Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
1.
ACS Nano ; 18(40): 27411-27419, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39319775

ABSTRACT

Normally, it is hard to regulate thermal defects precisely in their host lattice due to the stochastic nature of thermal activation. Here, we demonstrate a thermal annealing way to create patterned single sulfur vacancy (VS) defects in monolayer molybdenum disulfide (MoS2) with about 2 nm separations at subnanometer accuracy. Theoretically, we reveal that the S-Au interface coupling reduces the energy barriers in forming VS defects and that explains the overwhelming formation of interface VS defects. We also discover a phonon regulation mechanism by the moiré interface that effectively condenses the Γ-point out-of-plane acoustic phonons of monolayer MoS2 to its TOP moiré sites, which has been proposed to trigger moiré-patterned thermal VS formation. The high-throughput nanoscale patterned defects presented here may contribute to building scalable defect-based quantum systems.

2.
Adv Sci (Weinh) ; : e2408096, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340830

ABSTRACT

La-decorated Bi2O2CO3 (BCO-La) microspheres are synthesized using a facile wet chemical strategy for sensing low-concentration nonanal (C9H18O) at room temperature. These BCO-La gas sensors are applied to evaluate agricultural product quality, specifically for cooked rice. The sensitivity of the BCO-6La sensor significantly surpassed that of the pure BCO sensor, achieving a response value of 174.6 when detecting 30 ppm nonanal gas. Notably, the BCO-6La sensor demonstrated a faster response time (36 s) when exposed to 18 ppm of nonanal. Additionally, the selectivity toward nonanal gas detection is higher (approximately 4-24 times) compared to interfering gases (1-octanol, geranyl acetone, linalool, hexanal, 2-pentyfuran, and 1-octen-3-ol) during cooked rice quality detection. The gas sensing mechanism and the factors contributing to the enhanced sensing performance of the BCO-La microspheres are demonstrated through in situ FT-IR spectra and DFT analysis while the realistic detection scenario is carried out. In a broader context, the reported sensors here represent a novel platform for the detection and monitoring of gases released by agricultural products during storage.

3.
Article in English | MEDLINE | ID: mdl-39179951

ABSTRACT

Intravenous thrombolysis (IVT) and dual antiplatelet therapy (DAPT) have been widely used in minor ischemic stroke (MIS) treatment. However, the clinical outcomes and safety of these two treatments have not been compared within the early thrombolytic time window. Here, we conducted a multicenter, ambispective cohort study involving patients with MIS presenting within 4.5 h of symptom onset at 3 affiliated hospitals of Jinan University from 2018-2022. The patients were divided into the IVT group and DAPT group. The primary outcome was a 90-day excellent outcome (mRS ≤ 1). A total of 1,026 patients were enrolled, of whom 492 were assigned to the IVT group and 534 were assigned to the DAPT group. The IVT group had better 90-day excellent outcomes (mRS ≤ 1) than the DAPT group (OR 1.69, 95% CI 1.14-2.52, P = 0.010). Among the 623 patients with nondisabling stroke, the proportion of mRS ≤ 1 in the IVT group was higher than the DAPT group (P = 0.009). In the subtypes of MIS with large vessel occlusion/stenosis and with isolated symptoms, the 90-day outcomes of the IVT group and DAPT group were not different (P > 0.05). In conclusion, compared with DAPT, IVT was associated with better 90-day clinical outcomes in patients with MIS (in particular, for those with mRS > 1), including earlier clinical improvement.IVT also benefited the early neurological improvement of patients with severe stenosis/occlusion of intracranial large vessels, nondisabling mild stroke, nondisabling mild stroke with isolated symptoms.

4.
Animals (Basel) ; 14(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39199818

ABSTRACT

Duck adenovirus Type 3 (DAdV-3) severely affects the health of ducks; however, its pathogenicity in chickens remains unknown. The objectives of this study were to evaluate the pathogenicity and major pathological changes caused by DAdV-3 in chickens. Viral DNA was extracted from the liver of the Muscovy duck, and the fiber-2 and hexon fragments of DAdV-3 were amplified through polymerase chain reaction (PCR). The evolutionary tree revealed that the isolated virus belonged to DAdV-3, and it was named HE-AN-2022. The mortality rate of chicks that received inoculation with DAdV-3 subcutaneously via the neck was 100%, while the mortality rate for eye-nose drop inoculation was correlated with the numbers of infection, with 26.7% of chicks dying as a result of exposure to multiple infections. The main symptoms exhibited prior to death were hepatitis-hydropericardium syndrome (HHS), ulceration of the glandular stomach, and a swollen bursa with petechial hemorrhages. A histopathological examination revealed swelling, necrosis, lymphocyte infiltration, and basophilic inclusion bodies in multiple organs. Meanwhile, the results of quantitative real-time PCR (qPCR) demonstrated that DAdV-3 could affect most of the organs in chickens, with the gizzard, glandular stomach, bursa, spleen, and liver being the most susceptible to infection. The surviving chicks had extremely high antibody levels. After the chickens were infected with DAdV-3 derived from Muscovy ducks, no amino acid mutation was observed in the major mutation regions of the virus, which were ORF19B, ORF66, and ORF67. On the basis of our findings, we concluded that DAdV-3 infection is possible in chickens, and that it causes classic HHS with ulceration of the glandular stomach and a swollen bursa with petechial hemorrhages, leading to high mortality in chickens. The major variation domains did not change in Muscovy ducks or in chickens after infection. This is the first study to report DAdV-3 in chickens, providing a new basis for preventing and controlling this virus.

5.
Adv Sci (Weinh) ; 11(34): e2402327, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981014

ABSTRACT

Dysregulation of the transforming growth factor-ß (TGF-ß) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-ß receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-ß-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-ß receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-ß signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-ß signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-ß signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-ß signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-ß signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.


Subject(s)
Drug Resistance, Neoplasm , Liver Neoplasms , Receptor, Transforming Growth Factor-beta Type I , Signal Transduction , Animals , Humans , Mice , Cell Line, Tumor , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Feedback, Physiological , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
6.
Int J Biol Macromol ; 277(Pt 1): 134206, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39069035

ABSTRACT

Bacterial infection has become the second leading cause of death in the world. Exploring a new highly antibacterial catalyst to replace traditional antibacterial agent is crucial for the society development of human beings. In this study, CuFe2O4/Lg-based carbon composited catalysts were rationally constructed by facile hydrothermal method. Lignin-derived carbon with enormous oxygen-containing functional group was beneficial to anchor CuFe2O4 nanoparticles. The close contact interface between CuFe2O4 and Lignin-based carbon material was expected to extend the range of optical absorption and promote the separation and transportation of photogenerated carriers. Under NIR (980 nm, 1.5 W/cm2) light irradiation, the as-prepared CuFe2O4/Lg (20 µg/mL) exhibited excellent photo/photothermal synergetic in vitro (against Escherichia coli and Staphylococcus aureus) and in vivo (against Staphylococcus aureus-infected mouse wound model) antibacterial performance. Furthermore, the cell count assay kit 8 (CCK-8 kit) demonstrated the good biocompatibility of this material. On the basis of the experimental results, a possible antibacterial mechanism based on the synergetic photothermal and photodynamic therapies was proposed. This work presented a lignin- derived carbon-based highly efficient antibacterial disinfection agent with desirable biosafety.


Subject(s)
Anti-Bacterial Agents , Carbon , Copper , Escherichia coli , Lignin , Photochemotherapy , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Lignin/chemistry , Lignin/pharmacology , Animals , Carbon/chemistry , Carbon/pharmacology , Mice , Copper/chemistry , Copper/pharmacology , Staphylococcus aureus/drug effects , Photochemotherapy/methods , Escherichia coli/drug effects , Staphylococcal Infections/drug therapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Microbial Sensitivity Tests , Photothermal Therapy/methods
7.
ACS Sens ; 9(6): 3346-3356, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38898684

ABSTRACT

Creating high-performance gas sensors for heptanal detection at room temperature demands the development of sensing materials that incorporate distinct spatial configurations, functional components, and active surfaces. In this study, we employed a straightforward method combining hydrothermal strategy with ultrasonic processing to produce mesoporous graphene quantum dots/bismuth antimonate (GQDs/BiSbO4) with nanorod cluster forms. The BiSbO4 was incorporated with appropriate contents of GQDs resulting in significantly improved attributes such as heightened sensitivity (59.6@30 ppm), a lower threshold for detection (356 ppb), and quicker period for response (40 s). A synergistic mechanism that leverages the inherent advantages of BiSbO4 was proposed, while its distinctive mesoporous hollow cubic structure, the presence of oxygen vacancies, and the catalytic enhancement provided by GQDs lead to a marked improvement in heptanal detection. This work introduces a straightforward and effective method for crafting sophisticated micro-nanostructures that optimize spatial design, functionality, and active mesoporous surfaces, showing great promise for heptanal sensing applications.


Subject(s)
Graphite , Nanotubes , Quantum Dots , Temperature , Nanotubes/chemistry , Quantum Dots/chemistry , Graphite/chemistry , Density Functional Theory , Antimony/chemistry
8.
Eur J Pharmacol ; 974: 176631, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38692425

ABSTRACT

OBJECTIVE: Dasatinib and quercetin (D & Q) have demonstrated promise in improving aged-related pathophysiological dysfunctions in humans and mice. Herein we aimed to ascertain whether the heat stress (HS)-induced cognitive deficits in aged or even young adult male mice can be reduced by D & Q therapy. METHODS: Before the onset of HS, animals were pre-treated with D & Q or placebo for 3 consecutive days every 2 weeks over a 10-week period. Cognitive function, intestinal barrier permeability, and blood-brain barrier permeability were assessed. RESULTS: Compared to the non-HS young adult male mice, the HS young adult male mice or the aged male mice had significantly lesser extents of the exacerbated stress reactions, intestinal barrier disruption, endotoxemia, systemic inflammation and oxidative stress, blood-brain barrier disruption, hippocampal inflammation and oxidative stress, and cognitive deficits evaluated at 7 days post-HS. All the cognitive deficits and other syndromes that occurred in young adult HS mice or in aged HS mice were significantly attenuated by D & Q therapy (P < 0.01). Compared to the young adult HS mice, the aged HS mice had significantly (P < 0.01) higher severity of cognitive deficits and other related syndromes. CONCLUSIONS: First, our data show that aged male mice are more vulnerable to HS-induced cognitive deficits than those of the young adult male mice. Second, we demonstrate that a combination of D and Q therapy attenuates cognitive deficits in heat stressed aged or young adult male mice via broad normalization of the brain-gut-endotoxin axis function.


Subject(s)
Blood-Brain Barrier , Dasatinib , Oxidative Stress , Quercetin , Animals , Male , Dasatinib/pharmacology , Dasatinib/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Mice , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Oxidative Stress/drug effects , Aging/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Heat-Shock Response/drug effects , Permeability/drug effects , Drug Therapy, Combination , Hippocampus/drug effects , Hippocampus/metabolism , Cognition/drug effects
9.
Int J Biol Sci ; 20(6): 2323-2338, 2024.
Article in English | MEDLINE | ID: mdl-38617533

ABSTRACT

Chronic atrophic gastritis (CAG) is a complex disease characterized by atrophy and inflammation in gastric mucosal tissue, especially with high expression of interleukins. However, the interaction and mechanisms between interleukins and gastric mucosal epithelial cells in CAG remain largely elusive. Here, we elucidate that IL-33 stands out as the predominant inflammatory factor in CAG, and its expression is induced by H. pylori and MNNG through the ROS-STAT3 signaling pathway. Furthermore, our findings reveal that the IL-33/ST2 axis is intricately involved in the progression of CAG. Utilizing phosphoproteomics mass spectrometry, we demonstrate that IL-33 enhances autophagy in gastric epithelial cells through the phosphorylation of AMPK-ULK1 axis. Notably, inhibiting autophagy alleviates CAG severity, while augmentation of autophagy exacerbates the disease. Additionally, ROS scavenging emerges as a promising strategy to ameliorate CAG by reducing IL-33 expression and inhibiting autophagy. Intriguingly, IL-33 stimulation promotes GKN1 degradation through the autolysosomal pathway. Clinically, the combined measurement of IL-33 and GKN1 in serum shows potential as diagnostic markers. Our findings unveil an IL-33-AMPK-ULK1 regulatory mechanism governing GKN1 protein stability in CAG, presenting potential therapeutic targets for its treatment.


Subject(s)
Gastritis, Atrophic , Helicobacter pylori , Peptide Hormones , Humans , AMP-Activated Protein Kinases , Autophagy-Related Protein-1 Homolog/genetics , Gastric Mucosa , Interleukin-33 , Intracellular Signaling Peptides and Proteins , Reactive Oxygen Species
10.
Stroke ; 55(5): 1393-1404, 2024 May.
Article in English | MEDLINE | ID: mdl-38533660

ABSTRACT

BACKGROUND: Blood-brain barrier damage has traditionally been considered to determine the occurrence and development of poststroke brain edema, a devastating and life-threatening complication. However, no treatment strategy targeting blood-brain barrier damage has been proven clinically effective in ameliorating brain edema. METHODS: In mice with stroke models induced by transient middle cerebral artery occlusion (MCAO), the changes in glymphatic system (GS) function impairment were detected by ex vivo fluorescence imaging, 2-photon in vivo imaging, and magnetic resonance imaging within 1 week after MCAO, and the effects of GS impairment and recovery on the formation and resolution of brain edema were evaluated. In addition, in patients with ischemic stroke within 1 week after onset, changes in GS function and brain edema were also observed by magnetic resonance imaging. RESULTS: We found that the extravasation of protein-rich fluids into the brain was not temporally correlated with edema formation after MCAO in mice, as brain edema reabsorption preceded blood-brain barrier closure. Strikingly, the time course of edema progression matched well with the GS dysfunction after MCAO. Pharmacological enhancement of the GS function significantly alleviated brain edema developed on day 2 after MCAO, accompanied by less deposition of Aß (amyloid-ß) and better cognitive function. Conversely, functional suppression of the GS delayed the absorption of brain edema on day 7 after MCAO. Moreover, patients with ischemic stroke revealed a consistent trend of GS dysfunction after reperfusion as MCAO mice, which was correlated with the severity of brain edema and functional outcomes. CONCLUSIONS: GS is a key contributor to the formation of brain edema after ischemic stroke, and targeting the GS may be a promising strategy for treating brain edema in ischemic stroke. REGISTRATION: URL: https://www.chictr.org.cn/showproj.html?proj=162857; Unique identifier: NFEC-2019-189.

11.
Opt Express ; 32(5): 7220-7242, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439409

ABSTRACT

A lightfield camera prototype is constructed by directly coupling a liquid-crystal (LC) microlens array with an arrayed photosensitive sensor for performing a LC-guided refocusing-rendering imaging attached by computing disparity map and extracting featured contours of targets. The proposed camera prototype presents a capability of efficiently selecting the imaging clarity value of the electronic targets interested. Two coefficients of the calibration coefficient k and the rendering coefficient C are defined for quantitively adjusting LC-guided refocusing-rendering operations about the images acquired. A parameter Dp is also introduced for exactly expressing the local disparity of the electronic patterns selected. A parallel computing architecture based on common GPU through the OpenCL platform is adopted for improving the real-time performance of the imaging algorithms proposed, which can effectively be used to extract the pixel-leveled disparity and the featured target contours. In the proposed lightfield imaging strategy, the focusing plane can be easily selected and/or further adjusted by loading and/or varying the signal voltage applied over the LC microlenses for realizing a rapid or even intelligent autofocusing. The research lays a solid foundation for continuously developing or upgrading current lightfield imaging approaches.

12.
Nat Commun ; 15(1): 1386, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360758

ABSTRACT

Discerning weak electric fields has important implications for cosmology, quantum technology, and identifying power system failures. Photonic integration of electric field sensors is highly desired for practical considerations and offers opportunities to improve performance by enhancing microwave and lightwave interactions. Here, we demonstrate a high-Q microcavity electric field sensor (MEFS) by leveraging the silicon chip-based thin film lithium niobate photonic integrated circuits. Using the Pound-Drever-Hall detection scheme, our MEFS achieves a detection sensitivity of 5.2 µV/(m[Formula: see text]), which surpasses previous lithium niobate electro-optical electric field sensors by nearly two orders of magnitude, and is comparable to atom-based quantum sensing approaches. Furthermore, our MEFS has a bandwidth that can be up to three orders of magnitude broader than quantum sensing approaches and measures fast electric field amplitude and phase variations in real-time. The ultra-sensitive MEFSs represent a significant step towards building electric field sensing networks and broaden the application spectrum of integrated microcavities.

13.
Transplantation ; 108(1): 161-174, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37464473

ABSTRACT

BACKGROUND: Interleukin-35 (IL-35), secreted by regulatory T cells (Treg) and B cells, is immunosuppressive under both physiological and pathological conditions. However, the role of IL-35 in all responses has yet to be investigated. Here, we demonstrate that IL-35 protects allografts by stabilizing the Treg phenotype and suppressing CD8 + T-cell activation in a mouse heart transplantation model. METHODS: The effect of IL-35 on immune cell infiltration in grafts and secondary lymphoid organs was examined using mass cytometry, flow cytometry, and immunofluorescence. Moreover, using quantitative real-time polymerase chain reaction, flow cytometry, and phospho-flow assays, we demonstrated that IL-35 maintains Treg phenotypes to restrain CD8 + T cells via the gp130/signal transducer and activator of transcription 1 pathway. RESULTS: Mass cytometry analysis of intragraft immune cells showed that IL-35 decreased CD8 + T-cell infiltration and increased Foxp3 and IL-35 expressions in Treg. In vitro, we demonstrated that IL-35 directly promoted Treg phenotypic and functional stability and its IL-35 secretion, generating a positive feedback loop. However, Treg are required for IL-35 to exert its suppressive effect on CD8 + T cells in vitro. After depleting Treg in the recipient, IL-35 did not prolong graft survival or decrease CD8 + T-cell infiltration. Mechanistically, we found that IL-35 sustained Treg stability via the gp130/signal transducer and activator of transcription 1 signaling pathway. CONCLUSIONS: Our findings highlight that IL-35 stabilizes the Treg phenotype to ameliorate CD8 + T-cell infiltration in the allograft, which has never been described in the transplanted immunological milieu.


Subject(s)
Allografts , Interleukins , T-Lymphocytes, Regulatory , Animals , Mice , Allografts/immunology , Allografts/metabolism , Cytokine Receptor gp130/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype , STAT1 Transcription Factor/metabolism , T-Lymphocytes, Regulatory/metabolism
14.
PLoS One ; 18(11): e0293893, 2023.
Article in English | MEDLINE | ID: mdl-37971997

ABSTRACT

BACKGROUND: The association between the intake of dietary n3 and n6 fatty acids and the risk of stroke is subject to debate. The primary objective of the present research was to establish the correlation in a large sample of American adults. METHODS: Using data from the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2018, the association of the intake of dietary n3 and n6 fatty acids with stroke events was analyzed in a sample of 29,459 adults. The intake of n3 and n6 fatty acids intake was assessed though two 24-h dietary recalls. Stroke outcomes were identified based on the responses provided in self-reported questionnaire. Logistic regression was fitted to evaluate the correlation of dietary n3, n6 fatty acids intake with stroke events. RESULTS: Subjects in the highest tertile (T3) of dietary n3 (OR: 0.67, 95% CI: 0.49-0.93), n6 (OR: 0.65, 95% CI: 0.45-0.95) fatty acids intake were found to have obviously lower risk of stroke compared to those in the lowest tertile (T1), but the n6:n3 ratio was not found to be associated with a stroke event. Results from stratified analysis demonstrated that dietary n3 fatty acids had an inverse correlation of stroke in both male and female, but dietary n6 fatty acids only had this correlation in male. Moreover, findings were made that the interaction was significant in terms of age in the subgroup analysis, and the negative relationship between the intake of dietary n3 and n6 fatty acids and stroke event were particularly pronounced among participants aged ≥60. CONCLUSIONS: The present results suggested that increased dietary n3, n6 fatty acids intake correlated with a lower risk of stroke.


Subject(s)
Fatty Acids, Omega-3 , Stroke , Humans , Adult , Male , Female , United States/epidemiology , Fatty Acids , Nutrition Surveys , Cross-Sectional Studies , Fatty Acids, Omega-6 , Fatty Acids, Omega-3/analysis , Stroke/epidemiology , Stroke/etiology
15.
Light Sci Appl ; 12(1): 260, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37903756

ABSTRACT

Multimode fiber (MMF) lasers are emerging as a remarkable testbed to study nonlinear spatiotemporal physics with potential applications spanning from high energy pulse generation, precision measurement to nonlinear microscopy. The underlying mechanism for the generation of ultrashort pulses, which can be understood as a spatiotempoal dissipative soliton (STDS), in the nonlinear multimode resonators is the spatiotemporal mode-locking (STML) with simultaneous synchronization of temporal and spatial modes. In this review, we first introduce the general principles of STML, with an emphasize on the STML dynamics with large intermode dispersion. Then, we present the recent progress of STML, including measurement techniques for STML, exotic nonlinear dynamics of STDS, and mode field engineering in MMF lasers. We conclude by outlining some perspectives that may advance STML in the near future.

16.
BMC Med Genomics ; 16(1): 214, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684607

ABSTRACT

BACKGROUND: Dendritic cells (DCs) are most potent antigen-processing cells and play key roles in host defense against Mycobacterium tuberculosis (MTB) infection. In this study, hub genes in DCs during MTB infection were first investigated using bioinformatics approaches and further validated in Monocyte-derived DCs. METHODS: Microarray datasets were obtained from Gene Expression Omnibus (GEO) database. Principal component analysis (PCA) and immune infiltration analysis were performed to select suitable samples for further analysis. Differential analysis and functional enrichment analysis were conducted on DC samples, comparing live MTB-infected and non-infected (NI) groups. The CytoHubba plugin in Cytoscape was used to identify hub genes from the differentially expressed genes (DEGs). The expression of the hub genes was validated using two datasets and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in human monocyte-derived DCs. Enzyme-linked immunosorbent assay (ELISA) was used to validate interferon (IFN) secretion. Transcription factors (TFs) and microRNAs (miRNAs) that interact with the hub genes were predicted using prediction databases. The diagnostic value of the hub genes was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC) values. RESULTS: A total of 1835 common DEGs among three comparison groups (18 h, 48 h, 72 h after MTB infection) were identified. Six DEGs (IFIT1, IFIT2, IFIT3, ISG15, MX1, and RSAD2) were determined as hub genes. Functions enrichment analysis revealed that all hub genes all related to IFN response. RT-qPCR showed that the expression levels of six hub genes were significantly increased after DC stimulated by live MTB. According to the results of ELISA, the secretion of IFN-γ, but not IFN-α/ß, was upregulated in MTB-stimulated DCs. AUC values of six hub genes ranged from 84 to 94% and AUC values of 5 joint indicators of two hub genes were higher than the two hub genes alone. CONCLUSION: The study identified 6 hub genes associated with IFN response pathway. These genes may serve as potential diagnostic biomarkers in tuberculosis (TB). The findings provide insights into the molecular mechanisms involved in the host immune response to MTB infection and highlight the diagnostic potential of these hub genes in TB.


Subject(s)
Tuberculosis , Humans , Tuberculosis/diagnosis , Tuberculosis/genetics , Area Under Curve , Computational Biology , Databases, Factual , Dendritic Cells
18.
Eur J Pharmacol ; 955: 175933, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37481199

ABSTRACT

Ketogenic diet (KD) is a classical nonpharmacological therapy that has recently been shown to benefit cerebral ischemia, but the mechanism remains unclear. This study investigated the neuroprotective effects of KD pretreatment and ß-hydroxybutyrate (BHB, bioactive product of KD) post-treatment in a mouse model of temporary middle cerebral artery occlusion (tMCAO). Neurological function, infarct volume, as well as inflammatory reactions are evaluated 24 h after ischemia. Results showed that both KD pretreatment or BHB post-treatment improved the Bederson score and Grip test score, reduced infarct volume and the extravasation of IgG, suppressed the over-activation of microglia, and modulated the expression of cytokines. Mechanically, we found that both KD pretreatment or BHB post-treatment significantly stimulated the expression of interleukin-1 receptor-associated kinase M (IRAKM) and then inhibited the nuclear translocation of NF-κB. IRAKM deletion (Irakm-/-) exacerbated tMCAO-induced neurovascular injuries, and aggravated neuroinflammatory response. Moreover, KD pretreatment or BHB post-treatment lost their neuroprotection in the tMCAO-treated Irakm-/- mice. Our results support that KD pretreatment and BHB post-treatment alleviate ischemic brain injury in mice, possibly via an IRAKM-dependent way.

19.
Nat Commun ; 14(1): 3661, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339946

ABSTRACT

Monocots are a major taxon within flowering plants, have unique morphological traits, and show an extraordinary diversity in lifestyle. To improve our understanding of monocot origin and evolution, we generate chromosome-level reference genomes of the diploid Acorus gramineus and the tetraploid Ac. calamus, the only two accepted species from the family Acoraceae, which form a sister lineage to all other monocots. Comparing the genomes of Ac. gramineus and Ac. calamus, we suggest that Ac. gramineus is not a potential diploid progenitor of Ac. calamus, and Ac. calamus is an allotetraploid with two subgenomes A, and B, presenting asymmetric evolution and B subgenome dominance. Both the diploid genome of Ac. gramineus and the subgenomes A and B of Ac. calamus show clear evidence of whole-genome duplication (WGD), but Acoraceae does not seem to share an older WGD that is shared by most other monocots. We reconstruct an ancestral monocot karyotype and gene toolkit, and discuss scenarios that explain the complex history of the Acorus genome. Our analyses show that the ancestors of monocots exhibit mosaic genomic features, likely important for that appeared in early monocot evolution, providing fundamental insights into the origin, evolution, and diversification of monocots.


Subject(s)
Acorus , Tetraploidy , Phylogeny , Diploidy , Genome
20.
Food Chem ; 424: 136323, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37210843

ABSTRACT

The palatability of cooked rice is susceptible to the flavor and effective detection of volatile organic compounds (VOCs) can avoid deterioration and improve the taste quality. Herein, hierarchical antimony tungstate (Sb2WO6) microspheres are synthesized through a solvothermal process and the effect of solvothermal temperature on the room temperature gas-sensing properties of gas sensors is investigated. Outstanding sensitivity towards VOC biomarkers (nonanal, 1-octanol, geranyl acetone and 2-pentylfuran) in cooked rice is achieved and the sensors exhibit remarkable stability and reproducibility, which are contributed to the formation of the hierarchical microsphere structure, larger specific surface area, narrower band gap and increased oxygen vacancy content. The kinetic parameters combined with principal component analysis (PCA) effectively distinguish the four VOCs while the enhanced sensing mechanism was substantiated through density functional theory (DFT) calculation. This work provides a strategy for fabricating high performance Sb2WO6 gas sensors which can be practically applied to food industry.


Subject(s)
Oryza , Volatile Organic Compounds , Microspheres , Oryza/chemistry , Volatile Organic Compounds/analysis , Reproducibility of Results , Density Functional Theory , Biomarkers/analysis
SELECTION OF CITATIONS
SEARCH DETAIL