSTRACT

Sugar beet (Beta vulgaris L.) is an economically important sugar crop worldwide that is susceptible to sudden waterlogging stress during seedling cultivation, which poses a major threat to sugar beet development and production. Our understanding of the physiological basis of waterlogging tolerance in sugar beet is limited. To investigate the photosynthetic adaptation strategies of sugar beet to waterlogging stress conditions, the tolerant cultivar KUHN1260 (KU) and sensitive cultivar SV1433 (SV) were grown under waterlogging stress, and their photosynthetic function and reactive oxygen species (ROS) metabolism were assessed. Our results showed that waterlogging stress significantly reduced the photosynthetic pigment content, rubisco activity, and expression level of the photosynthetic enzyme genes SvRuBP, SvGAPDH, and SvPRK, gas exchange parameters, and chlorophyll fluorescence parameters, induced damage to the ultrastructure of the chloroplast of the two sugar beet cultivars, inhibited the photosynthetic carbon assimilation capacity of sugar beet leaves, damaged the structural stability of photosystem II (PSII), and disturbed the equilibrium between electrons at the acceptor and donor sides of PSII, which was the result of stomatal and non-stomatal limiting factors. Moreover, the level of ROS, H2O2, and O2▪-, antioxidant enzyme activity, and gene expression levels in the leaves of the two sugar beet cultivars increased over time under waterlogging stress; ROS accumulation was lower and antioxidant enzyme activities and gene expression levels were higher in the waterlogging-tolerant cultivar (KU) than the waterlogging-sensitive cultivar (SV). In sum, these responses in the more tolerant cultivars are associated with their resistance to waterlogging stress. Our findings will aid the breeding of waterlogging-tolerant sugar beet cultivars.


Subject(s)
Beta vulgaris , Photosynthesis , Reactive Oxygen Species , Beta vulgaris/physiology , Beta vulgaris/metabolism , Beta vulgaris/genetics , Photosynthesis/physiology , Reactive Oxygen Species/metabolism , Stress, Physiological , Plant Leaves/metabolism , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Water/metabolism
12.
Plant Cell ; 36(7): 2629-2651, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38552172

ABSTRACT

S-acylation is a reversible post-translational modification catalyzed by protein S-acyltransferases (PATs), and acyl protein thioesterases (APTs) mediate de-S-acylation. Although many proteins are S-acylated, how the S-acylation cycle modulates specific biological functions in plants is poorly understood. In this study, we report that the S-acylation cycle of transcription factor MtNAC80 is involved in the Medicago truncatula cold stress response. Under normal conditions, MtNAC80 localized to membranes through MtPAT9-induced S-acylation. In contrast, under cold stress conditions, MtNAC80 translocated to the nucleus through de-S-acylation mediated by thioesterases such as MtAPT1. MtNAC80 functions in the nucleus by directly binding the promoter of the glutathione S-transferase gene MtGSTU1 and promoting its expression, which enables plants to survive under cold stress by removing excess malondialdehyde and H2O2. Our findings reveal an important function of the S-acylation cycle in plants and provide insight into stress response and tolerance mechanisms.


Subject(s)
Cold-Shock Response , Gene Expression Regulation, Plant , Medicago truncatula , Plant Proteins , Transcription Factors , Medicago truncatula/genetics , Medicago truncatula/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Cold-Shock Response/genetics , Acylation , Transcription Factors/metabolism , Transcription Factors/genetics , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Cold Temperature , Plants, Genetically Modified , Promoter Regions, Genetic/genetics
13.
Curr Res Toxicol ; 6: 100161, 2024.
Article in English | MEDLINE | ID: mdl-38496008

ABSTRACT

Cigarette smoking (CS) causes skeletal muscle dysfunction, leading to sarcopenia and worse prognosis of patients with diverse systemic diseases. Here, we found that CS exposure prevented C2C12 myoblasts proliferation in a dose-dependent manner. Immunoblotting assays verified that CS exposure promoted the expression of cell cycle suppressor protein p21. Furthermore, CS exposure significantly inhibited replication-dependent (RD) histone transcription and caused S phase arrest in the cell cycle during C2C12 proliferation. Mechanistically, CS deregulated the expression levels of Nuclear Protein Ataxia-Telangiectasia Locus (NPAT/p220). Notably, the proteasome inhibitor MG132 was able to reverse the expression of NPAT in myoblasts, implying that the degradation of CS-mediated NPAT is proteasome-dependent. Overexpression of NPAT also rescued the defective proliferation phenotype induced by CS in C2C12 myoblasts. Taken together, we suggest that CS exposure induces NPAT degradation in C2C12 myoblasts and impairs myogenic proliferation through NPAT associated proteasomal-dependent mechanisms. As an application of the proteasome inhibitor MG132 or overexpression of NPAT could reverse the impaired proliferation of myoblasts induced by CS, the recovery of myoblast proliferation may be potential strategies to treat CS-related skeletal muscle dysfunction.

14.
Sci China Life Sci ; 67(7): 1427-1440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523237

ABSTRACT

Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.


Subject(s)
Cognition , Fucosyltransferases , Integrin alpha6 , Neurogenesis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Neurogenesis/genetics , Proto-Oncogene Proteins c-akt/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Integrin alpha6/metabolism , Integrin alpha6/genetics , Cognition/physiology , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Cell Differentiation , Cell Proliferation , Mice, Inbred C57BL , Mice, Knockout
15.
Mol Microbiol ; 121(5): 971-983, 2024 05.
Article in English | MEDLINE | ID: mdl-38480679

ABSTRACT

Increasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT-DNA. PT-dependent restriction enzymes (PDREs) bind PT-DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 µM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT-DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT-DNA as the template. Our findings suggest that DNA modification-targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction-modification systems and epigenetic readers.


Subject(s)
DNA Replication , Escherichia coli Proteins , Escherichia coli , Sulfur , Escherichia coli/metabolism , Escherichia coli/genetics , Sulfur/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , DNA, Bacterial/metabolism , DNA Restriction Enzymes/metabolism , Protein Binding , DNA/metabolism , Binding Sites
16.
Heliyon ; 10(3): e25068, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317927

ABSTRACT

Utilizing a quantile frequency connectedness approach, we explore the connectedness between energy tokens, crypto market, and renewable energy stock markets. The empirical results show that the connectedness measures of the series are characterized by asymmetry and heterogeneity across quantiles and different investment horizons. Specifically, the characteristic of clustering has been observed that energy tokens and crypto market are more interconnected, while the renewable energy stock markets are more interconnected with each other at median quantile. The linkages between energy tokens and renewable energy stock markets are quite weak under normal market conditions, suggesting the diversification opportunities in investing these financial assets. However, these series are more interconnected under extreme market conditions, with the renewable energy stock markets are on the dominating end of the propagation mechanism while the energy tokens and crypto market are net receivers of shocks. Further frequency decomposition shows that this strategy can hold in the short term, while in the long term investors could benefit from the diversification opportunities by investing both kinds of financial assets. Additionally, the dynamic analysis affirms that the connectedness measures are varied and event-dependent over time. Our results may help investors and policymakers have a better assessment and portfolio management.

17.
ACS Appl Bio Mater ; 7(3): 1547-1557, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38346262

ABSTRACT

African swine fever is an acute and highly contagious infectious disease with a mortality rate of up to 100%. The lack of commercial vaccines and drugs is a serious economic threat to the global pig industry. Cell-mediated immunity plays an essential role in protection against viral infection. We previously reported the rational design of a T-cell-activating thermostable scaffold (RPT) for antigen delivery and improved cellular immunity. We conjugated antigens P30, P54, P72, CD2 V, and CP312R to RPT, using a SpyCatcher/SpyTag covalent attachment strategy to construct nanovaccines (multiantigens-RPT). Multiantigens-RPT exhibited significantly higher thermal, storage, and freeze-thaw stability. The specific antibodies IgG and IgG2a of the multiantigen-RPT-immunized were higher than the antigens cocktail-immunized by approximately 10-100 times. ELISpot demonstrated that more IFN-γ-secreting cells were produced by the multiantigen-RPT-immunized than by the antigens cocktail-immunized. Delivery of the multiantigen nanovaccine by a T-cell-activating scaffold induced strong humoral and cellular immune responses in mice and pigs and is a potentially useful candidate vaccine for the African swine fever virus.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Mice , African Swine Fever/prevention & control , T-Lymphocytes , Nanovaccines , Adjuvants, Immunologic
18.
Urolithiasis ; 52(1): 15, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38117370

ABSTRACT

The aim of the study was to analyze the factors influencing the efficacy of ultrasound-guided extracorporeal shockwave lithotripsy (ESWL) in the treatment of ureteral stones. The clinical data of 8102 patients (6083 men and 2019 women) who presented with ureteral stones were retrospectively analyzed. All the patients were treated with ultrasound-guided ESWL. The stone-free rate (SFR) was calculated to evaluate the effect of ESWL. The characteristics of the patients and their stones, and the ESWL parameters applied were compared to identify the factors affecting the treatment outcomes. The SFR and that following one ESWL session were 94.6% (7663/8102) and 75.4% (6107/8102), respectively. Multivariate analysis showed that stone location (OR 0.656, p < 0.001), stone size (OR 1.103, p < 0.001), and degree of hydronephrosis (OR 1.952, p < 0.001) independently affected SFR; and age (OR 1.005, p = 0.022), stone location (OR 0.729, p < 0.001), stone size (OR 1.103, p < 0.001), degree of hydronephrosis (OR 1.387, p = 0.001), maximum energy level(OR 0.691, p < 0.001) independently affected SFR following one session. Ultrasound-guided ESWL is effective in all levels of ureteral stones. Large stone size and moderate hydronephrosis are correlated with treatment failure. Ultrasound-guided ESWL may be the first choice for distal ureteral stones.


Subject(s)
Hydronephrosis , Lithotripsy , Ureteral Calculi , Male , Humans , Female , Retrospective Studies , Lithotripsy/adverse effects , Ureteral Calculi/diagnostic imaging , Ureteral Calculi/therapy , Ultrasonography, Interventional
19.
iScience ; 26(10): 107752, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37954141

ABSTRACT

Symbiotic nitrogen fixation is a complex process in which legumes interact with rhizobia under nitrogen starvation. In this study, we found that myotubularin phosphatase (MtMP) is mainly expressed in roots and nodules in Medicago truncatula. MtMP promotes autophagy by dephosphorylating PtdIns3P on autophagosomes. The mp mutants inoculated with rhizobia showed a significant reduction in nitrogenase activity and significantly higher number of mitochondria than those of wild-type plants under nitrogen starvation, indicating that MtMP is involved in mitophagy of the infection zone. Mitophagy may provide carbon skeletons and nitrogen for the development of bacteroids and the reprogramming of infected cells. In conclusion, we found, for the first time, that myotubularin phosphatase is involved in autophagy in plants. MtMP-involved autophagy plays an active role in symbiotic nitrogen fixation. These results deepen our understanding of symbiotic nitrogen fixation.

20.
BMC Genomics ; 23(Suppl 5): 863, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936055

ABSTRACT

BACKGROUND: Genomic variants of the disease are often discovered nowadays through population-based genome-wide association studies (GWAS). Identifying genomic variations potentially underlying a phenotype, such as hypertension, in an individual is important for designing personalized treatment; however, population-level models, such as GWAS, may not capture all the important, individualized factors well. In addition, GWAS typically requires a large sample size to detect the association of low-frequency genomic variants with sufficient power. Here, we report an individualized Bayesian inference (IBI) algorithm for estimating the genomic variants that influence complex traits, such as hypertension, at the level of an individual (e.g., a patient). By modeling at the level of the individual, IBI seeks to find genomic variants observed in the individual's genome that provide a strong explanation of the phenotype observed in this individual. RESULTS: We applied the IBI algorithm to the data from the Framingham Heart Study to explore the genomic influences of hypertension. Among the top-ranking variants identified by IBI and GWAS, there is a significant number of shared variants (intersection); the unique variants identified only by IBI tend to have relatively lower minor allele frequency than those identified by GWAS. In addition, IBI discovered more individualized and diverse variants that explain hypertension patients better than GWAS. Furthermore, IBI found several well-known low-frequency variants as well as genes related to blood pressure that GWAS missed in the same cohort. Finally, IBI identified top-ranked variants that predicted hypertension better than GWAS, according to the area under the ROC curve. CONCLUSIONS: The results support IBI as a promising approach for complementing GWAS, especially in detecting low-frequency genomic variants as well as learning personalized genomic variants of clinical traits and disease, such as the complex trait of hypertension, to help advance precision medicine.


Subject(s)
Genome-Wide Association Study , Hypertension , Humans , Genome-Wide Association Study/methods , Bayes Theorem , Polymorphism, Single Nucleotide , Phenotype , Hypertension/genetics , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL