Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.770
Filter
1.
Front Pediatr ; 12: 1282408, 2024.
Article in English | MEDLINE | ID: mdl-38966493

ABSTRACT

Purpose: This study aimed to explore the clinical characteristics and evaluate the different types of thyroid dysfunction in babies with neonatal hyperthyroidism. Methods: The clinical data of 19 neonates with hyperthyroidism admitted to the Children's Hospital of Chongqing Medical University between January 2012 and April 2021 were retrospectively analyzed. Results: Fifteen (78.9%) infants were born to mothers with Graves' disease. Eleven (57.9%) infants were premature; two babies were born at small for gestational age. The age at diagnosis ranged from 3 to 34 days, with a mean of 18.53 ± 6.85 days. The majority of the babies presented with goiter (84.2%) and tachycardia (94.7%) after birth. Nine (47.4%) of them presented with abnormal weight gain, seven (36.8%) presented with stare or ocular protrusion, six (31.6%) presented with hyperexcitability, four (21.1%) presented with jaundice and liver dysfunction, two (10.5%) presented with sweating, one (5.3%) presented with fever, and one case presented without any symptoms. Transient hyperthyroidism was the main thyroid dysfunction in our study. Overt hyperthyroidism was diagnosed in 13 (68.4%) neonates. Another three babies (15.8%) presented with hyperthyroidism with slightly elevated free triiodothyronine levels, normal thyroxine (T4) levels, and low thyroid-stimulating hormone (TSH) levels. Normal thyroid hormone levels with low TSH levels were observed in three (15.8%) neonates. Ten children were treated with antithyroid drugs. Eighteen children recovered normal thyroid function at 1-3 months of age; one baby in the study group required further levothyroxine supplementation due to primary hypothyroidism (HT). One child was found to have developmental delay at 2 years of age during follow-up. Conclusions: Our study highlights the need for prolonged monitoring of thyroid function in suspected patients. A single normal screening for hyperthyroidism or the absence of a maternal history of hyperthyroidism cannot exclude this disease.

2.
Sci Rep ; 14(1): 15150, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956232

ABSTRACT

Adjuvant oxaliplatin plus S-1 (SOX) chemotherapy for gastric cancer (GC) after D2 gastrectomy has been proven effective. There has yet to be a study that evaluates adjuvant nanoparticle albumin-bound paclitaxel (nab-paclitaxel) plus S-1. In this single-center, retrospective study, GC patients after D2 gastrectomy received either nab-paclitaxel plus S-1 (AS group) or SOX group were recruited between January 2018 and December 2020 in The First Affiliated Hospital of Zhejiang University. Intravenous nab-paclitaxel 120 mg/m2 or 260 mg/m2 and oxaliplatin 130 mg/m2 were administered as eight 3 week cycle, especially in the AS and SOX group. Patients received S-1 twice daily with a dose of 40 mg/m2 in the two groups on days 1-14 of each cycle. The end points were disease-free survival (DFS) rate at 3 years and adverse events (AEs). There were 56 eligible patients, 28 in the AS group and 35 in the SOX group. The 3 year DFS rate was 78.0% in AS group versus 70.7% in SOX group (p = 0.46). Subgroup analysis showed that the patients with signet-ring positive in the AS group had a prolonged DFS compared with the SOX group (40.0 vs. 13.8 m, p = 0.02). The diffuse-type GC or low differentiation in the AS group was associated with numerically prolonged DFS compared with the SOX group, but the association was not statistically significant (p = 0.27 and p = 0.15 especially). Leukopenia (14.3%) were the most prevalent AEs in the AS group, while thrombocytopenia (28.5%) in the SOX group. Neutropenia (7.1% in AS group) and thrombocytopenia (22.8% in SOX group) were the most common grade 3 or 4 AEs. In this study analyzing past data, a tendency towards a greater 3 year DFS was observed when using AS regimen in signet-ring positive patients. AS group had fewer thrombocytopenia compared to SOX group. More studies should be conducted with larger sample sizes.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Drug Combinations , Gastrectomy , Oxaliplatin , Oxonic Acid , Stomach Neoplasms , Tegafur , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Male , Female , Tegafur/administration & dosage , Tegafur/adverse effects , Tegafur/therapeutic use , Middle Aged , Oxaliplatin/administration & dosage , Oxaliplatin/therapeutic use , Retrospective Studies , Gastrectomy/methods , Oxonic Acid/administration & dosage , Oxonic Acid/adverse effects , Oxonic Acid/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Aged , Chemotherapy, Adjuvant/methods , Albumin-Bound Paclitaxel/administration & dosage , Albumin-Bound Paclitaxel/therapeutic use , Adult , Disease-Free Survival , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Paclitaxel/adverse effects , Albumins/administration & dosage
3.
Nat Commun ; 15(1): 5589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961063

ABSTRACT

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Measles-Mumps-Rubella Vaccine/immunology , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles virus/immunology , Measles virus/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mumps virus/immunology , Mumps virus/genetics , Mice, Knockout , Mesocricetus , Immunoglobulin A/immunology , Immunoglobulin A/blood
4.
Heliyon ; 10(12): e33111, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948046

ABSTRACT

Background: The GIMAP family genes play a key role in immune function. Increasing evidence suggests that GIMAP genes were implicated in the tumorigenesis of lung adenocarcinoma (LUAD). This study aimed to investigate the clinical significance of GIMAP family genes in LUAD. Methods: In this study, we explored the expression, mutation, prognostic value of GIMAP family genes and the correlation with immune microenvironment in LUAD. We further investigated the relationship between GIMAP family genes expression and immunotherapy response in GEO LUAD and melanoma cohorts. Results: Among the GIMAP family genes, the expression levels of GIMAP1, GIMAP2, GIMAP4, GIMAP5, GIMAP6, GIMAP7, and GIMAP8 were significantly lower in LUAD tumor tissues than normal tissues. Most GIMAP genes were closely related to age, tumor grade and T stage, but not significantly related to sex, N stage and M stage. In the overall population, patients with high expression of GIMAP family genes had a significant longer overall survival (OS). GO and KEGG enrichment analysis showed that GIMAP family genes were highly enriched in immune-related biological process. The expression of GIMAP family genes was positively correlated with immune cell infiltration and immune checkpoint molecules. Furthermore, high expression of GIMAP family genes were correlated with therapeutic response to immunotherapy in LUAD and melanoma patients. Conclusion: In this study, we identified that GIMAP family genes were significantly associated with immune cell infiltration and immune checkpoint molecules. They potentially play a critical role in anti-tumor immunity and serve as immunotherapy biomarkers.

5.
Sci Transl Med ; 16(753): eadk0330, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924427

ABSTRACT

Targeting ferroptosis for cancer therapy has slowed because of an incomplete understanding of ferroptosis mechanisms under specific pathological contexts such as tumorigenesis and cancer treatment. Here, we identify TRPML1-mediated lysosomal exocytosis as a potential anti-ferroptotic process through genome-wide CRISPR-Cas9 activation and kinase inhibitor library screening. AKT directly phosphorylated TRPML1 at Ser343 and inhibited K552 ubiquitination and proteasome degradation of TRPML1, thereby promoting TRPML1 binding to ARL8B to trigger lysosomal exocytosis. This boosted ferroptosis defense of AKT-hyperactivated cancer cells by reducing intracellular ferrous iron and enhancing membrane repair. Correlation analysis and functional analysis revealed that TRPML1-mediated ferroptosis resistance is a previously unrecognized feature of AKT-hyperactivated cancers and is necessary for AKT-driven tumorigenesis and cancer therapeutic resistance. TRPML1 inactivation or blockade of the interaction between TRPML1 and ARL8B inhibited AKT-driven tumorigenesis and cancer therapeutic resistance in vitro and in vivo by promoting ferroptosis. A synthetic peptide targeting TRPML1 inhibited AKT-driven tumorigenesis and enhanced the sensitivity of AKT-hyperactivated tumors to ferroptosis inducers, radiotherapy, and immunotherapy by boosting ferroptosis in vivo. Together, our findings identified TRPML1 as a therapeutic target in AKT-hyperactivated cancer.


Subject(s)
Ferroptosis , Neoplasms , Proto-Oncogene Proteins c-akt , Animals , Humans , Mice , ADP-Ribosylation Factors/metabolism , Carcinogenesis/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Ferroptosis/drug effects , Lysosomes/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitination
6.
Acad Emerg Med ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847070

ABSTRACT

OBJECTIVE: As part of the Geriatric Emergency Department (ED) Guidelines 2.0 project, we conducted a systematic review to find risk factors or risk stratification approaches that can be used to identify subsets of older adults who may benefit from targeted ED delirium screening. METHODS: An electronic search strategy was developed with a medical librarian, conducted in April 2021 and November 2022. Full-text studies of patients ≥65 years assessed for prevalent delirium in the ED were included. Risk of bias was assessed using the McMaster University Clarity Group tool. Outcomes measures pertained to the risk stratification method used. Due to heterogeneity of patient populations, risk stratification methods, and outcomes, a meta-analysis was not conducted. RESULTS: Our search yielded 1878 unique citations, of which 13 were included. Six studies developed a novel delirium risk score with or without evaluation of specific risk factors, six studies evaluated specific risk factors only, and one study evaluated an existing nondelirium risk score for association with delirium. The most common risk factor was history of dementia, with odds ratios ranging from 3.3 (95% confidence interval [CI] 1.2-8.9) to 18.33 (95% CI 8.08-43.64). Other risk factors that were consistently associated with increased risk of delirium included older age, use of certain medications (such as antipsychotics, antidepressants, and opioids, among others), and functional impairments. Of the studies that developed novel risk scores, the reported area under the curve ranged from 0.77 to 0.90. Only two studies reported potential impact of the risk stratification tool on screening burden. CONCLUSIONS: There is significant heterogeneity, but results suggest that factors such as dementia, age over 75, and functional impairments should be used to identify older adults who are at highest risk for ED delirium. No studies evaluated implementation of a risk stratification method for delirium screening or evaluated patient-oriented outcomes.

7.
Prosthet Orthot Int ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38896541

ABSTRACT

BACKGROUND: Stretching exercise is generally used for improving flexibility. However, its application to promote orthotic treatment for patients with adolescent idiopathic scoliosis (AIS) remains unknown. OBJECTIVE: This study was to explore the effect of pre-orthosis stretching exercises on spinal flexibility and initial in-orthosis correction for the patients with AIS. STUDY DESIGN: A pilot-controlled study. METHODS: An experimental group (EG) of 13 subjects (10 girls and 3 boys) with AIS allocating to self-stretching exercises and a control group (CG) of 19 AIS subjects (14 girls and 5 boys) with no stretching before orthosis fitting were recruited. The spinal flexibility of the EG was evaluated with an ultrasound imaging system and physical measurements. The initial in-orthosis correction rates between the 2 groups were compared with the independent t test, and the correlation analysis between the spinal flexibility measured from ultrasound images and physical measurement was performed with the Pearson correlation test. RESULTS: The initial Cobb angle of EG and CG were 25.70° ± 7.30° and 28.09° ± 5.58°, respectively. No significant difference was observed between the initial in-orthosis Cobb angle of EG (11.13° ± 6.80°) and CG (15.65° ± 9.10°) (p = 0.06). However, the spinal flexibility after stretching exercises was improved (p < 0.001), and the spinal flexibility changes measured with ultrasound and physical forward-bending method were significantly correlated (r = 0.57, p < 0.05). CONCLUSION: Stretching exercises before orthotic treatment could improve the spinal flexibility but did not cause a better in-orthosis correction. A study with a larger sample size and longer follow-up period should be conducted to investigate the long-term effect of stretching exercises.

8.
Diabetes Res Clin Pract ; 213: 111728, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838943

ABSTRACT

AIMS: This study aimed to investigate the association between serum levels of common and uncommon unsaturated fatty acids and prediabetes risk. METHODS: Data were collected from the National Health and Nutrition Examination Survey for 2003-2004 and 2011-2012. Weighted proportional and multivariate logistic regression analyses were performed to assess the association of serum PUFAs and MUFAs with prediabetes risk after adjusting for potential confounders. RESULTS: A total of 3575 individuals were enrolled in this study. Serum levels of PUFAs EPA (20:5 n3) and GLA (18:3 n6) were associated with increased prediabetes risk (EPA (20:5 n3): OR = 1.878, 95% CI: 1.177-2.996, Ptrend = 0.002; GLA (18:3 n6): 1.702, 95% CI: 1.140-2.541, Ptrend = 0.016). The MUFAs PA (16:1 n7) and EA (20:1 n9) were associated with the risk of prediabetes (OR in quintile5: PA (16:1 n7): 1.780, 95% CI: 1.056-3.001, Ptrend = 0.003; EA (20:1 n9): 0.587, 95% CI: 0.347-0.994, Ptrend = 0.010). Moreover, nonlinear analysis revealed that serum levels of EPA (20:5 n3) and EA (20:1 n-9) were nonlinearly associated with prediabetes risk. CONCLUSION: Some serum n-3 PUFAs are positively associated with prediabetes, several serum n-6 PUFAs are inversely associated with prediabetes. Regulating individual serum USFA levels may help prevent prediabetes, thereby providing evidence for clinical and nutritional practices.

9.
Article in English | MEDLINE | ID: mdl-38862426

ABSTRACT

The high-fidelity (HiFi) long-read sequencing technology developed by PacBio has greatly improved the base-level accuracy of genome assemblies. However, these assemblies still contain base-level errors, particularly within the error-prone regions of HiFi long reads. Existing genome polishing tools usually introduce overcorrections and haplotype switch errors when correcting errors in genomes assembled from HiFi long reads. Here, we describe an upgraded genome polishing tool - NextPolish2, which can fix base errors remaining in those "highly accurate" genomes assembled from HiFi long reads without introducing excessive overcorrections and haplotype switch errors. We believe that NextPolish2 has a great significance to further improve the accuracy of telomere-to-telomere (T2T) genomes. NextPolish2 is freely available at https://github.com/Nextomics/NextPolish2.


Subject(s)
Software , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Humans , Genomics/methods , Repetitive Sequences, Nucleic Acid/genetics , Genome/genetics
10.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831106

ABSTRACT

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Tumor Microenvironment , Animals , Humans , Immunotherapy, Adoptive/methods , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , Receptors, Tumor Necrosis Factor, Member 14/genetics , Mice , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , T-Lymphocytes, Regulatory/immunology , Signal Transduction , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/therapy , Mice, Knockout
11.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826376

ABSTRACT

SARS-CoV-2 variants derived from the immune evasive JN.1 are on the rise worldwide. Here, we investigated JN.1-derived subvariants SLip, FLiRT, and KP.2 for their ability to be neutralized by antibodies in bivalent-vaccinated human sera, XBB.1.5 monovalent-vaccinated hamster sera, sera from people infected during the BA.2.86/JN.1 wave, and class III monoclonal antibody (Mab) S309. We found that compared to parental JN.1, SLip and KP.2, and especially FLiRT, exhibit increased resistance to COVID-19 bivalent-vaccinated human sera and BA.2.86/JN.1-wave convalescent sera. Interestingly, antibodies in XBB.1.5 monovalent vaccinated hamster sera robustly neutralized FLiRT and KP.2 but had reduced efficiency for SLip. These JN.1 subvariants were resistant to neutralization by Mab S309. In addition, we investigated aspects of spike protein biology including infectivity, cell-cell fusion and processing, and found that these subvariants, especially SLip, had a decreased infectivity and membrane fusion relative to JN.1, correlating with decreased spike processing. Homology modeling revealed that L455S and F456L mutations in SLip reduced local hydrophobicity in the spike and hence its binding to ACE2. In contrast, the additional R346T mutation in FLiRT and KP.2 strengthened conformational support of the receptor-binding motif, thus counteracting the effects of L455S and F456L. These three mutations, alongside D339H, which is present in all JN.1 sublineages, alter the epitopes targeted by therapeutic Mabs, including class I and class III S309, explaining their reduced sensitivity to neutralization by sera and S309. Together, our findings provide insight into neutralization resistance of newly emerged JN.1 subvariants and suggest that future vaccine formulations should consider JN.1 spike as immunogen, although the current XBB.1.5 monovalent vaccine could still offer adequate protection.

12.
J Cell Mol Med ; 28(12): e18455, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898772

ABSTRACT

Cancer-related fatigue (CRF) significantly impacts the quality of life of cancer patients. This study investigates the therapeutic potential of Shenqi Fuzheng injection (SFI) in managing CRF, focusing on its mechanistic action in skeletal muscle. We utilized a CRF mouse model to examine the effects of SFI on physical endurance, monitoring activity levels, swimming times and rest periods. Proteomic analysis of the gastrocnemius muscle was performed using isobaric tags and liquid chromatography-tandem mass spectrometry to map the muscle proteome changes post-SFI treatment. Mitochondrial function in skeletal muscle was assessed via ATP bioluminescence assay. Furthermore, the regulatory role of the hypoxia inducible factor 1 subunit alpha (HIF-1α) signalling pathway in mediating SFI's effects was explored through western blotting. In CRF-induced C2C12 myoblasts, we evaluated cell viability (CCK-8 assay), apoptosis (flow cytometry) and mitophagy (electron microscopy). The study also employed pulldown, luciferase and chromatin immunoprecipitation assays to elucidate the molecular mechanisms underlying SFI's action, particularly focusing on the transcriptional regulation of PINK1 through HIF-1α binding at the PINK1 promoter region. Our findings reveal that SFI enhances physical mobility, reduces fatigue symptoms and exerts protective effects on skeletal muscles by mitigating mitochondrial damage and augmenting antioxidative responses. SFI promotes cell viability and induces mitophagy while decreasing apoptosis, primarily through the modulation of HIF-1α, PINK1 and p62 proteins. These results underscore SFI's efficacy in enhancing mitochondrial autophagy, thereby offering a promising approach for ameliorating CRF. The study not only provides insight into SFI's potential therapeutic mechanisms but also establishes a foundation for further exploration of SFI interventions in CRF management.


Subject(s)
Drugs, Chinese Herbal , Fatigue , Hypoxia-Inducible Factor 1, alpha Subunit , Mitophagy , Muscle, Skeletal , Neoplasms , Ubiquitination , Animals , Mitophagy/drug effects , Drugs, Chinese Herbal/pharmacology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Ubiquitination/drug effects , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/pathology , Fatigue/drug therapy , Fatigue/metabolism , Fatigue/etiology , Male , Apoptosis/drug effects , Humans , Proteomics/methods , Disease Models, Animal , Cell Line
13.
Front Genet ; 15: 1395988, 2024.
Article in English | MEDLINE | ID: mdl-38863445

ABSTRACT

Inborn errors of metabolism (IEMs) are uncommon. Although some studies have explored the distribution and characteristics of IEMs in newborns, the impact of these disorders on hospitalized newborns remains unclear. In this study, we gathered data from 21,840 newborn patients admitted for various medical conditions at the Children's Hospital of Chongqing Medical University from January 2017 and December 2022. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS/MS), and genetic analysis were used to elucidate the disease spectrum, incidence rate, and genetic characteristics of IEMs in hospitalized newborns. The results revealed that the incidence of IEMs in hospitalized newborns was 1/377 (58/21,840), with a higher incidence in full-term infants (1/428) than in premature infants (1/3,120). Among the diagnosed genetic metabolic diseases, organic acid metabolism disorders (1/662), amino acid metabolism disorders (1/950), and fatty acid oxidation disorders (1/10,920) were the most prevalent. Methylmalonic acidemia (MMA), especially the isolated form, emerged as the most common IEM, while neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and ornithine transcarbamylase deficiency (OTCD) were prevalent in premature infants. Of the 58 confirmed cases of IEMs, 72 variants were identified, of which 31.94% (23/72) had not been reported previously. This study contributes to understanding the incidence and clinical features of IEMs in hospitalized newborns, offering more efficient strategies for screening and diagnosing these disorders.

14.
J Virol Methods ; 329: 114971, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876255

ABSTRACT

Peste des petis ruminants (PPR) is an acute, highly contagious fatal disease affecting both domestic and wild small ruminants, caused by Morbillivirus caprinae (also known as peste des petis ruminants virus (PPRV)). Herein, a rapid method based on recombinase aided amplification-clustered regularly interspaced short palindromic repeats-Cas12a (RAA-CRISPR Cas12a) to detect PPRV was developed. CRISPR RNAs and RAA primers for PPRV-N (nucleocapsid) and PPRV-M (matrix) fragments were designed. The reaction system was constructed following screening and optimization. Detection could be completed within in 50 minutes at 37°C. Detection of gradient dilutions of plasmids carrying of PPRV N and M gene fragments indicated a minimum limit of detection of 10 copies/µL. There were no cross-reactions with related viruses and all tested lineages of PPRV were detected successfully. The method also showed good repeatability. The detection of clinical samples (previously detected using reverse transcription polymerase chain reaction (RT-PCR)) indicated good consistency between the RAA-CRISPR Cas12a method and RT-PCR. Thus, the RAA-CRISPR Cas12a method for rapid PPRV diagnosis has strong specificity, high sensitivity, and stable repeatability. Moreover, the results can be observed visually under blue or UV light or using lateral flow strips without complex instruments.

15.
Ren Fail ; 46(1): 2349187, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38721893

ABSTRACT

BACKGROUND: Exercise research targeting chronic kidney disease (CKD) has been conducted for more than 30 years, and the benefits of exercise for CKD patients have been progressively demonstrated. This study analyzes citation classics on clinical intervention trials on exercise training and CKD to describe the research landscape and hotspots through bibliometric analysis. METHODS: To identify clinical trials of exercise training interventions for CKD with more than 100 citations from the Web of Science Core Collection database. Extracted bibliometric information, participant information, and study characteristics of the included articles. The total citations, annual average citations, publication of year, author keywords, and study-related data were bibliometric analyzed and described using Excel 2019 and VOSviewer software. RESULTS: A total of 30 citation classics were included, with a total citation frequency of 102 to 279 (mean ± standard deviation: 148.4 ± 49.4). The American Journal of Kidney Diseases (n = 7) published the most (n = 7) classic citations in the field of CKD exercise research, and the Journal of the American Society of Nephrology was the most cited. The hotspot of research around CKD and exercise training interventions focused on population (hemodialysis and end-stage renal disease), exercise type (resistance training, yoga, and leg-cycling), and outcomes (cardiovascular indices, physical performance, psychological status, kidney function, physical activity). Reported dropout rates ranged from 0.0% to 47.4%. CONCLUSION: A bibliometric analysis of citation classics on exercise training and CKD highlights the potential benefits of exercise as a non-pharmacological therapy for patients with CKD, as well as developments and hotspots in the field.


Subject(s)
Bibliometrics , Exercise Therapy , Renal Insufficiency, Chronic , Humans , Clinical Trials as Topic , Exercise , Exercise Therapy/statistics & numerical data , Exercise Therapy/methods , Renal Insufficiency, Chronic/therapy
16.
Aging (Albany NY) ; 16(9): 7596-7621, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38742936

ABSTRACT

Colon adenocarcinoma (COAD), a frequently encountered and highly lethal malignancy of the digestive system, has been the focus of intensive research regarding its prognosis. The intricate immune microenvironment plays a pivotal role in the pathological progression of COAD; nevertheless, the underlying molecular mechanisms remain incompletely understood. This study aims to explore the immune gene expression patterns in COAD, construct a robust prognostic model, and delve into the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby providing critical support for individualized treatment strategies and prognostic evaluation. Initially, we curated a comprehensive dataset by screening 2600 immune-related genes (IRGs) from the ImmPort and InnateDB databases, successfully obtaining a rich data resource. Subsequently, the COAD patient cohort was classified using the non-negative matrix factorization (NMF) algorithm, enabling accurate categorization. Continuing on, utilizing the weighted gene co-expression network analysis (WGCNA) method, we analyzed the top 5000 genes with the smallest p-values among the differentially expressed genes (DEGs) between immune subtypes. Through this rigorous screening process, we identified the gene modules with the strongest correlation to the COAD subpopulation, and the intersection of genes in these modules with DEGs (COAD vs COAD vs Normal colon tissue) is referred to as Differentially Expressed Immune Genes Associated with COAD (DEIGRC). Employing diverse bioinformatics methodologies, we successfully developed a prognostic model (DPM) consisting of six genes derived from the DEIGRC, which was further validated across multiple independent datasets. Not only does this predictive model accurately forecast the prognosis of COAD patients, but it also provides valuable insights for formulating personalized treatment regimens. Within the constructed DPM, we observed a downregulation of CALB2 expression levels in COAD tissues, whereas NOXA1, KDF1, LARS2, GSR, and TIMP1 exhibited upregulated expression levels. These genes likely play indispensable roles in the initiation and progression of COAD and thus represent potential therapeutic targets for patient management. Furthermore, our investigation into the molecular mechanisms and therapeutic targets for COAD liver metastasis revealed associations with relevant processes such as fat digestion and absorption, cancer gene protein polysaccharides, and nitrogen metabolism. Consequently, genes including CAV1, ANXA1, CPS1, EDNRA, and GC emerge as promising candidates as therapeutic targets for COAD liver metastasis, thereby providing crucial insights for future clinical practices and drug development. In summary, this study uncovers the immune gene expression patterns in COAD, establishes a robust prognostic model, and elucidates the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby possessing significant theoretical and clinical implications. These findings are anticipated to offer substantial support for both the treatment and prognosis management of COAD patients.


Subject(s)
Adenocarcinoma , Algorithms , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Immunotherapy , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Colonic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/therapy , Adenocarcinoma/pathology , Prognosis , Gene Expression Profiling , Gene Regulatory Networks , Biomarkers, Tumor/genetics , Transcriptome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Databases, Genetic , Computational Biology
17.
Environ Res ; 256: 119225, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38797461

ABSTRACT

Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.


Subject(s)
Anti-Bacterial Agents , Biodegradation, Environmental , Chlorella , Microalgae , Sulfadiazine , Water Pollutants, Chemical , Chlorella/drug effects , Chlorella/metabolism , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/toxicity , Microalgae/drug effects , Microalgae/metabolism , Stress, Physiological/drug effects , Biomass , Wastewater/chemistry
18.
Ocul Surf ; 33: 50-63, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703817

ABSTRACT

PURPOSE: To investigate the global transcriptional landscape of lacrimal gland cell populations in the GVHD mouse model. METHODS: Single-cell RNA sequencing and further bioinformatic analysis of dissociated lacrimal gland (LG) cells from the mouse model were performed. Parts of transcriptional results were confirmed by immunofluorescence staining. RESULTS: We identified 23 cell populations belonging to 11 cell types. In GVHD LG, the proportion of acinar cells, myoepithelial cells, and endothelial cells was remarkably decreased, while T cells and macrophages were significantly expanded. Gene expression analysis indicated decreased secretion function, extracellular matrix (ECM) synthesis, and increased chemokines of myoepithelial cells. A newly described epithelial population named Lrg1high epithelial cells, expressing distinct gene signatures, was exclusively identified in GVHD LG. The fibroblasts exhibited an inflammation gene pattern. The gene pattern of endothelial cells suggested an increased ability to recruit immune cells and damaged cell-cell junctions. T cells were mainly comprised of Th2 cells and effective memory CD8+ T cells. GVHD macrophages exhibited a Th2 cell-linked pattern. CONCLUSIONS: This single-cell atlas uncovered alterations of proportion and gene expression patterns of cell populations and constructed cell-cell communication networks of GVHD LG. These data may provide some new insight into understanding the development of ocular GVHD.


Subject(s)
Disease Models, Animal , Graft vs Host Disease , Lacrimal Apparatus , Animals , Mice , Lacrimal Apparatus/metabolism , Lacrimal Apparatus/pathology , Graft vs Host Disease/genetics , Graft vs Host Disease/metabolism , Single-Cell Analysis/methods , Mice, Inbred C57BL , Sequence Analysis, RNA/methods , Female , Gene Expression Profiling/methods , Mice, Inbred BALB C
19.
J Virol ; 98(6): e0003824, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38767356

ABSTRACT

Recent progress on chimeric antigen receptor (CAR)-NK cells has shown promising results in treating CD19-positive lymphoid tumors with minimal toxicities [including graft versus host disease (GvHD) and cytokine release syndrome (CRS) in clinical trials. Nevertheless, the use of CAR-NK cells in combating viral infections has not yet been fully explored. Previous studies have shown that CAR-NK cells expressing S309 single-chain fragment variable (scFv), hereinafter S309-CAR-NK cells, can bind to SARS-CoV-2 wildtype pseudotyped virus (PV) and effectively kill cells expressing wild-type spike protein in vitro. In this study, we further demonstrate that the S309-CAR-NK cells can bind to different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants in vitro. We also show that S309-CAR-NK cells reduce virus loads in the NOD/SCID gamma (NSG) mice expressing the human angiotensin-converting enzyme 2 (hACE2) receptor challenged with SARS-CoV-2 wild-type (strain USA/WA1/2020). Our study demonstrates the potential use of S309-CAR-NK cells for inhibiting infection by SARS-CoV-2 and for the potential treatment of COVID-19 patients unresponsive to otherwise currently available therapeutics. IMPORTANCE: Chimeric antigen receptor (CAR)-NK cells can be "off-the-shelf" products that treat various diseases, including cancer, infections, and autoimmune diseases. In this study, we engineered natural killer (NK) cells to express S309 single-chain fragment variable (scFv), to target the Spike protein of SARS-CoV-2, hereinafter S309-CAR-NK cells. Our study shows that S309-CAR-NK cells are effective against different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants. The S309-CAR-NK cells can (i) directly bind to SARS-CoV-2 pseudotyped virus (PV), (ii) competitively bind to SARS-CoV-2 PV with 293T cells expressing the human angiotensin-converting enzyme 2 (hACE2) receptor (293T-hACE2 cells), (iii) specifically target and lyse A549 cells expressing the spike protein, and (iv) significantly reduce the viral loads of SARS-CoV-2 wild-type (strain USA/WA1/2020) in the lungs of NOD/SCID gamma (NSG) mice expressing hACE2 (hACE2-NSG mice). Altogether, the current study demonstrates the potential use of S309-CAR-NK immunotherapy as an alternative treatment for COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Killer Cells, Natural , Receptors, Chimeric Antigen , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Load , Animals , SARS-CoV-2/immunology , Killer Cells, Natural/immunology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Mice , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19/therapy , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Mice, SCID , Mice, Inbred NOD
20.
Int J Biol Macromol ; 271(Pt 1): 132539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777023

ABSTRACT

The deep-sea fungus Phomopsis lithocarpus FS508 produces tenellone-macrolide conjugated hetero-dimer lithocarpins A-G with anti-tumor activities. The deficiency of new intermolecular Diels-Alder (DA) enzymes hindered the development of new bioactive hetero-dimers. A novel single-function intermolecular DA enzyme, g7882, was initially discovered in this study. The deletion of g7882 led to the disappearance of lithocarpin A and an increase in precursor level . the overexpression of g7882 significantly improved lithocarpin A yield. The in vitro function of g7882DA was also confirmed by biochemical reaction using tenellone B as a substrate. Additionally, the knockout of KS modules of PKS in cluster 41 and cluster 81 (lit cluster) eliminated the production of lithocarpins, which firstly explains the biosynthetic process of hetero-dimer lithocarpins mediated by DA enzyme in FS508. Furthermore, the removal of a novel acetyltransferase GPAT in cluster 41 and the oxidoreductase, prenyltransferase in cluster81 resulted in the reduction of lithocarpin A in P. lithocarpus. The overexpression of gpat in P. lithocarpus FS508 improved the yield of lithocarpin A significantly and produced a new tenellone derivative lithocarol G. This study offers a new DA enzyme tool for the biosynthesis of novel hetero-dimer and biochemical clues for the biosynthetic logic elucidation of lithocarpins.


Subject(s)
Cycloaddition Reaction , Ascomycota/enzymology , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...