Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
PLoS One ; 19(5): e0303199, 2024.
Article En | MEDLINE | ID: mdl-38723048

This paper presents an optimized preparation process for external ointment using the Definitive Screening Design (DSD) method. The ointment is a Traditional Chinese Medicine (TCM) formula developed by Professor WYH, a renowned TCM practitioner in Jiangsu Province, China, known for its proven clinical efficacy. In this study, a stepwise regression model was employed to analyze the relationship between key process factors (such as mixing speed and time) and rheological parameters. Machine learning techniques, including Monte Carlo simulation, decision tree analysis, and Gaussian process, were used for parameter optimization. Through rigorous experimentation and verification, we have successfully identified the optimal preparation process for WYH ointment. The optimized parameters included drug ratio of 24.5%, mixing time of 8 min, mixing speed of 1175 rpm, petroleum dosage of 79 g, liquid paraffin dosage of 6.7 g. The final ointment formulation was prepared using method B. This research not only contributes to the optimization of the WYH ointment preparation process but also provides valuable insights and practical guidance for designing the preparation processes of other TCM ointments. This advanced DSD method enhances the screening approach for identifying the best preparation process, thereby improving the scientific rigor and quality of TCM ointment preparation processes.


Machine Learning , Ointments , Rheology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Medicine, Chinese Traditional , Drug Compounding/methods , Sodium Dodecyl Sulfate/chemistry , Monte Carlo Method
2.
J Ethnopharmacol ; 331: 118303, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38734390

ETHNOPHARMACOLOGICAL RELEVANCE: Realgar, a traditional mineral Chinese medicine, has been used in China for more than 2000 years. It has been recorded in many ancient and modern works that it has anti-cancer and anti-tumor effects. Of course, colon cancer is also within the scope of its treatment. Realgar needs to be processed into realgar decoction pieces by water grinding before being used for medicine. To ensure the consistency of efficacy and quality of realgar decoction pieces, modern methods need to be used for further quality control. AIM OF THE STUDY: The research of traditional mineral Chinese medicine is relatively difficult, and the related research is less. The purpose of this study is to control the quality of realgar decoction pieces by modern analytical technology and analyze its components. On this basis, its anti-colon cancer activity was discussed. MATERIALS AND METHODS: Several batches of realgar decoction pieces were analyzed by XRD, and the components of realgar decoction pieces were obtained. The quality control fingerprints of realgar decoction pieces were established by processing XRD spectra and similarity evaluation. Then, the effects of realgar decoction pieces on apoptosis of CT26 and HTC-116 cells were observed in vitro by Hoechst 33258 staining, flow cytometry, measurement of mitochondrial membrane potential and Western blot; In vivo, the mouse model of tumor-in-situ transplantation of colon cancer was established, and the related indexes were observed. RESULT: The explorations showed that the XRD Fourier fingerprints of realgar decoction pieces samples that had the same phase revealed 10 common peaks, respectively. The similarity evaluation of the established XRD Fourier fingerprint was greater than 0.900. We also demonstrated that realgar decoction pieces can promote apoptosis and inhibit tumor growth in colon cancer cells, its activating effect on p53 protein, and its safety when used within reasonable limits. CONCLUSION: The quality control of realgar decoction pieces by XRD is scientific and has the inhibitory effect on colon cancer, which has the development potential.


Apoptosis , Colonic Neoplasms , Animals , Apoptosis/drug effects , Mice , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Humans , Sulfides/pharmacology , Sulfides/therapeutic use , Arsenicals/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Cell Line, Tumor , Mice, Inbred BALB C , Membrane Potential, Mitochondrial/drug effects , Male , Quality Control , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use
3.
ACS Nano ; 18(5): 4398-4413, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38275273

Arsenic trioxide (As2O3) has achieved groundbreaking success in the treatment of acute promyelocytic leukemia (APL). However, its toxic side effects seriously limit its therapeutic application in the treatment of solid tumors. To detoxify the severe side effects of arsenic, herein we synthesized innovative 2D ultrathin As2Se3 nanosheets (As2Se3 NSs) with synergistic photothermal-triggered immunotherapy effects. As2Se3 NSs are biocompatible and biodegradable under physiological conditions and can release As(III) and Se(0). Furthermore, selenium increases the immunomodulatory efficacy of arsenic treatments, facilitating reprogramming of the tumor microenvironment by As2Se3 NSs by enhancing the infiltration of natural killer cells and effector tumor-specific CD8+ T cells. The synergistic combination of photothermal therapy and immunotherapy driven by As2Se3 NSs via a simple but effective all-in-one strategy achieved efficient anticancer effects, addressing the key limitations of As2O3 for solid tumor treatment. This work demonstrates not only the great potential of selenium for detoxifying arsenic but also the application of 2D As2Se3 nanosheets for cancer therapy.


Antineoplastic Agents , Arsenic , Arsenicals , Neoplasms , Selenium , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes , Immunotherapy , Neoplasms/drug therapy , Oxides/pharmacology , Selenium/pharmacology , Selenium/therapeutic use , Tumor Microenvironment , Arsenic Trioxide
4.
J Ethnopharmacol ; 312: 116500, 2023 Aug 10.
Article En | MEDLINE | ID: mdl-37062528

ETHNOPHARMACOLOGICAL RELEVANCE: Spatholobus suberectus vine stem (SSVS) is the dried lianoid stem of the leguminous plant, Spatholobus suberectus Dunn, which is mainly distributed in China and some Southeast Asian countries. Due to its notable effects of promoting blood circulation and tonifying blood, regulating menstruation and relieving pain, this phytomedicine has been used in traditional Chinese medicine for hundreds of years. AIM OF THE STUDY: This review is designed to provide a comprehensive profile of SSVS concerning its botany, traditional uses, phytochemistry, quality control, pharmacology, pharmacokinetics, and toxicology and attempts to provide a scientific basis and future directions for further research and development. MATERIALS AND METHODS: Related document information was collected with the help of databases such as the Web of Science, Science Direct, PubMed, China National Knowledge Infrastructure (CNKI) and Flora of China. RESULTS: SSVS is reported to be traditionally used to treat rheumatic arthralgia, numbness and paralysis, blood deficiency, irregular menstruation and other gynecological diseases. Botanical studies have revealed that there are some confusable varieties in some specific locations with a long history. Additionally, 145 chemical constituents have been isolated and identified from SSVS, including flavonoids, organic acids, terpenoids, lignans, and phenolic glycosides. Pharmacological studies have shown that SSVS has a variety of effects, such as nervous system regulation, and antioxidative, antitumor, antiviral, antidiabetic, and anti-inflammatory effects. However, in regard to the absorption-distribution-metabolism-elimination-toxicity (ADMET) of SSVS, few studies have been carried out, and few articles have been published. CONCLUSION: With a long history of traditional uses, a variety of bioactive phytochemicals and a wide range of definite pharmacological activities, SSVS is believed to have great potential in clinical applications and further research, development and exploitation. The precise action mechanisms, rational quality control and quality markers, and explicit ADMET routes should be highlighted in the future, which might provide effective help to safely, effectively and sustainably use this herbal medicine.


Botany , Drugs, Chinese Herbal , Fabaceae , Plants, Medicinal , Ethnopharmacology , Plants, Medicinal/chemistry , Medicine, Chinese Traditional , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/toxicity , Plant Extracts/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/toxicity
5.
J Ethnopharmacol ; 303: 115999, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36509260

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic hepatopathy worldwide, in which ectopic steatosis (5%) and inflammatory infiltration in the liver are the principal clinical characteristics. Huangqin decoction (HQD), a Chinese medicine formula used in the clinic for thousands of years, presents appreciable anti-inflammatory effects. Nevertheless, the role and mechanism of HQD against inflammation in NAFLD are still undefined. AIM OF THE STUDY: The objective of this study was to evaluate the curative efficacy and unravel the involved mechanism of HQD on a high-fat diet (HFD)-induced NAFLD. MATERIALS AND METHODS: First, HPLC was utilized to analyze the main chemical components of HQD. Then, NAFLD model was introduced by subjecting the rats to HFD for 16 weeks, and HQD (400 and 800 mg/kg) or polyene lecithin choline (PLC, 8 mg/kg) was given orally from week 8-16. Pharmacodynamic indicators including body weight, liver weight, liver index, as well as biochemical and histological parameters were assessed. As to mechanism exploration, the expressions of TLR4/NF-κB/NLRP3 pathway and molecular docking between major phytochemicals of HQD and key targets of TLR4/NF-κB/NLRP3 pathway were investigated. RESULTS: Seven main monomeric constituents of HQD were revealed by HPLC analysis. Of note, HQD could effectively attenuate the body weight, liver weight, and liver index, rescue disorders in serum transaminases and lipid profile, correct hepatic histological abnormalities, and reduce phagocytes infiltration into the liver and pro-inflammatory cytokines release in NAFLD rats. Mechanism investigation discovered that HQD harbored inhibitory effects on TLR4/NF-κB/NLRP3 pathway-regulated liver inflammation. Further exploration found that seven phytochemicals in HQD exhibited better binding modes with TLR4/NF-κB/NLRP3 pathway, in which baicalein, baicalin and liquiritin presented the highest affinity and docking score for protein TLR4, NF-κB, and NLRP3, respectively. CONCLUSIONS: These findings confirmed that HQD ameliorated hepatic inflammation in NAFLD rats by blocking the TLR4/NF-κB/NLRP3 pathway, with multi-components and multi-targets action pattern.


NF-kappa B , Non-alcoholic Fatty Liver Disease , Rats , Animals , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Scutellaria baicalensis , Toll-Like Receptor 4/metabolism , Diet, High-Fat/adverse effects , Molecular Docking Simulation , Liver , Inflammation/pathology , Body Weight
6.
ACS Appl Mater Interfaces ; 14(40): 45137-45148, 2022 Oct 12.
Article En | MEDLINE | ID: mdl-36166745

Arsenene, a two-dimensional (2D) monoelemental layered nanosheet composed of arsenic, was recently reported to feature outstanding anticancer activities. However, the specific biological mechanism of action remains unknown. In this work, we extensively analyzed the mechanism of arsenene in vivo and in vitro and discovered the unexpected immune regulatory capability of arsenene for the first time. Analysis of cell phenotypes in tumor microenvironment by single-cell RNA sequencing revealed that arsenene remodeled the tumor microenvironment by recruiting a high proportion of anticancer immune cells to eliminate the tumor. Mechanistically, arsenene significantly activated T cell receptor signaling pathways to produce antitumor immune cells while inhibiting DNA replication and TCA cycle pathways of tumor cells in vivo. Further proteomic analysis on tumor cells revealed that arsenene induced reactive oxygen species production and oxidative stress damage by targeting thioredoxin TXNL1. The overloaded reactive oxygen species (ROS) further triggered endoplasmic reticulum stress responses to release damage-associated molecular patterns (DAMPs) and "eat-me" signals from dying tumor cells, leading to the activation of antigen-presenting processes to induce the subsequent effector tumor-specific CD8+ T cell immune responses. This unexpected discovery indicated for the first time that 2D inorganic nanomaterials could effectively activate direct anticancer immune responses, suggesting arsenene as a promising candidate nanomedicine for future cancer immunotherapy.


Arsenic , Neoplasms , Humans , Neoplasms/metabolism , Proteomics , Reactive Oxygen Species/metabolism , Receptors, Antigen, T-Cell , Thioredoxins/pharmacology , Tumor Microenvironment
7.
Rev Sci Instrum ; 93(5): 053302, 2022 May 01.
Article En | MEDLINE | ID: mdl-35649780

The China Spallation Neutron Source project Phase-II aims to deliver 500 kW beam power to the spallation target. To meet the beam power requirement, an RF-driven negative hydrogen ion source with an external-antenna has been developed. In order to optimize the beam transmission through the radio frequency quadrupole and the downstream linac, the low energy beam transport line needs to be carefully studied and the transverse emittance is focused in this paper. With computational simulation and experimental verification, the emittance growth caused by nonlinear magnetic fields of the solenoid and the residual magnetic fields at the measuring position has been carefully analyzed. The measurement uncertainty of the double-slit scanner has also been quantitatively estimated. Using the same plasma-beam boundary setting, the beam extraction system is also optimized with particle tracking simulation in CST PARTICLE STUDIO.

8.
J Ethnopharmacol ; 294: 115365, 2022 Aug 10.
Article En | MEDLINE | ID: mdl-35597411

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a chronic non-specific intestinal inflammatory disease, the pathogenesis of which is strongly associated with the compromised intestinal barrier. Paeoniae Radix Alba (PRA), the root of Paeonia lactiflora Pall., is a well-known traditional Chinese medicine and an adaptogen used in Hozai, exhibiting appreciable anti-inflammatory and immunomodulatory activity. Nevertheless, the role and mechanism of PRA in UC have yet to be elucidated. AIM OF THE STUDY: This study was set out to examine the ameliorative effects of the aqueous extract of PRA (i.e., PRA dispensing granule, PRADG) on dextran sulfate sodium (DSS)-induced colitis. MATERIALS AND METHODS: The chemical components of PRADG was analyzed by HPLC. Colitis model mice were induced by free access to water containing 2.5% DSS for 10 consecutive days, and concurrently, PRADG (0.1025 and 0.41 g/kg) or Salazosulfapyridine (SASP, 450 mg/kg) was given orally from day 1-10. Body weight, disease activity index (DAI), colon length, histologic scoring, and inflammatory response were assessed. Additionally, IL-23/IL-17 axis and tight junction (TJ) proteins, as well as gut microbiota were also investigated under the above-mentioned regimen. RESULTS: Eight main chemical constituents of CPT were revealed with HPLC analysis. Noticeably, PRADG could effectively lower body weight loss as well as DAI scores, alleviate colon shortening, and reduce the levels of proinflammatory cytokines in mice with colitis. Further exploration found that increment of TJ proteins expression (ZO-1, occludin and claudin-1) and inhibition of IL-23/IL-17 axis-modulated inflammation were observed in PRADG-treated mice. Additionally, the diversity of gut microbiota and the relative abundance of beneficial bacteria were increased following PRADG treatment. CONCLUSIONS: PRADG could be sufficient to ameliorate colitis by regulating the intestinal physical barrier, immune responses, and gut microbiota in mice. Our findings highlight that PRADG might be a prospective remedy for UC.


Colitis , Gastrointestinal Microbiome , Paeonia , Plant Extracts , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon , Dextran Sulfate , Disease Models, Animal , Drugs, Chinese Herbal , Immunity , Interleukin-17/metabolism , Interleukin-23/metabolism , Mice , Mice, Inbred C57BL , Plant Extracts/pharmacology , Prospective Studies , Tight Junction Proteins/metabolism
9.
Plant Physiol Biochem ; 173: 87-96, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-35114506

Lonicera japonica flowers (LJF) is a traditional Chinese medicine packed with phenols constituents and widely used in the treatments of various diseases throughout the world. However, there is still very little known on how LJF identifies and resists salt stress. Here in, we systematically investigated the effect of salt on the phenotypic, metabolite, and transcriptomic in LJF. During long term stress (35 days), 1055 differential expression genes (DEGs) involved in the biosynthesis of secondary metabolites were screened through transcriptome analysis, among which the candidate genes and pathways involved in phenols biosynthesis were highlighted; and performed by phylogenetic tree analysis and multiple nucleotide sequence alignment. Ninety compounds were identified and their relative levels were compared between the control and stressed groups based on the LC-MS analysis, Putative biosynthesis networks of phenolic acid and flavonoid were con-structed with structural DEGs. Strikingly, the expression patterns of structural DEGs were mostly consistent with the variations of phenols under salt stress. Notably, the upregulation of UDP-glycosyl transferases under salt stress indicated post-modification of glycosyl transferases may participate in downstream flavonoids synthesis. This study reveals the relationships of the gene regulation and the phenols biosynthesis in LJF under salt stress, paving the way for the use of gene-specific expression to improve the yield of biocomponent.


Lonicera , Flowers/genetics , Gene Expression Profiling , Lonicera/genetics , Phylogeny , Salt Stress , Transcriptome
10.
Molecules ; 26(24)2021 Dec 10.
Article En | MEDLINE | ID: mdl-34946568

Taxilli Herba (TAXH) is an important traditional Chinese medicine with a long history, dating from the Eastern Han Dynasty to the present times. However, the active constituents in it that parasitize different hosts vary, affecting its clinical efficacy. Given the complexity of the host origins, evaluating the quality of TAXH is critical to ensure the safety and effectiveness of clinical medication. In the present study, a quantitative method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was established, which simultaneously determined the content of 33 active constituents, including 12 flavonoids, 4 organic acids, 12 amino acids, and 5 nucleosides in 45 samples. Orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to classify and distinguish between TAXH and its adulterants, Tolypanthi Herba (TOLH). A hierarchical clustering analysis (HCA) was conducted combined with a heatmap to visually observe the distribution regularity of 33 constituents in each sample. Furthermore, gray relational analysis (GRA) was applied to evaluate the quality of samples to get the optimal host. The results demonstrated that TAXH excelled TOLH in quality as a whole. The quality of TAXH parasitizing Morus alba was also better, while those that were parasitic on Cinnamomum camphora and Glyptostrobus pensilis had relatively poor quality. This study may provide comprehensive information that is necessary for quality control and supply a scientific basis for further exploring the quality formation mechanism of TAXH.


Drugs, Chinese Herbal/analysis , Amino Acids/analysis , Chromatography, High Pressure Liquid , Flavonoids/analysis , Medicine, Chinese Traditional , Multivariate Analysis , Nucleosides/analysis , Quality Control , Tandem Mass Spectrometry
11.
Molecules ; 26(21)2021 Oct 21.
Article En | MEDLINE | ID: mdl-34770782

Taxilli Herba (TH) is a well-known traditional Chinese medicine (TCM) with a wide range of clinical application. However, there is a lack of comprehensive research on its chemical composition in recent years. At the same time, Taxillus chinensis (DC) Danser is a semi parasitic plant with abundant hosts, and its chemical constituents varies due to hosts. In this study, the characterization of chemical constituents in TH was analyzed by ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (UFLC-Triple TOF-MS/MS). Moreover, partial least squares discriminant analysis (PLS-DA) was applied to reveal the differential constituents in TH from different hosts based on the qualitative information of the chemical constituents. Results showed that 73 constituents in TH were identified or tentatively presumed, including flavonoids, phenolic acids and glycosides, and others; meanwhile, the fragmentation pathways of different types of compounds were preliminarily deduced by the fragmentation behavior of the major constituents. In addition, 23 differential characteristic constituents were screened based on variable importance in projection (VIP) and p-value. Among them, quercetin 3-O-ß-D-glucuronide, quercitrin and hyperoside were common differential constituents. Our research will contribute to comprehensive evaluation and intrinsic quality control of TH, and provide a scientific basis for the variety identification of medicinal materials from different hosts.


Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Loranthaceae/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Chemical Fractionation , Chromatography, High Pressure Liquid/methods , Flavonoids , Glycosides , Molecular Structure , Phytochemicals/analysis , Phytochemicals/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
12.
Front Plant Sci ; 12: 727882, 2021.
Article En | MEDLINE | ID: mdl-34691107

Salinity stress significantly affects the contents of bioactive constituents in licorice Glycyrrhiza uralensis. To elucidate the molecular mechanism underlying the difference in the accumulation of these constituents under sodium chloride (NaCl, salt) stress, licorice seedlings were treated with NaCl and then subjected to an integrated transcriptomic and metabolite profiling analysis. The transcriptomic analysis results identified 3,664 differentially expressed genes (DEGs) including transcription factor family MYB and basic helix-loop-helix (bHLH). Most DEGs were involved in flavonoid and terpenoid biosynthesis pathways. In addition, 121 compounds including a triterpenoid and five classes of flavonoids (isoflavone, flavone, flavanone, isoflavan, and chalcone) were identified, and their relative levels were compared between the stressed and control groups using data from the ultrafast liquid chromatography (UFLC)-triple quadrupole-time of flight-tandem mass spectrometry (TOF-MS/MS) analysis. Putative biosynthesis networks of the flavonoids and triterpenoids were created and combined with structural DEGs such as phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase [4CL], cinnamate 4-hydroxylase [C4H], chalcone synthase [CHS], chalcone-flavanone isomerase [CHI], and flavonoid-3',5' hydroxylase (F3',5'H) for flavonoids, and CYP88D6 and CYP72A154 for glycyrrhizin biosynthesis. Notably, significant upregulation of UDP-glycosyltransferase genes (UGT) in salt-stressed licorice indicated that postmodification of glycosyltransferase may participate in downstream biosynthesis of flavonoid glycosides and triterpenoid saponins. Accordingly, the expression trend of the DEGs is positively correlated with the accumulation of glycosides. Our study findings indicate that key DEGs and crucial UGT genes co-regulate flavonoid and saponin biosynthesis in licorice under salt stress.

13.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3133-3143, 2021 Jun.
Article Zh | MEDLINE | ID: mdl-34467705

To study the effect of mineral Chloriti Lapis on pulmonary metabolites and metabolic pathways in lung tissues of rats with acute exacerbation of chronic obstructive pulmonary disease(AECOPD). The AECOPD rat model of phlegm heat syndrome was replicated by the method of smoking combined with Klebsiella pneumoniae infection. Except for using UPLC-Q-TOF-MS analysis, SPSS 18.0, SIMCA 13.0 and other software were also used for statistical analysis. Through literature search and online database comparison, the differential metabolites were identified, and the possible metabolic pathways were analyzed. After 15 days of administration, PLS-DA analysis was carried out on lung tissue samples of rats in each group. The results showed that the metabolic profiles of lung tissues of rats in each group could be well separated, which indicated that Chloriti Lapis and aminophylline had significant intervention effect on the lung metabolic profile of rats with AECOPD. Moreover, the metabolic profile of Chloriti Lapis group was closer to that of control group, and the intervention effect was better than that of aminophylline group. As a result, 15 potential differential metabolites were identified: phytosphingosine, sphinganine, tetradecanoylcarnitine, L-palmitoylcarnitine, elaidic carnitine, lysoPC[18∶2(9Z,12Z)], lysoPC(16∶0), lysoPC[18∶1(9Z)], lysoPC(18∶0), stearic acid, lysoPC(15∶0), arachidonic acid, docosapentaenoic acid, linoleic acid and palmitic acid. Among them, Chloriti Lapis could significantly improve the levels of 10 differential metabolites of phytosphingosine, tetradecanoylcarnitine, L-palmitoylcarnitine, elaidic carnitine, lysoPC[18∶2(9Z,12Z)], lysoPC(16∶0), lysoPC[18∶1(9Z)], stearic acid, lysoPC(15∶0), and palmitic acid(P<0.05). The intervention effect of Chloriti Lapis group was better than that of aminophylline group. Analysis of metabolic pathways showed that there were 8 possible metabolic pathways that could be affected, and three of the most important metabolic pathways(pathway impact>0.1) were involved: linoleic acid metabolism, arachidonic acid metabolism, and sphingolipid metabolism. Chloriti Lapis had obvious intervention effects on lung tissue-related metabolites and metabolic pathways in rats with AECOPD, and the effect was better than that of aminophyllinne.


Medicine, Chinese Traditional , Pulmonary Disease, Chronic Obstructive , Animals , Lung , Metabolomics , Minerals , Rats
14.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3694-3704, 2021 Jul.
Article Zh | MEDLINE | ID: mdl-34402294

The effects of Chloriti Lapis on metal elements in plasma and lung tissue of acute exacerbation of chronic obstructive pulmonary disease( AECOPD) rats were studied. The rat AECOPD model with phlegm heat syndrome was established by smoking combined with Klebsiella pneumoniae infection. After the rats were treated by Chloriti Lapis,the contents of metal elements in plasma and lung tissue were determined by inductively coupled plasma-optical emission spectroscopy( ICP-OES) and inductively coupled plasma mass spectrometry( ICP-MS). The changes in the contents of metal elements were analyzed by SPSS 18. 0. Further,the correlations of differential metal elements( including Cu/Zn ratio) with differential metabolites in plasma,lung tissue and urine of AECOPD rats treated with Chloriti Lapis were analyzed. The results showed that Chloriti Lapis significantly up-regulated the contents of Fe,Al,Mn,Cu,Zn,Sn( P<0. 05),V,Co( P< 0. 01) and Cu/Zn ratio( P< 0. 05),and significantly down-regulated the contents of Ti( P< 0. 05)and Pb( P<0. 05) in the model rat plasma. It significantly increased the content of Be( P<0. 05) and decreased the contents of Mg,Ti and Al( P<0. 01) in model rat lung tissue. The element profiles of normal group,model group and Chloriti Lapis group can be well separated. Chloriti Lapis group and other groups were clustered into two categories. The taurine in plasma and phytosphingosine in lung tissue had the strongest correlations with differential metal elements. The Fe,Al,Mg,Be,Ti,V,Mn,Cu,Zn,Sn,and Co in Chloriti Lapis may directly or indirectly participate in the intervention of AECOPD rats. This group of metal elements may be the material basis of Chloriti Lapis acting on AECOPD rats,and reduce the Cu/Zn value in vivo. It was further confirmed that Chloriti Lapis could interfere with the metabolic pathways of taurine and hypotaurine in plasma and urine as well as the sphingolipid metabolism pathway in lung tissue of AECOPD rats. In addition,this study confirmed that long-term smoking can cause high-concentration Cd accumulation in the lung and damage the lung tissue.


Pulmonary Disease, Chronic Obstructive , Trace Elements , Animals , Lung , Medicine, Chinese Traditional , Minerals , Rats , Spectrum Analysis , Trace Elements/analysis
15.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2142-2148, 2021 May.
Article Zh | MEDLINE | ID: mdl-34047114

Metallomics is a frontier interdisciplinary subject at its vigorous development stage. Its goal is to systematically study the content, distribution, chemical species, structural characteristics and functions of metal elements in biological system. It is also a comprehensive discipline to study the existing state and function of free or complex metal elements in life. Metallomics is an ideal tool to study the biological behavior of inorganic elements, which can be used to solve many problems in the research of mineral Chinese medicine(MCM). It provides a strong theoretical basis and technical support for the research of MCM. Its theory and methods provide re-ference and enlightenment for the in-depth study of MCM, and also provide new ideas and open up new ways for the research of MCM. The application of metallomics theory and methods in the research of MCM is of great significance to reveal the material basis and mec-hanism of MCM, promote the process of basic research on MCM, fully exploit and utilize medicinal mineral resources and carry forward the traditional MCM treasure in China. In this paper, we introduced the concept, academic development, research content and research methods of metallomics, and discussed the application prospects of metallomics in the analysis of inorganic element composition characteristics and quality control, material basis and mechanism of MCM, so as to provide reference for further researches on MCM.


Drugs, Chinese Herbal , Medicine, Chinese Traditional , China , Minerals , Quality Control
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118879, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-32920440

A novel curcumin-analogous fluorescent sensor, DNP, was developed for cysteine detection with a bilateral-response click-like mechanism. DNP indicated high selectivity and practical sensitivity. It could recognize Cys from other biologically relevant molecules, especially, from GSH and Hcy. The most interesting point was that, with typical azide groups for sensing, DNP indicated a covalent binding procedure with Cys instead of a presupposed simple reduction for reductive sulfide. Moreover, the recognition occurred at both sides of the sensor. DNP could be utilized into the detection of endogenous and exogenous Cys in living cells. Though the specific optical performances of DNP still need optimization, this work supplied novel information for broadening the vision on fluorophores and mechanisms, for the monitoring of Cys and even other sulfur-containing species.


Curcumin , Cysteine , Fluorescent Dyes , Glutathione , HeLa Cells , Homocysteine , Humans
17.
Int J Biol Macromol ; 158: 1141-1162, 2020 May 03.
Article En | MEDLINE | ID: mdl-32376257

We studied the lipid-regulating effect and molecular mechanism of the medical components of Alisma orientalis: alisol A, alisol B, 23-acetyl alisol C (23C) and the 3 (alisol A): 1(alisol B):1(23C) and 2(alisol A):2(alisol B):1(23C) mixtures designed based on the ratio of them in Alisma orientalis from Fujian, Guangxi Province, China. The animal experiment and network pharmacology showed that ACAT was one of its lipid-regulating targets and alisols may reduce the level of TC by inhibiting ACAT activity. The molecular simulation and homologous modeling results suggested that the binding of alisol mixtures with ACAT was stronger than that of monomers because alisol monomers acted on different active regions of ACAT resulting in the superposition effect and caused the synergistic effect. The lipid-regulating effect of Fujian mixture was stronger than that of Guangxi mixture showing that 3:1:1 was a better ratio. The N-terminal lipid-regulating activity of ACAT was stronger than that of transmembrane domain 1.

18.
J Ethnopharmacol ; 249: 112171, 2020 Mar 01.
Article En | MEDLINE | ID: mdl-31442622

ETHNOPHARMACOLOGICAL RELEVANCE: Liu-Shen-Wan (LSW) is one of the popular over-the-counter drugs in Asia, which contains realgar (As4S4), used for the treatment of upper respiratory tract inflammation and skin infections. However, the safety and potential risk of this arsenic remain unknown. AIM OF THE STUDY: The aim of this study was to determine total arsenic in tissue and investigate effects of regular dose and overdose LSW exposure on rat liver. MATERIALS AND METHODS: We used a target lipidomics approach to quantify inflammatory eicosanoids and employed ICP-MS to determine total arsenic in tissue. RESULTS: The results showed that oral administration of 8 and 40 mg/kg LSW (1 and 5 fold human-equivalent dose) induced light changes of liver lipidomic profile in rats, which was associated with anti-inflammatory function of LSW. In our recent report, we observed that 41 and 134 mg/kg realgar (40 and 132 fold human-equivalent dose) stimulated rat liver inflammation through up-regulation of pro-inflammatory LOX-derived, CYP-derived HETEs and COX-derived PGs. However, we found that LSW in the form of drug combination, containing 41 and 134 mg/kg realger, could not stimulate these similar inflammatory responses in rats, although the liver total arsenic levels of the realger and LSW groups were same. CONCLUSION: The downregulation of pro-inflammatory response showed that the LSW containing realger is safer than realger alone administrated to rats. These results suggested that Chinese medicines combination could reduce realgar-derived arsenic toxicity in rats.


Complex Mixtures/adverse effects , Inflammation/chemically induced , Inflammation/metabolism , Medicine, Chinese Traditional/adverse effects , Animals , Anti-Inflammatory Agents/pharmacology , Arsenic/adverse effects , Complex Mixtures/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Lipidomics/methods , Liver/drug effects , Male , Rats , Rats, Sprague-Dawley
19.
J Biomol Struct Dyn ; 38(14): 4189-4209, 2020 Sep.
Article En | MEDLINE | ID: mdl-31684825

We prepared extracts of Alisma orientalis from Sichuan and Fujian Province, China. Based on the ratio of alisol B 23-acetate (23B) to alisol A 24-acetate (24A) in two Alisma orientalis extracts, we prepared two mixtures of 24A and 23B (24A:23B = 1:3 or 1:10). The antitumor molecular mechanism of the monomers 24A and 23B, the two mixtures and the effective components of Alisma orientalis from different habitats were studied. The MTT assay suggested that the difference in the antitumor activity of Alisma orientalis from different habitats was correlated to the ratio of 24A to 23B. The multi-spectroscopic analysis suggested that the effective components, the monomers and mixtures interacted with c-myc DNA in a partial intercalation manner. The binding strength of the alisol acetates to c-myc DNA was consistent with the anticancer activity, indicating that c-myc DNA was the anticancer target. The molecular simulation indicated that the mixtures were all directly bound to different base pairs of c-myc DNA for a superimposed effect, which led to the binding strength of the mixtures to c-myc DNA was stronger than that of the monomers. The molecules in the 1:3 mixture were all bound to different base pairs of c-myc DNA. However, for the 1:10 mixture, seven molecules of 23B bound to the side chain of 24A, resulting in the mixture with a long chain structure which increased the steric hindrance of 24A. As a result, affinity between 24A and c-myc DNA in the 1:10 mixture was weaker than that in the 1:3 mixture. [Formula: see text] The antitumor molecular mechanism of the alisol monomers 24A and 23B, the mixtures with different proportions and the effective components of Alisma orientalis from different habitats were studied. The order of the antitumor activity was as follows: Sichuan > Fujian, 24A-23B (1:3) > 24A-23B (1:10) > 23B > 24A. The antitumor activity of Alisma orientalis from different habitats was consistent with the mixtures which were designed according to the contents of the active ingredients of the medicinal materials, indicating that the antitumor activity of Alisma orientalis from Sichuan is better than that from Fujian which is related to the contents of 24A and 23B and the proportion of 1:3 is better than 1:10. The binding strength of the mixtures to c-myc DNA was consistent with the anticancer activity. The mixtures were all directly bound to different base pairs of c-myc DNA for a superimposed effect, which led to the strength of the interaction of the mixtures to c-myc DNA was stronger than that of the monomers. For the 24A-23B (1:3) mixture, the four small molecules bound to c-myc DNA directly and interacted with different base pairs of c-myc DNA. While for the 24A-23B (1:10) mixture, 24A and three 23B molecules interacted with c-myc DNA, the remaining seven 23B molecules bound to the side chain of 24A, which increased the steric hindrance. The binding of the mixture to c-myc DNA was decreased. Communicated by Ramaswamy H. Sarma.


Alisma , DNA/genetics , Plant Extracts
20.
Metallomics ; 11(3): 576-585, 2019 03 20.
Article En | MEDLINE | ID: mdl-30648176

Arsenic sulfide compounds provide nearly all of the world's supply of arsenic. However, the risk of arsenic trisulfide exposure is still not fully investigated. Here, we systemically assessed the toxicology of As4S4 in rats by combining arsenic metabolite detection, routine testing and lipidomic profiling. It was revealed that the oral administration of As4S4 for two months increased the total arsenic content in the liver reaching a saturation level. Further analysis by anion exchange chromatography coupled with inductively coupled plasma mass spectrometry (ICP-MS) technology showed no trace of inorganic arsenic, but there was significant presence of dimethylarsinic acid (DMA), in the livers of rats. This arsenic metabolite was less toxic to rats and did not induce overt liver pathology and functional injury. In contrast, lipidomic profiling provided a comprehensive map of lipids and uncovered a more complex inflammatory response, exhibiting more sensitive change to arsenic exposure. We observed that metabolites of cyclooxygenase, including PGF2α, dhk PGF2α, 15k PGF2α, 8-iso-PGF2a, PGE2, dhk PGE2, PGD2, 15d-PGD2, and PGJ2, were significantly elevated. But mediators from lipoxygenase, cytochrome P450, docosahexaenoic acid, and eicosapentaenoic acid pathways were not markedly affected. In summary, we identified DMA as the predominant arsenic species in the livers of rats, and found cyclooxygenase-derived lipids as the inflammatory mediators before the development of overt liver injury for subchronic As4S4 exposure. These mediators could translate into potential metabolic biomarkers in early arsenic risk assessment and as targets for therapeutic intervention.


Arsenicals , Inflammation Mediators , Lipidomics , Lipids/analysis , Sulfides , Animals , Arsenicals/analysis , Biomarkers/analysis , Biomarkers/metabolism , Eicosanoids/metabolism , Inflammation Mediators/analysis , Inflammation Mediators/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Sulfides/analysis , Sulfides/toxicity
...