Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Front Sports Act Living ; 6: 1412044, 2024.
Article in English | MEDLINE | ID: mdl-39005627

ABSTRACT

Introduction: Sleep loss and sleep deprivation (SD) cause deleterious influences on health, cognition, mood and behaviour. Nevertheless, insufficient sleep and SD are prevalent across many industries and occur in various emergencies. The deleterious consequences of SD have yet to be fully elucidated. This study aimed to assess the extensive influences of SD on physiology, vigilance, and plasma biochemical variables. Methods: Seventeen volunteers were recruited to participate in a 32.5-h SD experiment. Multiple physiological and cognitive variables, including tympanic temperature, blood oxygen saturation (SaO2), and vigilance were recorded. Urinal/salivary samples were collected and subjected to cortisol or cortisone analysis, and plasma samples were subjected to transcriptomic analysis of circular RNA (circRNA) expression using microarray. Plasma neurotransmitters were measured by targeted metabolic analysis, and the levels of inflammatory factors were assessed by antibody microarray. Results: The volunteers showed significantly increased sleepiness and decreased vigilance during SD, and the changes in circadian rhythm and plasma biochemistry were observed. The plasma calcium (p = 0.0007) was induced by SD, while ischaemia-modified albumin (IMA, p = 0.0030) and total bile acid (TBA, p = 0.0157) decreased. Differentially expressed circRNAs in plasma were identified, which are involved in multiple signaling pathways including neuronal regulation and immunity. Accordingly, SD induced a decrease in 3-hydroxybutyric acid (3OBH, p = 0.0002) and an increase in thyroxine (T4, p < 0.0001) in plasma. The plasma anti-inflammatory cytokine IL-10 was downregulated while other ten inflammatory factors were upregulated. Conclusion: This study demonstrates that SD influences biochemical, physiological, cognitive variables, and the significantly changed variables may serve as candidates of SD markers. These findings may further our understanding of the detrimental consequence of sleep disturbance at multiple levels.

2.
Geriatr Nurs ; 59: 215-222, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053163

ABSTRACT

This narrative review follows the JBI approach and comprehensively explores the effects and mechanisms of acute exercise on cognitive function in Alzheimer's disease (AD) and Mild cognitive impairment (MCI) patients. The results showed that the combination of acute exercise and cognitive training improved the cognitive function of AD patients better than aerobic exercise or resistance training alone. For patients with MCI, moderate intensity acute aerobic exercise and resistance exercise were beneficial to enhance Inhibitory control (IC), but high-intensity acute exercise was adverse to improve IC; Brain-derived neurotrophic factor (BDNF) and Insulin-like growth factor 1 (IGF-1) may assume the potential mediating mechanism of acute exercise on cognitive function in AD and MCI patients, but more research is needed to further confirm this mechanism.

3.
Quant Imaging Med Surg ; 14(7): 5176-5204, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022282

ABSTRACT

Background and Objective: Cervical cancer clinical target volume (CTV) outlining and organs at risk segmentation are crucial steps in the diagnosis and treatment of cervical cancer. Manual segmentation is inefficient and subjective, leading to the development of automated or semi-automated methods. However, limitation of image quality, organ motion, and individual differences still pose significant challenges. Apart from numbers of studies on the medical images' segmentation, a comprehensive review within the field is lacking. The purpose of this paper is to comprehensively review the literatures on different types of medical image segmentation regarding cervical cancer and discuss the current level and challenges in segmentation process. Methods: As of May 31, 2023, we conducted a comprehensive literature search on Google Scholar, PubMed, and Web of Science using the following term combinations: "cervical cancer images", "segmentation", and "outline". The included studies focused on the segmentation of cervical cancer utilizing computed tomography (CT), magnetic resonance (MR), and positron emission tomography (PET) images, with screening for eligibility by two independent investigators. Key Content and Findings: This paper reviews representative papers on CTV and organs at risk segmentation in cervical cancer and classifies the methods into three categories based on image modalities. The traditional or deep learning methods are comprehensively described. The similarities and differences of related methods are analyzed, and their advantages and limitations are discussed in-depth. We have also included experimental results by using our private datasets to verify the performance of selected methods. The results indicate that the residual module and squeeze-and-excitation blocks module can significantly improve the performance of the model. Additionally, the segmentation method based on improved level set demonstrates better segmentation accuracy than other methods. Conclusions: The paper provides valuable insights into the current state-of-the-art in cervical cancer CTV outlining and organs at risk segmentation, highlighting areas for future research.

4.
Small ; : e2310964, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030863

ABSTRACT

Photodynamic therapy (PDT) is long-standing suffered from elevated tumor interstitial fluid pressure (TIFP) and prevalent hypoxic microenvironment within the solid malignancies. Herein, sound-activated flexocatalysis is developed to overcome the dilemma of PDT through both enhancing tumor penetration of photosensitizers by reducing TIFP and establishing an oxygen-rich microenvironment. In detail, a Schottky junction is constructed by flexocatalyst MoSe2 nanoflowers and Pt. Subsequently, the Schottky junction is loaded with the photosensitizer indocyanine green (ICG) and encapsulated within tumor cytomembrane to constitute a bionic-flexocatalytic nanomedicine (MPI@M). After targeting the tumor, MPI@M orchestrates flexocatalytic water splitting in tumor interstitial fluid under acoustic stimulation to lower TIFP, which boosted the tumor penetration of ICG. Concurrently, the oxygen released from the flexocatalytic water splitting overcomes the limitation of hypoxia against PDT. Furthermore, superfluous singlet oxygen generated by PDT can induce mitochondrial dysfunction for further tumor cell apoptosis. After 60 min of flexocatalysis, both the 30% decrease of TIFP and the relieved tumor hypoxia are observed, significantly promoting the therapeutic effect of PDT. Consequently, MoSe2/Pt junction nanoflowers, with the excellent flexocatalytic performance, hold significant potential for future applications in biocatalytic cancer therapies.

5.
ACS Omega ; 9(29): 32066-32079, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39072057

ABSTRACT

Hydraulic fracturing is a widely used technique to enhance the production of coalbed methane reservoirs. However, a common issue is the invasion of coal fines into proppant packs, leading to pore clogging and reduced conductivity. This study investigated the impact of flow velocity on clogging by coal fines in saturated proppant packs to optimize the flow velocity and alleviate clogging during dewatering. Clogging experiments induced by coal fines were conducted on saturated proppant packs with varying superficial velocities. Throughout each experiment, the permeability and effluent concentration were monitored, and the process of clogging was visually observed using an optical microscope. The experimental results showed that both permeability and effluent concentration initially increased and then decreased with an increase in flow velocity, indicating the existence of a critical flow velocity for minimizing clogging in proppant packs. Microscale observations revealed that the dominant regimes of clogging induced by coal fines at low and high flow velocities were surface deposition and hydrodynamic bridging, respectively; a critical flow velocity was required to induce the occurrence of bridging. Removal efficiencies of coal fines in relation to surface deposition and straining against flow velocity were theoretically analyzed, aiming to provide insights into the mechanisms underlying the impact of flow velocity on clogging. The results showed that the overall removal efficiency by surface deposition and straining decreased with an increase in flow velocity. Theoretical data matched well with the experimental results at low flow velocities but failed to explain the outcomes at high flow velocities, primarily due to the onset of bridging at high flow velocities. This study highlights the necessity of developing a removal efficiency model for bridging to accurately describe clogging by coal fines in proppant packs and provides recommendations for clogging control in proppant packs.

6.
Clin Transl Med ; 14(7): e1758, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39073026

ABSTRACT

 : CRISPR/Cas12a-based combinational screening has shown remarkable potential for identifying genetic interactions. Here, we describe an innovative method for combinational genetic screening with rapid construction of a dual-CRISPR RNA (crRNA) library using gene splicing through overlap extension PCR (SOE PCR) and the adoption of CeCas12a, which we previously identified with strict PAM recognition and low off-targeting to guarantee fidelity and efficiency. The custom-pooled SOE crRNA array (SOCA) library for double-knockout screening could be conveniently constructed in the laboratory for widespread use, and the CeCas12a-mediated high-fidelity screen displayed good performance even under a negative selection screen. By designing a SOCA dual-crRNA library that covered most of the kinase and metabolism-associated gene targets of FDA-approved drugs implicated in hepatocellular carcinoma (HCC) tumourigenesis, novel cross-talk between the two gene sets was negatively selected to inhibit HCC cell growth in vitro and in vivo and was validated using virtual double-knockdown screening based on TCGA databases. Thus, this rapid, efficient and high-fidelity double-knockout screening system is promising for systemically identifying potential genetic interactions between multiple gene sets or combinations of FDA- approved drugs for clinical translational medicine in the future.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Humans , CRISPR-Cas Systems/genetics , Animals , Genetic Testing/methods
7.
Molecules ; 29(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893393

ABSTRACT

Despite being a major cyanide species in the process water, it is unclear how iron cyanide influences pyritic gold ore flotation as well as how lead ions influence pyritic gold ore flotation in the presence of iron cyanide. This study aims at revealing the interaction of Fe(CN)63- and lead ions in pyrite flotation to investigate the strong depressing effect of Fe(CN)63- on pyritic gold ore flotation and the significant activating effect of lead ions on pyritic gold ore flotation in the presence of Fe(CN)63- using flotation, zeta potential measurement and surface analysis methods. The flotation results showed that upon 5 × 10-5 mol/L Fe(CN)63- addition, pyrite recovery drastically decreased from about 51.3% to 8.6%, while the subsequent addition of 9.5 × 10-4 mol/L lead ions significantly activated pyrite with the recovery increasing from 8.6% to 91%, which demonstrated that Fe(CN)63- strongly depressed pyrite flotation, while lead ions completely activated pyrite in the presence of Fe(CN)63-. Zeta potential measurement, surface analysis using Cryogenic X-ray photoelectron spectroscopy (Cryo-XPS) and electrochemical impedance spectroscopy (EIS) revealed that Fe(CN)63- depression was attributed to the chemical adsorption of Fe(CN)63- on iron sites of pyrite as Prussian Blue (Fe[Fe(CN)6]); however, this hydrophilic layer could be covered totally by lead ions which adsorbed on as lead hydroxide/oxide through electrostatic interactions, which resulted in the significant activation effect of lead ions. The results from this study will lead to improved flotation of gold associated with pyrite in gold flotation plants.

8.
Food Chem ; 457: 140136, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38936129

ABSTRACT

Excessive dietary salt intake leads to health issues, while reducing NaCl content compromises flavor. Therefore, identifying methods to decrease salt levels without sacrificing flavor is crucial. This study investigated the sensory interaction between the saltiness of NaCl and the pungency of Litsea oleoresin. Glyceryl monostearate (6.6%) and soy lecithin (4.4%) were used as gelling agents to create oleogels, which were then employed to immobilize NaCl nanocrystals, optimizing sensory interactions. NaCl nanocrystals (427.73 ± 61.98 nm) were encapsulated in a Litsea oleoresin-sunflower seed oleogel system with uniform distribution. Sensory evaluation indicated that the NaCl nanocrystal/Litsea oleoresin@oleogel system, with moderate pungency, significantly enhanced perceived saltiness intensity (29.00 ± 1.14, compared to the control, 18.48 ± 1.12) (P < 0.05). When applied to potato chips, this system noticeably increased saltiness perception. This research provides a promising approach for developing low-sodium yet flavorful foods.

9.
Int Immunopharmacol ; 136: 112367, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823177

ABSTRACT

SLC25A19 is a mitochondrial thiamine pyrophosphate (TPP) carrier that mediates TPP entry into the mitochondria. SLC25A19 has been recognized to play a crucial role in many metabolic diseases, but its role in cancer has not been clearly reported. Based on clinical data from The Cancer Genome Atlas (TCGA), the following parameters were analyzed among HCC patients: SLC25A19 expression, enrichment analyses, immune infiltration, ferroptosis and prognosis analyses. In vitro, the SLC25A19 high expression was validated by qRT-PCR and Immunohistochemistry. Subsequently, a series of cell function experiments, including CCK8, EdU, clone formation, trans-well and scratch assays, were conducted to illustrate the effect of SLC25A19 on the growth and metastasis of cancer cells. Meanwhile, indicators related to ferroptosis were also detected. SCL25A19 is highly expressed in HCC and predicts a poor prognosis. Elevated SLC25A19 expression in HCC patients was markedly associated with T stage, pathological status (PS), tumor status (TS), histologic grade (HG), and AFP. Our results indicate that SLC25A19 has a generally good prognosis predictive and diagnostic ability. The results of gene enrichment analyses showed that SLC25A19 is significantly correlated with immune infiltration, fatty acid metabolism, and ferroptosis marker genes. In vitro experiments have confirmed that silencing SLC25A19 can significantly inhibit the proliferation and migration ability of cancer cells and induce ferroptosis in HCC. In conclusion, these findings indicate that SLC25A19 is novel prognostic biomarker related to immune invasion and ferroptosis in HCC, and it is an excellent candidate for therapeutic target against HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Ferroptosis/genetics , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Female , Male , Middle Aged , Cell Movement , Cell Proliferation
10.
Adv Sci (Weinh) ; : e2400560, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874331

ABSTRACT

Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.

11.
Bioresour Technol ; 404: 130914, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823563

ABSTRACT

As a new technology for accurate utilization of sludge resources, sludge inorganic-organic matter separation (IOMS) has attracted wide attention. This study examined the impact of this pretreatment on environmental and economic performance of sludge composting and incineration using life cycle assessment (LCA) and whole life costing (WLC). LCA results indicated that IOMS pretreatment reduced the energy conservation and emission reduction (ECER) values of composting and incineration by 56 % and 76 %, respectively. Meanwhile, WLC exhibited that IOMS pretreatment could cut the break-even year of incineration from 11 years to 4 years. The combination of organic sludge incineration/composting with inorganic sludge sintering ceramsite reveals excellent environmental and economic performance. The application optimization hypothesis analysis of these two routes in various provinces of China indicates that Jiangsu has the greatest development potential and should become a major promotion region.


Subject(s)
Sewage , Composting/methods , Incineration , Environment , China
12.
Environ Sci Pollut Res Int ; 31(28): 41208-41220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849616

ABSTRACT

Reasonable treatment of large amounts of sludge excavated from landfills has gained increasing attention due to the diminishing availability of landfill space in China. In this study, five landfill sludge (LS) treatment technologies using life cycle assessment (LCA) and life cycle cost (LCC) were investigated, i.e., co-incineration in coal-fired power plants (CFPP) and waste incineration power plant (WIPP), co-processing in cement kiln, bricks production, and sintering ceramsite. The LCA results demonstrate that sintering ceramsite outperforms other technologies and LCC results indicate sintering ceramsite also provides the highest economic benefit ($869.94). To further enhance environmental and economic performances of the LS treatment, the substitution of coal with natural gas and biomass can reduce Energy Conservation and Emission Reduction (ECER) index by 74% and 98%, respectively. This substitution can increase economic returns by 24% and 26%, respectively. Furthermore, national-level economic benefit and carbon emission reduction potential of different LS treatment technology alternative scenarios were assessed. Results display that a combination of 50% CFPP, 25% bricks, and 25% ceramsite (biomass) offers the highest economic gain, which is 3.02 times that of 50% CFPP and 50% cement (original case). Conversely, the replacement of 25% brick with 25% cement in the above combination result in the lowest carbon reduction, which is 9.35 times that of the original case.


Subject(s)
Sewage , Waste Disposal Facilities , China , Incineration , Coal
13.
Adv Mater ; : e2310659, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871360

ABSTRACT

Layered iron/manganese-based oxides are a class of promising cathode materials for sustainable batteries due to their high energy densities and earth abundance. However, the stabilization of cationic and anionic redox reactions in these cathodes during cycling at high voltage remain elusive. Here, an electrochemically/thermally stable P2-Na0.67Fe0.3Mn0.5Mg0.1Ti0.1O2 cathode material with zero critical elements is designed for sodium-ion batteries (NIBs) to realize a highly reversible capacity of ≈210 mAh g-1 at 20 mA g-1 and good cycling stability with a capacity retention of 74% after 300 cycles at 200 mA g-1, even when operated with a high charge cut-off voltage of 4.5 V versus sodium metal. Combining a suite of cutting-edge characterizations and computational modeling, it is shown that Mg/Ti co-doping leads to stabilized surface/bulk structure at high voltage and high temperature, and more importantly, enhances cationic/anionic redox reaction reversibility over extended cycles with the suppression of other undesired oxygen activities. This work fundamentally deepens the failure mechanism of Fe/Mn-based layered cathodes and highlights the importance of dopant engineering to achieve high-energy and earth-abundant cathode material for sustainable and long-lasting NIBs.

14.
J Ethnopharmacol ; 333: 118445, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38851472

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qifu Yin (QFY) originates from "Jingyue Quanshu · Volume 51 · New Fang Bazhen · Buzhen" a work by Zhang Jingyue, a distinguished Chinese medical practitioner from the Ming Dynasty. QFY is composed of Ginseng Radix et Rhizoma, Rehmanniae Radix Praeparata, Angelicae Sinensis Radix, Atractylodis Macrocephalae Rhizoma, Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle, Ziziphi Spinosae Semen, and Polygalae Radix. QFY is frequently employed to address memory loss and cognitive impairment stemming from vascular dementia, Alzheimer's disease (AD), and related conditions. Our findings indicate that QFY can mitigate nerve cell damage. Moreover, the study explores the impact of QFY on the calcium ion pathway and sphingolipid metabolism in mice with myocardial infarction, presenting a novel perspective on QFY's mechanism in ameliorating myocardial infarction through lipidomics. While this research provides an experimental foundation for the clinical application of QFY, a comprehensive and in-depth analysis of its improvement mechanism remains imperative. AIM OF THE STUDY: To clarify the regulatory mechanism of QFY on intestinal microecology in mice with memory impairment (MI). MATERIAL AND METHODS: The memory impairment mouse model was established by intraperitoneal injection of scopolamine hydrobromide. Kunming (KM) mice were randomly divided into blank group, Ginkgo tablet group (0.276 g/kg), QFY high, medium and low dose groups (17.2 g/kg, 8.6 g/kg, 4.3 g/kg). The effect on memory ability was evaluated by open field and step-down behavioral experiments. The morphological changes of nerve cells in the hippocampus of mice were observed by pathological method. The contents of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GSH-Px) in the brain tissue of mice were detected. The expression levels of CREB, Brain-Derived Neurotrophic Factor (BDNF) and Recombinant Amyloid Precursor Protein (APP) in the hippocampus of mice were determined using immunohistochemistry. The expression of N-methyl-D-aspartate receptor (NMDAR) and cAMP response element binding protein (CREB) related factors in the serum of mice was analyzed by ELISA. The levels of apoptosis signal-regulating kinase-1 (ASK1) and c-Jun N-terminal kinase (JNK) mRNA in the hippocampus were detected by quantitative real-time fluorescence polymerase chain reaction (qPCR). The intestinal feces of mice were collected, and the 16 S rDNA technology was used to detect the changes in intestinal microbiota microecological structure of feces in each group. RESULTS: Behavioral experiments showed that the high-dose QFY group exhibited a significant increase in exercise time (P<0.05) and a decrease in diagonal time (P<0.05) compared to the model group. The medium-dose group of QFY showed a reduction in diagonal time (P<0.05). Additionally, the latency time significantly increased in the medium and high-dose groups of QFY (P<0.01). The number of errors in the low, medium and high dose groups was significantly decreased (P<0.05, P<0.01, P<0.01). The nerve cells in the CA1 and CA3 regions of QFY-treated mice demonstrated close arrangement and clear structure. Furthermore, the content of SOD significantly increased (P<0.01) and the content of MDA significantly decreased (P<0.05) in the low and high-dose QFY groups. The content of CAT in the medium-dose group significantly increased (P < 0.05). Immunohistochemical analysis showed a significant reduction in the number of APP expression particles in the CA1 and CA3 regions of all QFY groups. Moreover, BDNF expression significantly increased in the medium and high-dose groups, while CREB expression significantly increased in the low and medium-dose groups of QFY within the CA1 and CA3 regions. Serum analysis revealed significant increases in CREB content in the low, medium, and high dose groups of QFY (P<0.01, P<0.05, P<0.05), and decreases in NMDAR content across all QFY dose groups (P<0.01). PCR analysis showed a significant decrease in the contents of ASK1 and JNK in the medium-dose group (P<0.01). Microecological analysis of intestinal microbiota demonstrated a significant restoration trend in the relative abundance of Fusobacteria, Planctomycetes, and Verrucomicrobia (P<0.01 or P<0.05) at the phylum level in the QFY groups. At the genus level, Akkermansia, Paramuribaculum, Herminiimonas, Erysipelatoclostridium and other genera in the QFY groups showed a significant trend of relative abundance restoration (P<0.01 or P<0.05). CONCLUSION: QFY can improve the memory of MI animals induced by scopolamine hydrobromide by restoring the homeostasis of intestinal microbiota and regulating related indexes in serum and brain tissue.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Memory Disorders , Scopolamine , Animals , Memory Disorders/drug therapy , Male , Drugs, Chinese Herbal/pharmacology , Mice , Gastrointestinal Microbiome/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Disease Models, Animal , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Animals, Outbred Strains
15.
iScience ; 27(6): 110002, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868179

ABSTRACT

The presence of antibiotic persisters is one of the leading causes of recurrent and chronic diseases. One challenge in mechanistic research on persisters is the enrichment of pure persisters. In this work, we validated a proposed method to isolate persisters with notorious Staphylococcus aureus cultures. With this, we analyzed the proteome profile of pure persisters and revealed the distinct mechanisms associated with vancomycin and enrofloxacin induced persisters. Furthermore, morphological and metabolic characterizations were performed, indicating further differences between these two persister populations. Finally, we assessed the effect of ATP repression, protein synthesis inhibition, and reactive oxygen species (ROS) level on persister formation. In conclusion, this work provides a comprehensive understanding of S. aureus vancomycin and enrofloxacin induced persisters, facilitating a better mechanistic understanding of persisters and the development of effective strategies to combat them.

17.
BMC Cancer ; 24(1): 698, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849760

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) constitute a substantial part of human hepatocellular carcinoma (HCC). The present study was devised to explore TAM diversity and their roles in HCC progression. METHODS: Through the integration of multiple 10 × single-cell transcriptomic data derived from HCC samples and the use of consensus nonnegative matrix factorization (an unsupervised clustering algorithm), TAM molecular subtypes and expression programs were evaluated in detail. The roles played by these TAM subtypes in HCC were further probed through pseudotime, enrichment, and intercellular communication analyses. Lastly, vitro experiments were performed to validate the relationship between CD63, which is an inflammatory TAM expression program marker, and tumor cell lines. RESULTS: We found that the inflammatory expression program in TAMs had a more obvious interaction with HCC cells, and CD63, as a marker gene of the inflammatory expression program, was associated with poor prognosis of HCC patients. Both bulk RNA-seq and vitro experiments confirmed that higher TAM CD63 expression was associated with the growth of HCC cells as well as their epithelial-mesenchymal transition, metastasis, invasion, and the reprogramming of lipid metabolism. CONCLUSIONS: These analyses revealed that the TAM inflammatory expression program in HCC is closely associated with malignant tumor cells, with the hub gene CD63 thus representing an ideal target for therapeutic intervention in this cancer type.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Epithelial-Mesenchymal Transition , Liver Neoplasms , Tetraspanin 30 , Tumor-Associated Macrophages , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Tetraspanin 30/metabolism , Tetraspanin 30/genetics , Lipid Metabolism/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Prognosis , Cellular Reprogramming/genetics
18.
Food Chem ; 454: 139821, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38815329

ABSTRACT

Oleogels are innovative structured fat systems that can replace detrimental lipids and saturated fats. Among the various gelators used to construct oleogels, phytosterols are regarded as potential oleogelators due to ability to lower blood cholesterol levels and protect patients from cardiovascular illnesses, although little research has been conducted on phytosterols. This article examines the formation, characterization, and application of phytosterol-based oleogels in detail. The oleogelation behaviors of phytosterol-based oleogels are affected by their formulation, which includes phytosterol type, combined oleogelator, proportion, concentration and oil type. These oleogels exhibit potential applications as solid fat substitutes without affecting the texture or sensory properties of food products or as effective delivery vehicles. To encourage the research and implementation of phytosterol-based oleogels, we will ultimately not only highlight problems related to their use in food processing, but also provide a few viewpoints, with the goal of providing fresh insights for advancing trends.


Subject(s)
Organic Chemicals , Phytosterols , Phytosterols/chemistry , Organic Chemicals/chemistry , Humans , Fat Substitutes/chemistry
19.
J Hazard Mater ; 471: 134428, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691928

ABSTRACT

Individual application of sulfide modification and electromagnetic field (EMF) can enhance the reactivity of nanoscale zero-valent iron (nZVI), yet the potential of both in combination is not clear. This work found that the reactivity of nZVI towards decabromodiphenyl ether was significantly enhanced by the combined effect of sulfidation and EMF. The specific reaction rate constant of nZVI increased by 7 to 10 times. A series of characterization results revealed that the sulfidation level not only affects the inherent reactivity but also the magnetic-induced heating (MIH) and corrosion (MIC) of nZVI. These collectively influence the degradation efficiency of nZVI under EMF. Sulfidation generally diminished the MIH effect. The low degree of sulfidation (S/Fe = 0.1) slightly reduced the MIC effect by 21.4%. However, the high degree of sulfidation (S/Fe = 0.4) led to significantly enhanced MIC effect by 107.1%. For S/Fe = 0.1 and 0.4, the overall enhancement in the reactivity resulting from EMF was alternately dominated by the contributions of MIH and MIC. This work provides valuable insights into the MIH and MIC effects about the sulfidation level of nZVI, which is needed for further exploration and optimization of this combined technology.

20.
BMC Infect Dis ; 24(1): 464, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698328

ABSTRACT

BACKGROUND: The Japanese government has instituted border control measures against COVID-19, including entry and exit screening of people arriving from overseas. We sought to evaluate the effectiveness of the exit screening policy in Japan in reducing the risk of importing COVID-19 cases among travelers from Asian and Pacific countries. METHODS: The study period was stratified based on the timing of exit screening: (i) the control period (the pre-exit screening period from 25 October 2020 to 16 January 2021), (ii) the time period with the Alpha variant from 17 January to 10 April 2021, and (iii) the time period with the Delta variant from 2 May to 2 October 2021. Incidence data in the countries of origin were used to adjust for the risk of infection among travelers. The positivity rate of entry screening in Japan was compared among the three different study periods, adjusting for the risk of infection in the country of origin. RESULTS: The adjusted relative risk of positivity was greatly reduced and substantially below the value of 1 during the Alpha variant period compared with the control period. Although the relative risks increased when comparing the Delta variant period against control, the estimate remained below 1, except for among travelers from India and Myanmar. The relative risk reduction was greatest in high-income countries, with estimates of 100% and 96% risk reduction during the Alpha and Delta variant periods, respectively, followed by upper-middle-income countries with estimates of 90% and 76%, respectively. CONCLUSIONS: Even in the presence of the Alpha and Delta variants, exit screening clearly reduced the risk of infection among travelers arriving from Asian and Pacific nations. As the testing relies on the country of origin, the effectiveness varied greatly by the socioeconomic income status and epidemiological situation of those countries. Test standardization and quality assurance may be required in low- and middle-income countries.


Subject(s)
COVID-19 , Travel , Humans , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/prevention & control , Japan/epidemiology , Mass Screening , SARS-CoV-2/isolation & purification , Incidence , Asia
SELECTION OF CITATIONS
SEARCH DETAIL