Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 491
1.
J Am Chem Soc ; 146(22): 15108-15118, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38695683

P2-type Na2/3Ni1/3Mn2/3O2 (PNNMO) has been extensively studied because of its desirable electrochemical properties as a positive electrode for sodium-ion batteries. PNNMO exhibits intralayer transition-metal ordering of Ni and Mn and intralayer Na+/vacancy ordering. The Na+/vacancy ordering is often considered a major impediment to fast Na+ transport and can be affected by transition-metal ordering. We show by neutron/X-ray diffraction and density functional theory (DFT) calculations that Li doping (Na2/3Li0.05Ni1/3Mn2/3O2, LFN5) promotes ABC-type interplanar Ni/Mn ordering without disrupting the Na+/vacancy ordering and creates low-energy Li-Mn-coordinated diffusion pathways. A structure model is developed to quantitatively identify both the intralayer cation mixing and interlayer cationic stacking fault densities. Quasielastic neutron scattering reveals that the Na+ diffusivity in LFN5 is enhanced by an order of magnitude over PNNMO, increasing its capacity at a high current. Na2/3Ni1/4Mn3/4O2 (NM13) lacks Na+/vacancy ordering but has diffusivity comparable to that of LFN5. However, NM13 has the smallest capacity at a high current. The high site energy of Mn-Mn-coordinated Na compared to that of Ni-Mn and higher density of Mn-Mn-coordinated Na+ sites in NM13 disrupts the connectivity of low-energy Ni-Mn-coordinated diffusion pathways. These results suggest that the interlayer ordering can be tuned through the control of composition, which has an equal or greater impact on Na+ diffusion than the Na+/vacancy ordering.

2.
Bull World Health Organ ; 102(6): 410-420, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38812801

Objective: To assess global, regional and national trends in the impact of floods from 1990 to 2022 and determine factors influencing flood-related deaths. Methods: We used data on flood disasters from the International Disaster Database for 1990-2022 from 168 countries. We calculated the annual percentage change to estimate trends in the rates of people affected and killed by floods by study period, World Health Organization (WHO) region, country income level and flood type. We used multivariable logistic regression analysis to assess the factors associated with death from floods. Findings: From 1990 to 2022, 4713 floods were recorded in 168 countries, which affected > 3.2 billion people, caused 218 353 deaths and were responsible for more than 1.3 trillion United States dollars of economic losses. The WHO Western Pacific Region had the most people affected by floods (> 2.0 billion), accounting for 63.19% (2 024 599 380/3 203 944 965) of all affected populations. The South-East Asia Region had the most deaths (71 713, 32.84%). The African and Eastern Mediterranean Regions had the highest number of people affected and killed by floods per 100 000 population in 2022. The odds of floods causing more than 50 deaths were significantly higher in low-income countries (adjusted odds ratio: 14.34; 95% confidence interval: 7.46 to 30.04) compared with high-income countries. Numbers of people affected and mortality due to floods declined over time. Conclusion: Despite the decreases in populations affected and deaths, floods still have a serious impact on people and economies globally, particularly in lower-income countries. Action is needed to improve disaster risk management and flood mitigation.


Floods , Humans , Global Health , Disasters , Developing Countries , Logistic Models , Natural Disasters
3.
Water Res ; 258: 121800, 2024 May 19.
Article En | MEDLINE | ID: mdl-38796909

Iron (hydr)oxides are abundant in surface environment, and actively participate in the transformation of organic pollutants due to their large specific surface areas and redox activity. This work investigated the transformation of tetracycline (TC) in the presence of three common iron (hydr)oxides, hematite (Hem), goethite (Goe), and ferrihydrite (Fh), under simulated sunlight irradiation. These iron (hydr)oxides exhibited photoactivity and facilitated the transformation of TC with the initial phototransformation rates decreasing in the order of: Hem > Fh > Goe. The linear correlation between TC removal efficiency and the yield of HO• suggests that HO• dominated TC transformation. The HO• was produced by UV-induced decomposition of self-generated H2O2 and surface Fe2+-triggered photo-Fenton reaction. The experimental results indicate that the generation of HO• was controlled by H2O2, while surface Fe2+ was in excess. Sunlight-driven H2O2 production in the presence of the highly crystalline Hem and Goe occurred through a one-step two-electron reduction pathway, while the process was contributed by both O2-induced Fe2+ oxidation and direct reduction of O2 by electrons on the conduction band in the presence of the poorly crystalline Fh. These findings demonstrate that sunlight may significantly accelerate the degradation of organic pollutants in the presence of iron (hydr)oxides.

4.
Microb Pathog ; 191: 106673, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705218

The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.


3C Viral Proteases , Autophagy , Picornaviridae , Receptor, EphA2 , Signal Transduction , TOR Serine-Threonine Kinases , Viral Proteins , Virus Replication , Animals , Receptor, EphA2/metabolism , Receptor, EphA2/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line , Swine , Picornaviridae/physiology , Picornaviridae/genetics , 3C Viral Proteases/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Proteolysis , Cricetinae , Host-Pathogen Interactions , Viral Load
5.
Environ Int ; 187: 108680, 2024 May.
Article En | MEDLINE | ID: mdl-38723455

The global health crisis posed by increasing antimicrobial resistance (AMR) implicitly requires solutions based a One Health approach, yet multisectoral, multidisciplinary research on AMR is rare and huge knowledge gaps exist to guide integrated action. This is partly because a comprehensive survey of past research activity has never performed due to the massive scale and diversity of published information. Here we compiled 254,738 articles on AMR using Artificial Intelligence (AI; i.e., Natural Language Processing, NLP) methods to create a database and information retrieval system for knowledge extraction on research perfomed over the last 20 years. Global maps were created that describe regional, methodological, and sectoral AMR research activities that confirm limited intersectoral research has been performed, which is key to guiding science-informed policy solutions to AMR, especially in low-income countries (LICs). Further, we show greater harmonisation in research methods across sectors and regions is urgently needed. For example, differences in analytical methods used among sectors in AMR research, such as employing culture-based versus genomic methods, results in poor communication between sectors and partially explains why One Health-based solutions are not ensuing. Therefore, our analysis suggest that performing culture-based and genomic AMR analysis in tandem in all sectors is crucial for data integration and holistic One Health solutions. Finally, increased investment in capacity development in LICs should be prioritised as they are places where the AMR burden is often greatest. Our open-access database and AI methodology can be used to further develop, disseminate, and create new tools and practices for AMR knowledge and information sharing.


Artificial Intelligence , Global Health , One Health , Humans , Drug Resistance, Bacterial , Drug Resistance, Microbial , Anti-Bacterial Agents
7.
Nat Commun ; 15(1): 4315, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773104

To enable high performance of all solid-state batteries, a catholyte should demonstrate high ionic conductivity, good compressibility and oxidative stability. Here, a LaCl3-based Na+ superionic conductor (Na1-xZrxLa1-xCl4) with high ionic conductivity of 2.9 × 10-4 S cm-1 (30 °C), good compressibility and high oxidative potential (3.80 V vs. Na2Sn) is prepared via solid state reaction combining mechanochemical method. X-ray diffraction reveals a hexagonal structure (P63/m) of Na1-xZrxLa1-xCl4, with Na+ ions forming a one-dimensional diffusion channel along the c-axis. First-principle calculations combining with X-ray absorption fine structure characterization etc. reveal that the ionic conductivity of Na1-xZrxLa1-xCl4 is mainly determined by the size of Na+-channels and the Na+/La3+ mixing in the one-dimensional diffusion channels. When applied as a catholyte, the NaCrO2||Na0.7Zr0.3La0.7Cl4||Na3PS4||Na2Sn all-solid-state batteries demonstrate an initial capacity of 114 mA h g-1 and 88% retention after 70 cycles at 0.3 C. In addition, a high capacity of 94 mA h g-1 can be maintained at 1 C current density.

8.
Front Glob Womens Health ; 5: 1332555, 2024.
Article En | MEDLINE | ID: mdl-38813069

Introduction: In many parts of Asia Pacific (APAC), insufficient intake of micronutrients that are important for conception and pregnancy remains a prevalent issue among women of reproductive age. It is crucial to gain insights into women's nutritional awareness and nutrition-related behaviors, as well as how these relate to their health literacy (HL). This understanding can help identify gaps and guide the development of appropriate intervention strategies. However, there appears to be limited relevant data available for the APAC region. We therefore examined nutritional awareness and behaviors among preconception and pregnant women in three APAC countries, and explored how these were related to women's HL. Methods: Cross-sectional online surveys were conducted among preconception (i.e., planning to conceive within the next 12 months or currently trying to conceive) and pregnant women in Australia (N = 624), China (N = 600), and Vietnam (N = 300). The survey questionnaire included a validated tool for HL (Newest Vital Sign) and questions to examine awareness and behaviors relating to healthy eating and prenatal supplementation during preconception and pregnancy. Results: Despite recommendations for a quality diet complemented by appropriate supplementation during preconception and pregnancy, many respondents in each country were not aware of the specific impact of adequate nutrition during these stages. While many respondents reported changes in their diet to eat more healthily during preconception and pregnancy, a substantial proportion were not taking prenatal supplements. Higher HL was related to greater nutritional awareness and higher use of prenatal supplements. Discussion: Our findings suggest that there are gaps in nutritional awareness and practices of many preconception or pregnant women in the three countries. Interventions to improve HL would be valuable to complement conventional knowledge-centric nutrition education, and enhance understanding and empower women to adopt appropriate nutritional practices throughout their preconception/pregnancy journey.

9.
Inorg Chem ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38767205

Pair distribution function (PDF) analysis of the scheelite-type material PbWO4 reveals previously unidentified short-range structural distortions in the PbO8 polyhedra and WO4 tetrahedra not observed in the similarly structured CaWO4. These local distortions are a result of the structural influence of the Pb2+ 6s2 lone pair electrons. These are not evident from the Rietveld analysis of synchrotron X-ray or neutron powder diffraction data, nor do they strongly influence the X-ray PDF (XPDF). This illustrates the importance of neutron PDF (NPDF) in the study of such materials. First-principles density function theory (DFT) calculations show that the Pb2+ 6s2 electrons are hybridized with the O2- 2p electrons near the Fermi level. The presence of local-scale distortions has previously been neglected in studies of structure-functionality relationships in PbWO4 and other scheelite-structured photocatalytic materials, including BiVO4, and this observation opens new avenues for their optimization.

10.
Environ Pollut ; 355: 124176, 2024 May 19.
Article En | MEDLINE | ID: mdl-38768675

Scant research has pinpointed the year of minimum PM2.5 concentration through extensive, uninterrupted monitoring, nor has it thoroughly assessed carcinogenic risks associated with analyzing numerous components during this nadir in Beijing. This study endeavored to delineate the atmospheric PM2.5 pollution in Beijing from 2015 to 2022 and to undertake comprehensive evaluation of carcinogenic risks associated with the composition of atmospheric PM2.5 during the year exhibiting the lowest concentration. PM2.5 concentrations were monitored gradually in 9 districts of Beijing for 7 consecutive days per month from 2015 to 2022, and 32 kinds of PM2.5 components collected in the lowest PM2.5 concentration year were analyzed. This comprehensive dataset served as the basis for carcinogenic risk assessment using Monte Carlo simulation. And we applied the Positive Matrix Factorization (PMF) method to identity the sources of atmospheric PM2.5. Furthermore, we integrated this source appointment model with risk assessment model to discern the origins of these risks. The findings revealed that the annual average PM2.5 concentration in 2022 stood at 43.1 µg/m3, marking the lowest level recorded. The mean carcinogenic risks of atmospheric PM2.5 exposure calculated at 6.30E-6 (empirical 95% CI 1.09E-6 to 2.25E-5) in 2022. The PMF model suggested that secondary sources (35.4%), coal combustion (25.6%), resuspended dust (15.1%), biomass combustion (14.1%), vehicle emissions (7.1%), industrial emissions (2.0%) and others (0.7%) were the main sources of atmospheric PM2.5 in Beijing. The mixed model revealed that coal combustion (2.41E-6), vehicle emissions (1.90E-6) and industrial emissions (1.32E-6) were the main sources of carcinogenic risks with caution. Despite a continual decrease in atmospheric PM2.5 concentration in recent years, the lowest concentration levels still pose non-negligible carcinogenic risks. Notably, the carcinogenic risks associated with metals and metalloids exceeded that of PAHs. And the distribution of risk sources did not align proportionally with the distribution of PM2.5 mass concentration.

11.
Oncol Res ; 32(4): 691-702, 2024.
Article En | MEDLINE | ID: mdl-38560565

Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to kill cancer cells directly and induces immunogenic tumor cell death (ICD), which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47. Moreover, both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages, promote antigen presentation, and eventually induce T lymphocyte-mediated antitumor immunity. Overall, the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma, which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.


Bone Neoplasms , Chlorophyllides , Nanoparticles , Neoplasms , Osteosarcoma , Photochemotherapy , Humans , CD47 Antigen , Cell Line, Tumor , Osteosarcoma/drug therapy , Immunotherapy , Bone Neoplasms/drug therapy , Hydrogen-Ion Concentration , Tumor Microenvironment
12.
Open Forum Infect Dis ; 11(4): ofae163, 2024 Apr.
Article En | MEDLINE | ID: mdl-38585185

Background: The aim of this study was to investigate the changes of epidemic characteristics of influenza activity pre- and post-coronavirus disease 2019 (COVID-19) in Beijing, China. Methods: Epidemiologic data were collected from the influenza surveillance system in Beijing. We compared epidemic intensity, epidemic onset and duration, and influenza transmissibility during the 2022-2023 season with pre-COVID-19 seasons from 2014 to 2020. Results: The overall incidence rate of influenza in the 2022-2023 season was significantly higher than that of the pre-COVID-19 period, with the record-high level of epidemic intensity in Beijing. The onset and duration of the influenza epidemic period in 2022-2023 season was notably later and shorter than that of the 2014-2020 seasons. Maximum daily instantaneous reproduction number (Rt) of the 2022-2023 season (Rt = 2.31) was much higher than that of the pre-COVID-19 period (Rt = 1.49). The incidence of influenza A(H1N1) and A(H3N2) were the highest among children aged 0-4 years and 5-14 years, respectively, in the 2022-2023 season. Conclusions: A late, intense, and short-term peak influenza activity was observed in the 2022-2023 season in Beijing. Children <15 years old were impacted the most by the interruption of influenza circulation during the COVID-19 pandemic. Maintaining continuous surveillance and developing targeted public health strategies of influenza is necessary.

13.
Materials (Basel) ; 17(7)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38612127

Ultrafine copper powders were prepared by the air-jet milling of copper oxide (CuO) powders and a subsequent hydrogen (H2) reduction. After milling, the particle size and grain size of CuO powders decreased, while the specific surface area and structural microstrain increased, thereby improving the reaction activity. In a pure H2 atmosphere, the process of CuO reduction was conducted in one step, and followed a pseudo-first-order kinetics model. The smaller CuO powders after milling exhibited higher reduction rates and lower activation energies compared with those without milling. Based on the unreacted shrinking core model, the reduction of CuO powders via H2 was controlled by the interface reaction at the early stage, whereas the latter was limited by the diffusion of H2 through the solid product layer. Additionally, the scanning electron microscopy (SEM) indicated that copper powders after H2 reduction presented a spherical-like shape, and the sintering and agglomeration between particles occurred after 300 °C, which led to a moderate increase in particle size. The preparing parameters (at 400 °C for 180 min) were preferred to obtain ultrafine copper powders with an average particle size in the range of 5.43-6.72 µm and an oxygen content of less than 0.2 wt.%.

14.
Pediatr Rheumatol Online J ; 22(1): 42, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38610057

BACKGROUND: Intravenous immunoglobulin (IVIG) is the primary treatment for Kawasaki disease (KD). However, 10-20% of KD patients show no response to IVIG treatment, making the early prediction of IVIG resistance a key focus of KD research. Our aim is to explore the application of the C-reactive protein to albumin ratio (CAR) for predicting IVIG resistance in children with KD through meta-analysis. METHODS: Cochrane Library, PubMed, MEDLINE, EMbase, CNKI, WanFang, the Chinese Biomedical Database, and CQVIP were searched up to November 2023 for cohort studies on predicting IVIG-resistant KD using the CAR. Articles were selected based on pre-established inclusion and exclusion criteria after extracting literature data and assessing them using the QUADAS-2.0 tool for evaluating the accuracy of diagnostic tests. Stata 15.0 software was used for meta-analysis. RESULTS: Four Chinese and English literature reports were included in this meta-analysis. The results revealed the presence of a threshold effect and high heterogeneity among the included studies. The combined sensitivity for CAR predicting IVIG-resistant KD was calculated as 0.65 (95% CI 0.58-0.72), specificity as 0.71 (95% CI 0.57-0.81), and the area under the curve (AUC) as 0.70 (95% CI 0.66-0.74) using the random-effects model. The combined positive likelihood ratio was 2.22 (95% CI 1.35-3.65), the combined negative likelihood ratio was 0.49 (95% CI 0.35-0.69), and the diagnostic odds ratio was 5 (95% CI 2-10). CONCLUSION: CAR is an auxiliary predictive indicator with moderate diagnostic value that provides guidance in the early treatment of the disease, demonstrating a certain predictive value that warrants further investigation. However, CAR cannot yet be considered as a definitive diagnostic or exclusionary marker for IVIG-resistant KD. Therefore, multi-center, large sample, and high-quality long-term follow-up trials are warranted to confirm the current findings.


C-Reactive Protein , Mucocutaneous Lymph Node Syndrome , Child , Humans , Albumins , Cohort Studies , Immunoglobulins, Intravenous/pharmacology , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/drug therapy , Prognosis
16.
Biochem Pharmacol ; 223: 116194, 2024 May.
Article En | MEDLINE | ID: mdl-38583812

Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.


Aniline Compounds , Diterpenes , Thiophenes , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Thioredoxin Reductase 1 , Cell Line, Tumor , Urinary Bladder Neoplasms/drug therapy
17.
Phys Rev Lett ; 132(15): 156701, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38682975

A new perovskite KOsO_{3} has been stabilized under high-pressure and high-temperature conditions. It is cubic at 500 K (Pm-3m) and undergoes subsequent phase transitions to tetragonal at 320 K (P4/mmm) and rhombohedral (R-3m) at 230 K as shown from refining synchrotron x-ray powder diffraction (SXRD) data. The larger orbital overlap integral and the extended wave function of 5d electrons in the perovskite KOsO_{3} allow to explore physics from the regime where Mott and Hund's rule couplings dominate to the state where the multiple interactions are on equal footing. We demonstrate an exotic magnetic ordering phase found by neutron powder diffraction along with physical properties via a suite of measurements including magnetic and transport properties, differential scanning calorimetry, and specific heat, which provide comprehensive information for a system at the crossover from localized to itinerant electronic behavior.

18.
Article En | MEDLINE | ID: mdl-38532124

BACKGROUND: Prenatal fine particulate matter (PM2.5) constituents exposure and reduced fetal growth may be risk factors for accelerated growth in early childhood, an important indicator for lifelong health. OBJECTIVE: The study investigated whether the joint effects are present between PM2.5 constituents and reduced fetal growth. METHODS: The study was embedded in a birth cohort in China, including 5424 mother-child pairs. Prenatal PM2.5 and its constituents' [organic carbon (OC), elementary carbon (EC), ammonium (NH4+), nitrate (NO3-), and sulfate (SO42-)] concentrations were estimated based on maternal residential addresses. Fetal growth was evaluated by fetal growth trajectory in utero and preterm birth (PTB), low birth weight (LBW), and small for gestational age (SGA). Children's accelerated growth was defined as body mass index (BMI) Z-score change of >0.67 between birth and 3 years. Generalized logistic regression was used to analyze the effects of prenatal PM2.5 constituents exposure and fetal growth on children's accelerated growth. Joint effect was tested on multiplicative scale and additive scale with the relative excess risk due to interaction (RERI). RESULTS: Children with lower fetal growth trajectory, PTB, LBW, and SGA had increased odds of children's accelerated growth, with odds ratios (ORs) ranging from 1.704 to 11.605. Compared with lower exposure (≤median), higher exposure (>median) of PM2.5, OC, and SO42- were significantly associated with increased odds of children's accelerated growth, varying in ORs from 1.163 to 1.478. Prenatal exposure to OC had joint effects with lower fetal growth on children's accelerated growth. We observed that the interaction was statistically significant on an additive scale in OC and lower fetal growth trajectory (RERI: 0.497, 95% CI: 0.033,0.962). IMPACT: Fine particulate matter (PM2.5) is a huge threat to human health worldwide, causing 6.7 million death globally in 2019. According to the theory of DOHaD, prenatal PM2.5 exposure could influence early childhood growth, which is important for lifelong health. We found that prenatal exposure to PM2.5, OC, and SO42- was associated with higher risk of accelerated childhood growth in the first 3 years. More importantly, reduced fetal growth moderated these associations. Our findings highlight the need for policies and interventions on PM2.5 constituents to improve lifelong health, especially for those vulnerable populations with reduced fetal growth.

19.
Sci Total Environ ; 924: 171461, 2024 May 10.
Article En | MEDLINE | ID: mdl-38461976

BACKGROUND AND AIMS: Urban green spaces offer various health benefits, yet the impact of comprehensive green exposure criteria on multidimensional health remains unclear. The 3-30-300 green space rule represents the green exposure indicators with specific thresholds. This study aims to quantitatively evaluate urban green exposure in cities and can support investigation of its relationship with human health. METHODS: We conducted a cross-sectional study based on 902 investigated individuals in 261 residential locations aged 11-95 years from Xiamen City, China. 3-30-300 green exposure was calculated using field surveys, GIS, and Baidu Maps Application Programming Interface (API). Physical health data was based on Occupational Stress Indicator (OSI)-2. Mental health was from the 12-item General Health Questionnaire (GHQ-12). Social health was from a self-constructed evaluation questionnaire. Statistical analyses were conducted using Geographically Weighted Regression and Geographically Weighted Logistic Regression for global and local effects on green exposure and multidimensional health. RESULT: Among the investigated individuals, only 3.55 % (32/902) fully meet the 3-30-300 rule in Xiamen. Global results show that individuals achieved at least 30 % vegetation coverage (Yes) is associated with better physical (ß: 0.76, p < 0.01) and social (ß: 0.5, p < 0.01) health. GWLR global results indicate that individuals can "see at least 3 trees from home" meeting one (OR = 0.46, 95%CI: 0.25-0.86, p < 0.05) or two (OR = 0.41, 95%CI: 0.22,0.78, p < 0.01; OR = 0.24, 95%CI: 0.07-0.77, p < 0.05) 3-30-300 rule components are significantly associated with reduced medical visits and hospitalizations refer to not met these criterias. In the GWR local analysis, achieved 30 % vegetation cover is significantly related to improved social health at all locations. Meeting any two indicators also contribute to improved social health (n = 511, ß: 0.46-0.51, P < 0.05). CONCLUSION: Green exposure indicators based on the 3-30-300 rule guiding healthy urban green space development. We observed multidimensional health benefits when 1/3 or 2/3 of the indicators were met.


Parks, Recreational , Residence Characteristics , Humans , Cross-Sectional Studies , Cities , Mental Health
20.
Int J Stroke ; : 17474930241241994, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38472157

BACKGROUND: Hyperglycemia is associated with worse stroke outcomes, but it is uncertain whether tight glycemic control during the acute stroke period is associated with a better outcome. We conducted a meta-analysis to compare the effect of tight glycemic control versus loose glycemic control in the acute phase of stroke patients. METHODS: A literature search was performed to identify randomized controlled trials comparing the safety and efficacy of tight glycemic control with a relatively loose control of blood glucose of acute stroke (ischemic or hemorrhagic) patients within 24 h after stroke onset. We required that the blood glucose level of the patients should not be lower than 6.11 mmol/L at the time of enrollment, and for the intensive blood glucose control range, we defined the blood glucose level as lower than that of the control group. The primary efficacy outcome measure was deaths from any cause at 90 days. Secondary efficacy outcomes comprised the number of participants with modified Rankin score (mRS). We define mRS scores 0-2 as favorable scores, recurrent stroke, and the National Institute of Health Stroke Scale or the European Stroke Scale scores. We defined the number of participants with hypoglycemia as our primary safety outcome. Subgroup analysis was performed according to age, the variety of interventions, maintained glucose level, and status of hypoglycemia on National Institute of Health Stroke Scale (NIHSS) scores or European Stroke Scale (ESS) scores. RESULTS: Fifteen randomized controlled trials (RCTs) with 2957 participants meeting the including criteria were identified and included in this meta-analysis, although not all included data on every outcome measure. Data on the primary efficacy endpoint, mortality at 90 days, was available in 11 RCTs, a total of 2575 participants. There was no significant difference between the intervention and control groups (odds ratio (OR): 1.00; 95% confidence interval (CI): 0.81-1.23; P = 0.99). For secondary endpoints, there was no difference between intervention and control groups for a mRS from 0 to 2 (OR: 0.96; 95% CI: 0.80-1.15; P = 0.69; data from 9 RCTs available), or recurrent stroke (OR: 1.34; 95% CI: 0.92-1.96; P = 0.13; data from 3 RCTs available). For NIHSS scores or ESS scores, there was a small difference in favor of intensive controls (standardized mean difference: -0.29; 95% CI: -0.54 to -0.04; P = 0.02). There was a marked increase in hypoglycemia with tight control: (OR of 9.46 (95% CI: 4.59-19.50; P < 0.00001; data from 9 RCTs available). CONCLUSION: There was no difference between tight and loose glycemic control on mortality, independence, or recurrent stroke outcome in acute stroke, but an increase in hypoglycemia. There was a small effect improvement on neurological scales, but the relevance of this needs to be confirmed in future adequately powered studies.

...