Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.520
Filter
1.
Food Chem ; 458: 140278, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38964103

ABSTRACT

High-content sugar in honey frequently results in severe matrix effects and requires complex pretreatment prior to analysis, posing significant challenges for the rapid analysis of honey. In this study, the reversal polarity nano-electrospray ionization mass spectrometry (RP-Nano-ESI-MS) analysis was developed for the direct evaluation of honey samples. The results indicated that RP-Nano-ESI-MS significantly mitigated the matrix effects induced by high-content sugar through the implementation of online desalting. Furthermore, RP-Nano-ESI-MS has been proven capable of not only differentiating acacia honey adulterated with 10% rape honey, but also effectively distinguishing six types of honey and exhibiting remarkable proficiency in detecting honey adulteration and botanical traceability. Additionally, RP-Nano-ESI-MS exhibited strong quantitative abilities, effectively characterizing variations in amino acid composition among six types of honey with high stability and reproducibility. Our studies underscore the significant potential of RP-Nano-ESI-MS for its rapid in situ analysis of sugar-rich foods like honey, especially in their authenticity verification.

2.
Org Lett ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967298

ABSTRACT

Current methods for the asymmetric α-sulfenylation of carbonyls cannot be applied to acyclic carbonyls that have two similar substituents at the α-position. This research demonstrated that the electrophilic sulfenylation of geometry-defined acyclic ß,ß-disubstituted enesulfinamides using S-aryl or S-alkyl benzenethiosulfonates can be highly stereoselective. This process results in enantioenriched α,α-disubstituted α-sulfenylated ketone surrogates with sulfur-containing acyclic tetrasubstituted carbon stereocenters bearing two electronically and sterically similar substituents (e.g., methyl and ethyl). Furthermore, by employing the corresponding stereoisomers of enensulfinamides, any of the four stereoisomers of α-sulfenylated ketimines can be selectively accessed.

3.
CNS Neurosci Ther ; 30(7): e14831, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961317

ABSTRACT

AIMS: Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS: After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS: Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION: Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.


Subject(s)
Depression , Habenula , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Animals , Habenula/metabolism , Habenula/drug effects , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Mice , Male , Depression/metabolism , Neuralgia/metabolism , Neuralgia/psychology , Mice, Inbred C57BL , Chronic Pain/metabolism , Chronic Pain/psychology , Potassium Channels
4.
Article in English | MEDLINE | ID: mdl-38994622

ABSTRACT

BACKGROUND: The emergence of drug resistance to oxaliplatin (OXA) is one of the critical obstacles in the therapy of advanced Hepatocellular Carcinoma (HCC). As an ethyl derivative of the natural compound epigallocatechin gallate (epigallocatechin-3-gallate, EGCG), Y6 was found to be able to enhance the sensitivity of HCC cells to doxorubicin. This study aimed to investigate the effect of Y6 on oxaliplatin resistance in HCC. METHODS: MTT was used to determine the reversal effect of Y6 on OXA resistance. To further explore the reversal mechanism, we treated OXA alone or in combination with Y6 or EGCG in drugresistant cells and observed the morphological changes of the cells. At the same time, transwell assay was used to detect the invasion and migration ability of cells. Moreover, Real-time PCR and Western blot analysis were performed to determine the expression levels of the miR-338-3p gene, HIF-1α/Twist proteins, and EMT-related proteins. RESULTS: We found that Y6 could inhibit the proliferation of HCC cells and effectively reverse the drug resistance of oxaliplatin-resistant human liver cancer cells (SMMC-7721/OXA) to OXA, and the reversal effect was more significant than that of its lead drug EGCG. Most of the cells in the control group and OXA group showed typical mesenchymal-like cell morphology, while most of the cells in co-administration groups showed typical epithelioid cell morphology, and the ability of the cells to invade and migrate decreased dramatically, particularly in Y6 plus OXA group. At the same time, Y6 could up-regulate the EMT epithelial marker protein E-cadherin and down-regulate the interstitial marker protein Vimentin. In addition, in co-administration groups, the expression of miR-338-3p was up-regulated, while the expression of HIF-1α and Twist was down-regulated. CONCLUSION: Y6 significantly enhanced the susceptibility of drug-resistant cells to OXA, and the process may be related to the regulation of miR-338-3p/HIF-1α / TWIST pathway to inhibit EMT. Therefore, Y6 could be considered an effective medication resistance reversal agent, which could improve the therapeutic effect for hepatocellular cancer patients.

5.
Heliyon ; 10(12): e33172, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984309

ABSTRACT

Roles of genes in heat acclimation (HA, repeated exercise-heat exposures) had not been explored. ACE I/D and ACTN3 R577X genetic polymorphisms are closely associated with outstanding exercise performances. This study investigated whether the two polymorphisms influenced the response to HA. Fifty young Han nationality male subjects were selected and conducted HA for 2 weeks. Exercise indicators (5-km run, push-up and 100-m run) were tested and rest aural thermometry (RTau) was measured before and after HA. ACE gene was grouped by I homozygote and D carrier, and ACTN3 gene was grouped by R homozygote and X carrier. Results showed that there were no differences between groups in age, body mass index, exercise indicators and RTau before HA. After HA, RTau of ACE I homozygote was lower than that of D carrier [F (1, 48) = 9.12, p = 0.004, η = 0.40]. Compared with RTau before HA, that of I homozygote decreased after HA (Δ = -0.26 °C, 95 % CI -0.34-0.18, p < 0.001), while that of D carrier did not change. There was a ACE gene × HA interaction in RTau [F (1, 48) = 14.26, p < 0.001, η = 0.48]. No effect of ACTN3 gene on RTau was observed. For exercise indicators, there were no differences between groups after HA, and no gene × HA interactions were observed. There may be a strong interaction of ACE gene and HA in the change of rest core temperature. I homozygote may have an advantage on improving heat tolerance.

6.
Environ Sci Technol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985512

ABSTRACT

While flow-electrode capacitive deionization (FCDI) is recognized as an attractive desalination technology, its practical implementation has been hindered by the ease of scaling and energy-intensive nature of the single-cell FCDI system, particularly when treating brackish water with elevated levels of naturally coexisting SO42- and Ca2+. To overcome these obstacles, we propose and design an innovative ion-selective metathesis FCDI (ISM-FCDI) system, consisting of a two-stage tailored cell design. Results indicate that the specific energy consumption per unit volume of water for the ISM-FCDI is lower (by up to ∼50%) than that of a conventional single-stage FCDI due to the parallel circuit structure of the ISM-FCDI. Additionally, the ISM-FCDI benefits from a conspicuous disparity in the selective removal of ions at each stage. The separate storage of Ca2+ and SO42- by the metathesis process in the ISM-FCDI (46.25% Ca2+, 14.25% SO42- in electrode 1 and 4.75% Ca2+, 35.25% SO42- in electrode 2) can effectively prevent scaling. Furthermore, configuration-performance analysis on the ion-selective migration suggests that the properties of the ion exchange membrane, rather than the carbon species, govern the selectivity of ion removal. This work introduces system-level enhancements aimed at enhancing energy conservation and scaling prevention, providing critical optimization of the FCDI for brackish water softening.

7.
Proc Natl Acad Sci U S A ; 121(29): e2320709121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985760

ABSTRACT

The Type-I interferon (IFN-I) response is the major outcome of stimulator of interferon genes (STING) activation in innate cells. STING is more abundantly expressed in adaptive T cells; nevertheless, its intrinsic function in T cells remains unclear. Intriguingly, we previously demonstrated that STING activation in T cells activates widespread IFN-independent activities, which stands in contrast to the well-known STING-mediated IFN response. Here, we have identified that STING activation induces regulatory T cells (Tregs) differentiation independently of IRF3 and IFN. Specifically, the translocation of STING from the endoplasmic reticulum to the Golgi activates mitogen-activated protein kinase (MAPK) activity, which subsequently triggers transcription factor cAMP response element-binding protein (CREB) activation. The activation of the STING-MAPK-CREB signaling pathway induces the expression of many cytokine genes, including interleukin-2 (IL-2) and transforming growth factor-beta 2 (TGF-ß2), to promote the Treg differentiation. Genetic knockdown of MAPK p38 or pharmacological inhibition of MAPK p38 or CREB markedly inhibits STING-mediated Treg differentiation. Administration of the STING agonist also promotes Treg differentiation in mice. In the Trex1-/- autoimmune disease mouse model, we demonstrate that intrinsic STING activation in CD4+ T cells can drive Treg differentiation, potentially counterbalancing the autoimmunity associated with Trex1 deficiency. Thus, STING-MAPK-CREB represents an IFN-independent signaling axis of STING that may have profound effects on T cell effector function and adaptive immunity.


Subject(s)
Cell Differentiation , Cyclic AMP Response Element-Binding Protein , Membrane Proteins , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Mice , Signal Transduction , MAP Kinase Signaling System , Mice, Inbred C57BL , Protein Transport , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Mice, Knockout , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Radiat Oncol ; 19(1): 89, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982452

ABSTRACT

BACKGROUND AND PURPOSE: To investigate the feasibility of synthesizing computed tomography (CT) images from magnetic resonance (MR) images in multi-center datasets using generative adversarial networks (GANs) for rectal cancer MR-only radiotherapy. MATERIALS AND METHODS: Conventional T2-weighted MR and CT images were acquired from 90 rectal cancer patients at Peking University People's Hospital and 19 patients in public datasets. This study proposed a new model combining contrastive learning loss and consistency regularization loss to enhance the generalization of model for multi-center pelvic MRI-to-CT synthesis. The CT-to-sCT image similarity was evaluated by computing the mean absolute error (MAE), peak signal-to-noise ratio (SNRpeak), structural similarity index (SSIM) and Generalization Performance (GP). The dosimetric accuracy of synthetic CT was verified against CT-based dose distributions for the photon plan. Relative dose differences in the planning target volume and organs at risk were computed. RESULTS: Our model presented excellent generalization with a GP of 0.911 on unseen datasets and outperformed the plain CycleGAN, where MAE decreased from 47.129 to 42.344, SNRpeak improved from 25.167 to 26.979, SSIM increased from 0.978 to 0.992. The dosimetric analysis demonstrated that most of the relative differences in dose and volume histogram (DVH) indicators between synthetic CT and real CT were less than 1%. CONCLUSION: The proposed model can generate accurate synthetic CT in multi-center datasets from T2w-MR images. Most dosimetric differences were within clinically acceptable criteria for photon radiotherapy, demonstrating the feasibility of an MRI-only workflow for patients with rectal cancer.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Radiotherapy Planning, Computer-Assisted , Rectal Neoplasms , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Radiotherapy Planning, Computer-Assisted/methods , Rectal Neoplasms/radiotherapy , Rectal Neoplasms/diagnostic imaging , Female , Male , Middle Aged , Radiotherapy Dosage , Organs at Risk/radiation effects , Adult , Aged , Pelvis/diagnostic imaging , Image Processing, Computer-Assisted/methods , Feasibility Studies
10.
Mol Cancer ; 23(1): 140, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982491

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis and limited therapeutic options. Research on the tumor microenvironment (TME) of PDAC has propelled the development of immunotherapeutic and targeted therapeutic strategies with a promising future. The emergence of single-cell sequencing and mass spectrometry technologies, coupled with spatial omics, has collectively revealed the heterogeneity of the TME from a multiomics perspective, outlined the development trajectories of cell lineages, and revealed important functions of previously underrated myeloid cells and tumor stroma cells. Concurrently, these findings necessitated more refined annotations of biological functions at the cell cluster or single-cell level. Precise identification of all cell clusters is urgently needed to determine whether they have been investigated adequately and to identify target cell clusters with antitumor potential, design compatible treatment strategies, and determine treatment resistance. Here, we summarize recent research on the PDAC TME at the single-cell multiomics level, with an unbiased focus on the functions and potential classification bases of every cellular component within the TME, and look forward to the prospects of integrating single-cell multiomics data and retrospectively reusing bulk sequencing data, hoping to provide new insights into the PDAC TME.


Subject(s)
Pancreatic Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Single-Cell Analysis/methods , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Animals , Biomarkers, Tumor , Genomics/methods , Gene Expression Regulation, Neoplastic , Multiomics
11.
Cancer Innov ; 3(1): e95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38948536

ABSTRACT

Background: Since RNA sequencing has shown that induced pluripotent stem cells (iPSCs) share a common antigen profile with tumor cells, cancer vaccines that focus on iPSCs have made promising progress in recent years. Previously, we showed that iPSCs derived from leukemic cells of patients with primary T cell acute lymphoblastic leukemia (T-ALL) have a gene expression profile similar to that of T-ALL cell lines. Methods: Mice with T-ALL were treated with dendritic and T (DC-T) cells loaded with intact and complete antigens from T-ALL-derived iPSCs (T-ALL-iPSCs). We evaluated the safety and antitumor efficiency of autologous tumor-derived iPSC antigens by flow cytometry, cytokine release assay, acute toxicity experiments, long-term toxicity experiments, and other methods. Results: Our results indicate that complete tumor antigens from T-ALL-iPSCs could inhibit the growth of inoculated tumors in immunocompromised mice without causing acute and long-term toxicity. Conclusion: T-ALL-iPSC-based treatment is safe and can be used as a potential strategy for leukemia immunotherapy.

12.
Neurochem Res ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951281

ABSTRACT

The purpose of this study is to explore the shared molecular pathogenesis of traumatic brain injury (TBI) and high-grade glioma and investigate the mechanism of propofol (PF) as a potential protective agent. By analyzing the Chinese glioma genome atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, we compared the transcriptomic data of high-grade glioma and TBI patients to identify common pathological mechanisms. Through bioinformatics analysis, in vitro experiments and in vivo TBI model, we investigated the regulatory effect of PF on extracellular matrix (ECM)-related genes through Prrx1 under oxidative stress. The impact of PF on BBB integrity under oxidative stress was investigated using a dual-layer BBB model, and we explored the protective effect of PF on tight junction proteins and ECM-related genes in mice after TBI. The study found that high-grade glioma and TBI share ECM instability as an important molecular pathological mechanism. PF stabilizes the ECM and protects the BBB by directly binding to Prrx1 or indirectly regulating Prrx1 through miRNAs. In addition, PF reduces intracellular calcium ions and ROS levels under oxidative stress, thereby preserving BBB integrity. In a TBI mouse model, PF protected BBB integrity through up-regulated tight junction proteins and stabilized the expression of ECM-related genes. Our study reveals the shared molecular pathogenesis between TBI and glioblastoma and demonstrate the potential of PF as a protective agent of BBB. This provides new targets and approaches for the development of novel neurotrauma therapeutic drugs.

13.
Orthop Surg ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952145

ABSTRACT

OBJECTIVE: To investigate the use of anti-osteoporotic agents and refracture incidence in patients with osteoporotic vertebral compression fracture (OVCF) following percutaneous vertebral augmentation (PVA) and to evaluate the real-world treatment of patients using denosumab following PVA. This study aims to provide spine surgeons with empirical insights derived from real-world scenarios to enhance the management of bone health in OVCF patients. METHODS: This retrospective cohort study was based on data from the MarketScan and Optum databases from the USA. Female patients aged 55-90 years who underwent PVA for OVCF between January 2013 and March 2020 were included and followed up from the day after surgery. Patients who received at least one dose of denosumab were included in the denosumab cohort and were further divided into the on-treatment and off-treatment groups according to whether they received a second dose of denosumab, with follow-up beginning on the index day (225 days after the first denosumab dose). In this study, the off-treatment group was considered as the control group. Refracture incidence after PVA, the proportion of patients using anti-osteoporotic agents in the total study population, and refracture incidence after the index day in the denosumab cohort were analyzed. RESULTS: A total of 13,451 and 21,420 patients from the MarketScan and Optum databases, respectively, were included. In the denosumab cohort, the cumulative incidence of clinical osteoporotic fractures within 3 years after the index day was significantly lower in the on-treatment group than in the off-treatment group (MarketScan database: 23.0% vs 39.0%, p = 0.002; Optum database: 28.2% vs 40.0%, p = 0.023). The cumulative incidence of clinical vertebral fractures was also lower in the on-treatment group than in the off-treatment group, with a significant difference in the MarketScan database (14.4% vs 25.5%, p = 0.002) and a numerical difference was found in the Optum database (20.2% vs 27.5%, p = 0.084).The proportion of patients using anti-osteoporotic agents was low at 6 months postoperatively, with only approximately 7% using denosumab and 13%-15% taking oral bisphosphonates. CONCLUSION: Postmenopausal women have a high refracture rate and a low proportion of anti-osteoporotic drug use after PVA. Continued denosumab treatment after PVA is associated with a lower risk of osteoporotic and clinical vertebral fractures. Therefore, denosumab may be a treatment option for patients with osteoporosis after PVA.

14.
Dalton Trans ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952336

ABSTRACT

The development of heteroatom dual-doped porous carbon frameworks with uniform doping is highly desirable for achieving highly efficient oxygen reduction reaction (ORR) activity, due to their tunable chemical and electronic structures. Herein, porous covalent triazine-based frameworks (CTFs) incorporating nitrogen/chorine dual-doped porous carbon networks were fabricated by selecting 1,3-bis(4-cyanophenyl) imidazolium chloride as a building block, in a facile and controllable way via a bottom-up strategy. The resulting nitrogen/chorine dual-doped catalyst CCTF-700 exhibits excellent ORR performance with a more positive onset and half-wave potential (0.85 V vs. RHE), higher diffusion-limited current density and significantly improved stability in comparison with the benchmark commercial 20 wt% Pt/C catalyst. It is worth mentioning that CCTF-700 shows one of the best ORR performances among all the reported metal-free electrocatalysts under alkaline conditions. This work paves the way for a controllable and reliable strategy to craft highly efficient heteroatom dual-doped carbon catalysts for energy conversion.

15.
ACS Omega ; 9(25): 27537-27548, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947790

ABSTRACT

Pipeline transportation of CO2 is the key link to realize carbon capture, utilization, and storage. CO2 pipeline transportation may face the risk of leakage, which poses a great threat to the production process and personnel safety. It is of great significance to study the leakage and diffusion characteristics of CO2 in pipeline transportation for the safety design and personnel protection of the offshore CO2 storage platform. In order to study the leakage and diffusion characteristics of CO2 in pipeline transportation on offshore platforms, a physical model of a target platform and several numerical models were built, and a series of pipeline CO2 leakage and diffusion simulations were carried out using the method of numerical simulation. Based on the simulation results, the temperature distribution and CO2 concentration distribution on the offshore platforms after leakage were measured and analyzed. The influence of leakage direction (horizontal and oblique 45° upward) was also studied. Dangerous areas on the platform and suggestions for staff evacuation were given according to the simulation results. The research results of this work can provide guidance for the safe operation of offshore CO2 storage platforms.

16.
PLoS One ; 19(7): e0305914, 2024.
Article in English | MEDLINE | ID: mdl-38950038

ABSTRACT

Mule duck is vitally important to the production of global duck meat. Here, we present two high-quality haplotypes of a female mule duck (haplotype 1 (H1):1.28 Gb, haplotype 2 (H2): 1.40 Gb). The continuity (H1: contig N50 = 14.90 Mb, H2: contig N50 = 15.70 Mb) and completeness (BUSCO: H1 = 96.9%, H2 = 97.3%) are substantially better than those of other duck genomes. We detected the structural variations (SVs) in H1 and H2. We observed a positive correlation between autosome length and the number of SVs. Z chromosome was some deficient in deletions and insertions, but W chromosome was some excessive. A total of 1,451 genes were haplotype specific expression (HSEs). Among them, 737 specifically expressed in H1, and 714 specifically expressed in H2. We found that H1 and H2 HSEs tended to be involved in similar biological processes, such as myometrial relaxation and contraction pathways, muscle structure development and phosphorylation. Our haplotype-resolved genome assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in mule duck.


Subject(s)
Ducks , Genome , Haplotypes , Animals , Ducks/genetics , Female , High-Throughput Nucleotide Sequencing/methods
17.
iScience ; 27(7): 110025, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38974972

ABSTRACT

Drug repurposing is a promising approach to find new therapeutic indications for approved drugs. Many computational approaches have been proposed to prioritize candidate anticancer drugs by gene or pathway level. However, these methods neglect the changes in gene interactions at the edge level. To address the limitation, we develop a computational drug repurposing method (iEdgePathDDA) based on edge information and pathway topology. First, we identify drug-induced and disease-related edges (the changes in gene interactions) within pathways by using the Pearson correlation coefficient. Next, we calculate the inhibition score between drug-induced edges and disease-related edges. Finally, we prioritize drug candidates according to the inhibition score on all disease-related edges. Case studies show that our approach successfully identifies new drug-disease pairs based on CTD database. Compared to the state-of-the-art approaches, the results demonstrate our method has the superior performance in terms of five metrics across colorectal, breast, and lung cancer datasets.

18.
Heliyon ; 10(12): e32829, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975152

ABSTRACT

Purpose: To analyze and compare clinical research trends and hot topics in allergic rhinitis (AR) and asthma and provide valuable theoretical data and references for future research. Methods: Clinical studies focusing on AR or asthma published from 2013 to 2023 were retrieved from the Web of Science Core Collection. Eligible articles were screened and analyzed using bibliometrics from multiple indicators. Results: A total of 261 eligible articles on AR and 991 qualified articles on asthma were screened. The following bibliometric analyses identified the Journal of Allergy and Clinical Immunology as the most influential publication on AR and asthma and proved the significant contributions of Harvard University in clinical studies on AR and asthma. The analyses also revealed that the top ten prolific authors for AR were from China, the United Kingdom, Japan, and Germany, whereas the top ten productive authors for asthma were mainly from the USA. Collaborations among countries for AR were relatively concentrated in the Occident, whereas international cooperation on asthma was mainly achieved by the Occident and certain Eastern countries. Conclusions: This study compared and analyzed the current status and evolution of AR and asthma-related clinical research using bibliometric analysis. Additionally, the study comprehensively summarized the impactful authors, institutions, and countries, and revealed the replacement and evolution of hotspots.

19.
Aging Med (Milton) ; 7(3): 341-349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975302

ABSTRACT

Objectives: Patients with traumatic brain injury (TBI) often suffer memory and cognitive impairments, and oxiracetam-like drugs are considered to have a positive impact on these symptoms potentially. However, the efficacy and safety of l-oxiracetam and oxiracetam in TBI patients have not been sufficiently investigated. Methods: The study adopts a multicenter, randomized, double-blind, parallel-group, phase 3 clinical trial design in 74 centers across 51 hospitals in China. A total of 590 TBI patients meeting criteria will be randomly allocated into three groups in a 2:2:1 ratio: l-oxiracetam group, oxiracetam group, and placebo group. The treatment period is 14 days, with a follow-up period of 90 days. The primary outcome measure is the change in the Loewenstein Occupational Therapy Cognitive Assessment score at 90 days after treatment. Secondary outcomes include changes in other cognitive assessments, neurological function, activities of daily living, and safety assessments. Discussion: There is no robust evidence to suggest that l-oxiracetam and oxiracetam can enhance memory and cognitive function in patients with mild to moderate TBI. This study has the potential to answer this crucial clinical question. Trial registration: chinadrugtrials.org.cn, identifier CTR20192539; ClinicalTrials.gov, identifier NCT04205565.

20.
Article in English | MEDLINE | ID: mdl-38970800

ABSTRACT

The multiattribute method (MAM) has emerged as a powerful tool for simultaneously screening multiple product quality attributes of therapeutic antibodies. One such potential critical quality attribute (CQA) is glycation, a common modification that can impact the heterogeneity, functional activity, and immunogenicity of therapeutic antibodies. However, current methods for monitoring glycation levels in MAM are rare and not sufficiently rapid and accurate. In this study, an improved mass spectrometry (MS)-based MAM was developed to simultaneously monitor glycation and other quality attributes including afucosylation. The method was evaluated using two therapeutic antibodies with different glycosylation site numbers. Treatment with IdeS, Endo F2, and dithiothreitol generated three distinct subunits, and the glycation results obtained were similar to those treated with PNGase F, which is routinely used to release glycans; the sample processing time was greatly reduced while providing additional quality attribute information. The MS-based MAM was also employed to assess the glycation progression following forced glycation in various buffer solutions. A significant increase in oxidation was observed when forced glycation was conducted in an ammonium bicarbonate buffer solution, and a total of 23 potential glycation sites and 4 significantly oxidized sites were identified. Notably, we found that ammonium bicarbonate was found to specifically stimulate oxidation, while glycation had a synergistic effect on oxidation. These findings establish this study as a novel methodology for achieving a technologically advanced platform and concept that enhances the efficacy of product development and quality control, characterized by its broad-spectrum, rapid, and accurate nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...